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ABSTRACT 

This paper presents a version of the Simultaneous Perturba-
tion Stochastic Approximation (SPSA) algorithm for opti-
mizing non-separable functions over discrete sets under 
given constraints.  The primary motivation for discrete 
SPSA is to solve a class of resource allocation problems 
wherein the goal is to distribute a finite number of discrete 
resources to finitely many users in such a way as to optimize 
a specified objective function. The basic algorithm and the 
application of the algorithm to the optimal resource alloca-
tion problem is discussed and simulation results are pre-
sented which illustrate its performance.  

1 INTRODUCTION 

In many practical non-linear, high-dimensional optimiza-
tion problems, the relationship between the problem pa-
rameters will be sufficiently complex such that the objec-
tive function is not easily described in closed, analytic 
form.  It is then necessary to use some iterative, numeric 
technique to find the objective function optimizer.  Addi-
tionally, in the constrained discrete resource allocation 
problem, the number of resources available may differ 
from the solution which optimizes the objective function. 
This paper considers the application of a modified version 
of simultaneous perturbation stochastic approximation 
(SPSA) for such difficult optimization problems.  The 
SPSA method has been found to be a fast and computa-
tionally efficient technique for optimizing large dimen-
sional problems when the objective function is sufficiently 
smooth yet analytically unavailable or difficult to obtain in 
closed form.  The method is essentially a Kiefer-Wolfowitz 
stochastic approximation scheme that relies on a very effi-
cient approximation of the objective function gradient. 
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2 BASIC SPSA ALGORITHM 

The focus of the present paper is the discrete version of 
SPSA.  Before discussing the procedure, a brief review of 
the basic SPSA algorithm (Spall 1992) for continuous pa-
rameter optimization will be given. A modified version of 
the algorithm for constrained optimization will be dis-
cussed in Sections 3 and 4. 

Consider the problem of minimizing a real-valued 
function, L(θ), defined on an open domain D in p-
dimensional Euclidean space, pR .  The function L(θ) is 
assumed to be at least three-times differentiable and have a 
unique minimizer in D.  Although the exact form of L is 
not assumed known, it is assumed, minimally, that noisy 
measurements of the function are available.  In particular, 
assume that measurements ( )θ,nM  are available, where 
 
                               ( ) ( )θεθθ nLnM +=),(                      (1) 
 
and εn is a zero-mean measurement noise process.  The 
SPSA algorithm uses two measurements of L at iteration k 
to form a gradient estimate: 

 
                  ( ) ( ) ( )kkkk ccLM ∆++∆+=+ θεθθ                (2) 

                  ( ) ( ) ( )kkkk ccLM ∆−+∆−=− θεθθ .              (3) 
 
The SPSA gradient estimate of the i-th component of the 
gradient at the k-th iteration is 
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The parameter c is a positive-valued step size, and ∆k is a 
random perturbation vector; ( )Tkpkk ∆∆=∆ ,,1 … .  The 
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ki∆ ‘s form an i.i.d. sequence of 1±  Bernoulli random 
variables and are assumed to be independent of the meas-
urement noise process. 

3 PENALTY FUNCTION 

The algorithm presented in Section 2 is for unconstrained 
optimization. This section will discuss a modification of 
the algorithm for use on constrained optimization prob-
lems. The modification utilized here relies on the method 
of penalty functions. A penalty function of the following 
form is considered         
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jj qpwP
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))(()( θθ                         (5) 

 
where, wj are the positive scalar weights and, p(•) is a real-
valued function on R. The penalty function is implemented 
to transform the original constrained optimization problem 
into an unconstrained optimization problem given by  
 
                                 )()(opt θθ

θ
rPL +                             (6) 

 
where, r is the penalty parameter and is a positive real 
number.  r is typically chosen larger than some threshold 
_
r , which depends on both L(θ) and P(θ). Because precise 
information on L(•) is unavailable, the optimum value of r 
is also unknown. Therefore, r is allowed to slowly in-
crease, forming a sequence of unconstrained optimization 
problems defined by 
 
