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ABSTRACT

We formulate and evaluate a Bayesian approach to proba-
bilistic input modeling. Taking into account the parameter
and stochastic uncertainties inherent in most simulations,
this approach yields valid predictive inferences about the
output quantities of interest. We use prior information to
construct prior distributions on the input-model parameters.
Combining this prior information with the likelihood func-
tion of sample data observed on the input processes, we
compute the posterior parameter distributions using Bayes’
rule. This leads to a Bayesian Simulation Replication Algo-
rithm in which: (a) we estimate the parameter uncertainty
by sampling from the posterior distribution of the input
model’s parameters on selected simulation runs; and (b) we
estimate the stochastic uncertainty by multiple independent
replications of those selected runs. We also formulate some
performance evaluation criteria that are reasonable within
both the Bayesian and frequentist paradigms. An experi-
mental performance evaluation demonstrates the advantages
of the Bayesian approach versus conventional frequentist
techniques.

1 INTRODUCTION

Discrete-event simulations, especially those modeling com-
plex systems, are almost all driven by random input pro-
cesses. A simulation experiment therefore typically requires
a number of streams of random variates drawn from spec-
ified distributions or input models. The inherent variation
in the output of a simulation experiment arising from its
dependence on these random inputs is often called stochas-
tic uncertainty (Helton 1998). We generally assume that
the input models driving the simulation belong to known
parametric families. However, uncertainty typically occurs
when choosing between different input models. We re-
fer to this second source of variation as model uncertainty
(Raftery et al. 1995). The parameters on which these mod-
els depend are usually assumed to be fixed. In practice,
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these parameters are estimated from subjective information
(expert opinion) or from real data observed on the input
processes. The estimation of unknown parameters gives
rise to another source of variation often referred to in the
literature as parameter uncertainty (Raftery et al. 1995).

Cheng and Holland (1997) consider two methods of
assessing how the variation in the simulation output depends
on parameter uncertainty and stochastic uncertainty. The
first method is based on classical differential analysis, or the
δ-method (Stuart and Ord 1994). The main result of Cheng
and Holland (1997) shows that under general conditions
the total variation in the simulation output is composed of
two distinct terms, depending respectively on the parameter
uncertainty and stochastic uncertainty. One problem with
this method is that certain sensitivity coefficients have to be
estimated, and the effort needed to do this increases linearly
with the number of unknown input parameters. Moreover,
when the number of parameters is large, a problem can occur
with spurious variation overinflating the variance estimate.
The second method that Cheng and Holland (1997) consider
for assessing the variation in the simulation output is the
parametric bootstrap (Efron and Tibshirani 1993). Although
computationally more expensive, this method does not suffer
from the difficulties of the δ-method. It can also be more
competitive on the grounds of computational efficiency if
the number of unknown parameters is large.

Both of the above methods rely on the assumption that
the parameters of the input models are unknown but de-
terministic quantities. Moreover, the output inferences are
implicitly conditional on the selected single input model.
The objective of the simulation experiment is therefore to
estimate the mean output response as a function of the
“true” but unknown parameter values. The most fundamen-
tal problem with such approaches to input model selection is
that conditional on a single input model and on given values
of the parameters for that input model, the output inference
underestimates the overall (unconditional) uncertainty in the
output quantities of interest, sometimes to a dramatic extent
(Kass and Raftery 1995). Moreover, the usual approach to
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model selection in the simulation community is commonly
guided by a series of goodness-of-fit tests (Law and Kelton
2000). These tests can be highly misleading and very diffi-
cult to interpret in a classical statistical framework (Berger
and Delampady 1987).

All these difficulties can be avoided, if one adopts
a Bayesian approach that incorporates prior information
on competing models and their parameters in a rigorous
manner. We can compute the posterior probabilities using
Bayes’ rule for all competing models and their parameters;
and then we can make a composite inference that takes
account of model and parameter uncertainty in a formally
justifiable way (Zouaoui 2001). Even if prior information
is not readily available, there are methods to perform a
full Bayesian analysis that rely on noninformative priors
and thus will give more weight to the observed data, but
will still incorporate the model and parameter uncertainties
that are due to our lack of knowledge about the input
processes driving our simulation experiment. These methods
generalize the classical inferences conditional on the choice
of a single input model and its parameters, and they work
for both small and large sample sizes.