                              )()(opt θθ

θ
PrL n

Rd
+

∈
.                           (7) 

 
The penalized cost function is then given by 
 
                             )()()( θθθ nn rLL += .                         (8) 
 
(Wang and Spall 1999) give the necessary conditions such 
that ** θθ =n . The modified parameter update equation is 
then given by  
 
               )()(ˆ1 nnnnnnnn Praga θθθθ ∇−−=+               (9) 
 
where, )(ˆ nng θ is an estimate of the gradient of L(•) at nθ , 
{rn}is an increasing sequence of positive scalars with 

∞=∞→ nn rlim , )(θP∇ is the gradient of P(θ) at θ, and 
{an} is a positive scalar sequence satisfying an→0 and 

∑
∞

=
∞=
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na . The gradient estimate, )(ˆ nng θ , is obtained as 
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before, from two noisy measurements of the cost function , 
i.e., Eqs. (2) and (3), and the SPSA gradient estimate of the 
i-th component of the gradient at the k-th iteration is given 
by Eq. (4). 

4 DISCRETE SPSA 

The discrete version of SPSA requires some modification 
of )ˆ,1( kkH θ+  to ensure that the iterates satisfy the 
constraints placed on θ. Herein, several possible modifica-
tions are investigated.  To simplify the treatment, it is as-
sumed that the domain of interest is the grid of points in 

pR  with discrete-valued coordinates. 
In Method 1, the estimate of θ is constrained by con-

straining the gradient estimate H(k,θ) to discrete values.  
At each iteration of the algorithm, the discrete solution is 
formed by   
 
                    { })ˆ,1(ˆˆ

1 kkk kHrounda θθθ +⋅−=+            (10) 
 
Upon convergence, the final values of the parameter vec-
tor, θ̂ , are given by }ˆ{ˆ

kfinal round θθ = . 
Method 2 is constrained in a manner similar to that of 

Method 1, with the exception that in this case, the gain 
constant a is also included in the rounding operation, i.e., 
 
                    { })ˆ,1(ˆˆ

1 kkk kaHround θθθ +−=+              (11) 
 

Upon convergence, the final values of the parameter vec-
tor,θ̂ , are already discrete valued. 

In the final method, Method 3, the entire parameter es-
timate is rounded either up or down to the nearest discrete 
value, i.e., 
 
                      { })ˆ,1(ˆˆ

1 kkk kaHround θθθ +−=+ ,          (12) 
 

on each iteration. 

5 RESOURCE ALLOCATION 

In the resource allocation problem, let there be M user 
classes and n types of resources allocated over these M 
user classes. There are Ni resources of type i and each re-
source of type i is assumed identical. The number of re-
sources of type i that are allocated to user class j is denoted 
as θij.  The entire set of θij is denoted by Θ. These relation-
ships are illustrated in Table 1.  
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Table 1:  User Class vs. Resource Type 
 

                                              User Class 

   
The authors previously looked at the use of SPSA on 

resource allocation problems with separable objective 
functions (Gerencsér, Hill, Vágó 1999, Whitney and Hill 
2001), i.e., functions of the form 

 

                         )()(
1

j
M

j
jLL θ∑

=
=Θ                          (13) 

 
where, Lj(θj) is the individual cost incurred by class j, and 
θj = θ1j, θ2j, …, θnj. In this case, the discrete, multiple con-
strained resource allocation problem is  

 
                               )(min ΘL  
 

subject to  
 

                  niN iji
M

j
ij ≤≤≥=∑

=
1,0,

1
θθ ,                 (14) 

 
where, Ni is the total number of resources of type i,  j is the 
class of resource, θij’s are non-negative integers, and M is 
the number of user classes. 