In this paper, we use a Bayesian approach to account
for both stochastic uncertainty and parameter uncertainty
in simulation; and we estimate the effects of these sources
of uncertainty on the output quantity of interest. Hence,
we assume that the functional forms of all input models
are known, perhaps based on our prior knowledge of the
processes driving the simulation model—a situation that
sometimes occurs in simulation applications. In Zouaoui
and Wilson (2001b), we extend our approach to account
for model uncertainty as well as parameter uncertainty and
stochastic uncertainty.

The rest of this paper is organized as follows. In Sec-
tion 2 we define the symbolism used to describe our layout
for probabilistic simulation experiments. In Section 3 we
survey some recent developments concerning the use of
the bootstrap method for classical frequentist simulation
input modeling. In Section 4 we detail our Bayesian frame-
work for handling parameter and stochastic uncertainties in
discrete-event simulation; and this development leads to our
“Bayesian Simulation Replication Algorithm” for design-
ing simulation experiments. To evaluate the performance
of both Bayesian and frequentist input modeling techniques
on a fair and consistent basis, in Section 5 we formulate
appropriate evaluation criteria and illustrate the application
of these criteria to a simulation of a single-server queue.
For more complete details on the development presented in
this paper, see Zouaoui and Wilson (2001a).

2 THE SIMULATION EXPERIMENT

A simulation experiment, in its basic form, consists of
making m independent runs of the simulation model and
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observing a single output performance measure of interest,
y, from each run. For simplicity, we assume that the
simulation model is driven by a single sequence {X1, X2, . . .}
of independent and identically distributed input random
variables, from which we observe the random sample x =
(x1, . . . , xn). Multiple independent random input sequences
will be treated in a similar fashion.

During the j th simulation run, a stream of random
numbers u j is generated internally within the simulation
model. This stream is used to generate the input random
variates x̃ j by some transformation method, from which
the output y j is computed. It is more convenient to think
of both streams as finite for a fixed simulation run length.

One possible method for generating the input random
variates x̃ j , which is commonly used by the simulation
software packages, is the inverse transform method. If we
let u j i denote the i th random number sampled on the j th
simulation run, then x̃ j i can be generated using the inverse
transform method as

x̃ j i = G−1
M (u j i , θM ), (1)

where G−1
M (·) is the inverse of the distribution function

GM (·, θM ) of the simulation input model M , having θM

as its dM -dimensional vector of parameters. Given θM , we
shall assume in this paper that the conditional distributions
of X̃ j i and Xi are the same. Hence, the real data observa-
tions are assumed to have been drawn from the distribution
GM (x, θM).

The model and parameter uncertainties are represented
by the random variables M and θM , respectively, both of
which are assumed to depend only on the subjective infor-
mation or data observed on the target input processes; and
the stochastic uncertainty depends only on the randomness
of u. Thus the output of interest from the simulation run,
y, can be regarded as an unknown complicated function of
u, M , and θM ,

y = y(u, M, θM ). (2)

In this paper, we limit our attention to the effects
of parameter uncertainty and stochastic uncertainty on the
distribution of y. For simplicity we drop M from our
subsequent expressions, recognizing that they are implicitly
dependent on the input model M . (In Zouaoui and Wilson
(2001b), we will relax the simplifying assumption that the
input model M is known.) Thus equation (2) becomes

y = y(u, θ), (3)

and we let

η(θ) =
∫

y(u, θ) du (4)

denote the expected value of y given θ .
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The objective of a classical simulation experiment is
generally to estimate η(θ0), where θ0 is the true but unknown
parameter value, estimated separately from the simulation
experiment using real data. It is also of interest to compute
a measure of the variability of the simulation output, from
which a confidence interval for η(θ0) can be constructed.