The class of allocation problems considered in the cur-
rent work involve non-separable functions of the resource al-
location parameters, θij. The particular objective function 
may be represented mathematically as follows (Einbu 1984): 
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subject to constraints 

 

                              Jjh
K
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                    KkJjjk ,...,1;,...,1;0 ==≥θ ,                  (17) 

 
where, J, is the number of resource types, K, the number of 
activities, θjk, the (unknown) quantity of resource j, allo-
cated to activity k, hj, the available quantity of resource j, 
rk, the return function of activity k, and ejk, the effective-
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ness of resource j when allocated to activity k; it is as-
sumed that ejk ≥ 0 for at least one k for every j.  It is further 
assumed that rk is continuously differentiable, strictly con-
cave, and strictly increasing in both the positive and nega-
tive domains. The return functions were of the form  
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k = 1, …, K. The matrix and vector elements ejk, ak, and hj 
were sampled from uniform distributions over the (con-
tinuous) intervals [0.2,1], [5,10], and [1,3] respectively.  

In the current problem, L(θ) is concave, so the 
objective is to distribute the resources in such a way that 
L(θ) is maximized. 

6 SIMULATION 

Simulation results are presented for a cost function of the 
form 
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In this example, there are three resource types, J. Resource 
type ‘1’, has an available quantity of 6, resource type ‘2’, 
has an available quantity of 3, resource type ‘3’has an 
available quantity of 4, and the number of activities, a, is 3.   
The problem is then the optimum distribution of these 
available resources, i.e., *

jkθ , subject to constraints 
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7 RESULTS 

The results for the three different methods of parameter 
constraint are illustrated in Figures 1-3. These figures illus-
trate the cost function maximization for the three methods 
as a function of the instantaneous estimate of the parameter 
vector, θ, at iteration k. The parameter vector, θ̂ , was ini-
tialized to a zero matrix, and the efficiencies were arbitrar-
ily set to ‘1’.  

Figure 1 illustrates the result when the parameters are 
constrained using Method 1. In Method 1, the gradient es-
timate is truncated, but during the iterations, kθ̂ , is al-
lowed to take on non-discrete values. When the specified 
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number of iterations are run, or, the convergence criteria is 
met, the final kθ̂ is then truncated.  

Figure 2 illustrates the result when the parameters are 
constrained using Method 2. In Method 2, on each iteration 
the product of the gain factor, a, and the gradient estimate, 
g(θ), is rounded.  

Figure3 illustrates the result when the parameters are 
constrained utilizing Method 3; in this method the entire 
quantity { })ˆ,1(ˆ

kk kaH θθ +−  is truncated. 
 

 
Figure 1:  Convergence Rate of L(θ), Method 1 

 

 
Figure 2:  Convergence Rate of L(θ), Method 2 

 

 
Figure 3:  Convergence Rate of L(θ), Method 3 
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For Method 1, the resulting resource allocation matrix  is,  
















=

112
102
132

X , and the optimized value of the objective 

function, L, is 23.2532. 
For Method 2, the resulting resource allocation matrix 

is,  















=

010
002
400

X , and the optimized value of the objec-

tive function, L, is 16.5010.  
For Method 3, the resulting resource allocation matrix 

is,















=

022
102
141

X , and the optimized value of the objec-

tive function, L, is 23.8321. 

8 SUMMARY 

This work has illustrated a method of implementing the 
simultaneous perturbation stochastic approximation 
(SPSA) algorithm for discrete-valued constrained optimi-
zation problems. A penalty function was used to imple-
ment the resource allocation constraint criteria. Three dif-
ferent methods were illustrated for truncating the 
parameter estimates. In this application, Methods 1 and 3 
arrive at very similar optimized objective function values, 
as compared to Method 2. Additionally, Methods 1 and 3 
utilize all of the available resources of each available type. 
One possibility in the cause of the difference in the re-
source allocation distribution is the method used for pa-
rameter truncation. This will be examined in future work. 
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