3 CONVENTIONAL APPROACHES TO
ESTIMATING PARAMETER AND
STOCHASTIC UNCERTAINTY

From the structure of the simulation model described in the
previous section, we see that the responses or outputs of
the simulation runs for a fixed parameter vector θ ∈ R

d can
be written as

y j = y(u j , θ) = η(θ)+ e j (u j , θ), j = 1, . . . , m.

The error variable e j is the random difference between the
output of the j th simulation run and η(θ). We generally
assume that E(e j |θ) = 0 and Var(e j |θ) = τ 2(θ) for j =
1, . . . , m, so that E(y j |θ) = η(θ). Hence the mean of the
simulation outputs,

y = 1

m

m∑
j=1

y j , (5)

is an unbiased estimator of η(θ).
If the maximum likelihood estimator θ̂ of θ0 is used

in (3), then the output is y j = y(u j , θ̂ ) = η(θ̂)+ e j (u j , θ̂ )

for j = 1, . . . , m, where θ̂ and u j are independent random
vectors. We have the variance decomposition

Var(y j ) = Varθ̂ {E[ y j (u j , θ̂ ) | θ̂ ] }
+ Eθ̂ {Var[ y j (u j , θ̂ ) | θ̂ ] }

= Vpar + Vsto, (6)

in which Vpar denotes the parameter variance and Vsto denotes
the stochastic or simulation variance.

It is generally easy to estimate the stochastic variance
Vsto in (6). Based on m independent replications, the most
commonly used estimator is

V̂sto = 1

m − 1

m∑
j=1

(y j − y)2, (7)

where y j = y(u j , θ̂ ) is the output of the j th replication,
and y is the average of all y j ’s and the estimate of the
mean response. The parameter variance Vpar in (6) is more
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difficult to estimate. Cheng and Holland (1997) developed
a finite-difference estimator of Vpar.

In the rest of this section, we review a bootstrap method
(Efron 1979) for estimating Vpar. Following the notation
of Section 2, we substitute the estimator θ̂ into G(x, θ)

to obtain the fitted distribution G(x, θ̂). We then draw a
sample x∗1 = (x∗11, x∗12, . . . , x∗1n) from G(x, θ̂ ), perhaps via
the inverse transform (1). Corresponding to this bootstrap
sample is the bootstrap estimate θ̂∗(1) of θ0, computed
from x∗1 in exactly the same way that θ̂ was computed
from x. Repeating this sampling-and-estimation operation
independently B times yields the estimates {θ̂∗(i) : i =
1, . . . , B}. We can then carry out B bootstrap simulation
experiments, one for each θ̂∗(i), where each run using the
input parameter vector θ̂∗(i) has the same length as in
the original experiment; and altogether m′ simulation runs
are performed using each θ̂∗(i). For i = 1, . . . , B , this
yields the i th set of simulation-generated output responses
{y∗i j : j = 1, . . . , m′} from which we calculate the sample

mean y ∗i =
∑m′

j=1 y∗i j /m′. Let y
∗ = ∑B

i=1 y ∗i /B denote
the grand mean of the bootstrap sample means.

Cheng and Holland (1997) show how the variance of y ∗i
depends on both the stochastic variance and the parameter
variance. When each bootstrap is an exact replica of the
original experiment (i.e. m′ = m), Cheng and Holland
suggest using the sample variance of the {y ∗i },

S2
B =

1

B − 1

B∑
i=1

(
y ∗i − y

∗)2
, (8)

as an estimate for the variance of the original sample mean
y specified in (5). Using (7) as an estimate for Vsto and
(8), we estimate the parameter variance by

V̂par = S2
B − V̂sto. (9)

An alternative bootstrap-based approach to estimating Vpar

is to compute V̂ ∗sto(i) =
∑m′

j=1

(
y∗i j − y ∗i

)2
/(m′ − 1) as an

additional estimate of τ 2(θ0) for i = 1, . . . , B; and then

we can use V̂ ∗sto =
[
V̂sto+∑B

i=1 V̂ ∗sto(i)
]/

(B + 1) in place

of V̂sto in (9).
Finally, we discuss how we can construct a bootstrap

confidence interval for η(θ0). One possibility is to construct
a classical t-type confidence interval using the bootstrap vari-
ance estimates given in this section. However, this interval
generally performs poorly in practice. Efron and Tibshi-
rani (1993) explain this phenomenon and suggest methods
to overcome such a drawback. A confidence interval that
generally behaves better for such cases is the bootstrap
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percentile-type confidence interval. From the order statis-
tics y ∗(1) ≤ y ∗(2) ≤ · · · ≤ y ∗(B) of the {y ∗i : i = 1, . . . , B},
we obtain the 100(1− α)% percentile-type confidence in-
terval

[β∗L, β∗U] ≈ [y ∗(�Bα/2�), y ∗(�B(1−α/2)�)]. (10)

4 BAYESIAN APPROACH

We describe in this section the applicability of the Bayesian
approach to our basic structure (3) of the discrete-event
simulation model. We provide methods to estimate the pos-
terior mean response and to construct a confidence interval
for that quantity.

4.1 Estimating Mean Response

We observe a random sample x = (x1, . . . , xn) from our
selected input model. Let θ be its d-dimensional vector
of parameters with prior distribution p(θ). We assume
that the hyperparameters of the prior distribution are either
known or estimated using moment matching or some other
empirical Bayes method (Carlin and Louis 1996). We are
not being fully Bayesian here by stopping the hierarchy
at the second stage. However, we argue here that in most
simulation applications in operations research and industrial
engineering (as opposed, for example to applications in
econometrics), prior information will be generally vague if
it exists at more than one level down the hierarchy.

For our basic simulation model structure, we derive the
posterior mean response given x.

Theorem 1 If the simulation response y has the
form (3), then

E(y|x) =
∫

η(θ) p(θ |x) dθ.

Zouaoui (2001) and Zouaoui and Wilson (2001a) con-
tain proofs of all results presented in this paper.

Our first objective is to develop an approach that ac-
counts fully for parameter and stochastic uncertainty and
that can be extended easily to account for model uncer-
tainty. This approach should also have a theoretical appeal,
and most importantly it should perform well in practice.
Figure 1 summarizes the Bayesian Simulation Replication
Algorithm that we have developed to implement a Bayesian
approach to simulation input modeling. The net effect of
the algorithm is to account fully for the uncertainty in the
parameters of the input model as well as to account fully
for the usual stochastic uncertainty. The algorithm can be
seen as an uncertainty decomposition algorithm. The inner
loop will be used to generate estimates of the stochastic
uncertainty, whereas the outer loop will estimate the pa-
rameter uncertainty. The next subsection gives a detailed
explanation of how to estimate the stochastic and param-
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for r = 1, . . . , R

generate the parameter vector θ r from p(θ |x)

set the parameter vector θ ← θ r

for j = 1, . . . , m

set the random-number input u← u j

perform the simulation run using u and θ

calculate the output response yr j = y(u, θ)

end loop

compute yr =
∑m

j=1 yr j/m

end loop

compute the grand mean y =∑R
r=1 yr/R

as an estimate for E(y|x)

Figure 1: Bayesian Simulation Replication Algorithm

eter variances and construct a confidence interval on the
posterior mean response.

4.2 Assessing Output Variability

We try to assess the variability of the simulation output based
on simple response surface models, given the objective of
estimating the mean response in our simulation study. The
following analysis can be extended to more complicated
models, but such an extension is beyond the scope of this
paper. We develop two methods of estimating the parameter
and stochastic variances in the simulation output.

4.2.1 Classical Output Analysis

Following our basic simulation structure of Section 2, we see
that the output responses from the simulation runs performed
by the Bayesian Simulation Replication Algorithm of Figure
1 are given by

yr j = y(u j , θ
r ) = η(θ r )+ e j (u j , θ

r ), (11)

for r = 1, . . . , R and j = 1, . . . , m. We generally assume
that

E(e j |θ r ) = 0 and Var(e j |θ r ) = τ 2, (12)

where τ 2 does not depend on θ r . Given that our main
objective is to estimate the overall mean response, we further
assume that

η(θ r ) = β + δr (θ
r ), (13)
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where β = β(x)= Eθr [η(θ r )] = ∫ η(θ) p(θ |x) dθ = E(y|x)

from Theorem 1; and

Eθr (δr ) = 0 and Varθr (δr ) = σ 2. (14)

Based on these assumptions, the posterior variance
can be written as the sum of two variances measuring the
stochastic and parameter uncertainty, respectively.

Theorem 2 If (11)–(14) hold, then

Var(y|x) = τ 2 + σ 2.

The response surface model given by (11)–(14) is known
in the statistical literature as the classical random-effects
model (Rao 1997), where one estimates β, τ 2, and σ 2 using
the simulation-generated statistics specified in Figure 1 as
follows: the posterior mean response is estimated by

β̂ = y; (15)

the variance due to stochastic uncertainty is estimated by

τ̂ 2 =

R∑
r=1

m∑
j=1

(yr j − yr )
2

R(m − 1)
; (16)

and finally the variance due to parameter uncertainty is
estimated by

σ̂ 2 =

R∑
r=1

(yr − y)2

(R − 1)
− τ̂ 2

m
. (17)

In many applications, especially the ones where we
are totally ignorant about the output performance measure,
the above formulation delivers reasonable point estimates.
However, there are two important drawbacks of using such
an approach. The first drawback concerns the estimate σ̂ 2,
which can be negative. The problem of a negative estimate
for a variance component can be avoided by setting it equal
to zero, but this creates new issues (Rao 1997). The main
drawback comes from the fact that substituting point esti-
mates for the above parameters ignores our real uncertainty
about them. We suggest in §4.2.2 a full Bayesian treatment
of the same model with noninformative priors based on
normally distributed simulation output observations.

In addition to point estimates, we can also construct a
confidence interval for β from the output of the Bayesian
Simulation Replication Algorithm given in Figure 1. Similar
to the bootstrap approach, we can construct an approximate
100(1− α)% Bayesian percentile confidence interval for β
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as

[βL, βU] ≈ [y(�Rα/2�), y(�R(1−α/2)�)], (18)

where the quantities y(1) ≤ y(2) ≤ · · · ≤ y(R) denote the
order statistics of the {yr : r = 1, . . . , R} specified in Figure
1. These intervals generally perform better in practice than
t-type confidence intervals (Efron and Tibshirani 1993).

4.2.2 Bayesian Output Analysis

Under the hierarchical normal model, we assume that the
output data {yr j : r = 1, . . . , R and j = 1, . . . , m} specified
in Figure 1 are independently normally distributed, that is

yr j | µr , τ ∼ N(µr , τ
2). (19)

For r = 1, . . . , R, we also assume that the parameter µr ,
which corresponds to η(θ r ) in equation (11), is also normally
distributed:

µr | β, σ ∼ N(β, σ 2), r = 1, . . . , R. (20)

Note that although assumption (19) generally holds in prac-
tice because of the simulation output usually being an average
of a large number of output random variables, assumption
(20) may not be consistent with the form of the posterior
distribution p(θ |x).

To complete the Bayesian formulation, we assume a
noninformative prior distribution for (β, τ, σ ), with σ > 0
and τ > 0; specifically we take p(β, τ, σ ) ∝ τ−1. It follows
from this assumption that the joint posterior density of all
parameters satisfies the relation

p(µ, β, τ, σ | y)

∝ 1

τ

R∏
r=1

p(µr | β, σ)

R∏
r=1

m∏
j=1

p(yr j | µr , τ ), (21)

where µ = (µ1, . . . , µR) and y = {yr j : r = 1, . . . , R; j =
1, . . . , m}.

Many numerical methods such as conditional maxi-
mization can be used to obtain posterior point estimates for
the parameters of interest. However, we are also interested
to compute posterior confidence intervals for these param-
eters; and Markov Chain Monte Carlo (MCMC) methods
are appropriate for such inferences. In fact, we can even
obtain a large sample from the posterior distribution of each
parameter from which we can estimate its density.

The idea behind MCMC (Gilks et al. 1996) is to simulate
a random walk in the space of (µ, β, τ, σ ) which converges to
a stationary distribution that is the joint posterior distribution
p(µ, β, τ, σ | y). The most widely used MCMC method
is the Gibbs Sampler algorithm (Casella and George 1992).
Figure 2 summarizes briefly the steps of the algorithm. For
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our problem this algorithm can be easily implemented in
any statistical software package, given its simplicity and the
fact that we can generate variates easily from the following
required conditional distributions (Gelman et al. 1995):

µr | β, τ, σ, y ∼ N

(
β

σ 2 + myr
τ 2

1
σ 2 + m

τ 2

,
1

1
σ 2 + m

τ 2

)
, (22)

for r = 1, . . . , R;

β | µ, τ, σ, y ∼ N

(
1

R

R∑
r=1

µr ,
σ 2

R

)
; (23)

τ 2 | µ, β, σ, y ∼ IG

m R

2
,

1

2

R∑
r=1

m∑
j=1

(yr j − µr )
2

 ; (24)

and

σ 2 | µ, β, τ, y ∼ IG

(
R − 1

2
,

1

2

R∑
r=1

(µr − β)2

)
, (25)

where the density function of a random variable Z having an
Inverse Gamma distribution IG(ν, φ) with shape parameter
ν and scale parameter φ is defined as

p(z|ν, φ) = φνe−φ/z


(ν)zν+1
, z > 0, ν > 0, φ > 0,

and where 
(·) denotes the gamma function. The classical
estimates of β, τ 2, and σ 2 given by equations (15), (16),
and (17), respectively, are good initial estimates with which
to start the Gibbs sampler algorithm. If the initial estimate
σ̂ 2 is negative, then we can set it to a small value, say 0.001.
The output inference from the Gibbs sampler algorithm is
based on T = 50000 iterations, with a warm-up period of
T ∗ = 5000 iterations. These relatively large numbers of
iterations are generally required for convergence because
of the high autocorrelation between successively sampled
values of some parameters (Spiegelhalter et al. 1996). The
point estimates of β, τ 2, and σ 2 are given in Figure 2.
A 100(1− α)% credible interval for β can be constructed
from the output of the Gibbs sampler algorithm as

[βL, βU] ≈ [β(�(T−T ∗)α/2�), β(�(T−T ∗)(1−α/2)�)], (26)

where the quantities β(1) ≤ β(2) ≤ · · · ≤ β(T−T ∗) denote the
order statistics of the {βt : t = T ∗+1, . . . , T } generated by
the Gibbs sampler algorithm of Figure 2. Credible intervals
similar to (26) can also be constructed for τ 2 and σ 2.
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Set β0, τ
2
0 , and σ 2

0 to their classical estimates

(15), (16), and (17), respectively.

For t = 1, . . . , T ∗, T ∗ + 1, . . . , T , generate:

µrt ∼ p (µr | βt−1, τt−1, σt−1, y) as in (22),

for r = 1, . . . , R, and

take µt = (µ1t , . . . , µRt );

βt ∼ p
(
β | µt , τt−1, σt−1, y

)
as in (23);

τ 2
t ∼ p

(
τ 2 | µt , βt , σt−1, y

)
as in (24); and

σ 2
t ∼ p

(
σ 2 | µt , βt , τt , y

)
as in (25).

end loop

Compute estimates for the parameters of interest:

β̂ =∑T
t=T ∗+1 βt/(T − T ∗)

τ̂ 2 =∑T
t=T ∗+1 τ 2

t /(T − T ∗)
σ̂ 2 =∑T

t=T ∗+1 σ 2
t /(T − T ∗)

Figure 2: Gibbs Sampler Algorithm

5 PERFORMANCE EVALUATION

In this section we propose some criteria for comparing
Bayesian and frequentist approaches within the discrete-
event simulation framework. We will test our ideas em-
pirically by applying them to a queueing system. In the
following discussion, we take the view that a frequentist
is an analyst who seeks to estimate an unknown parameter
based only on the model that has been adopted for the
observable data, whereas a Bayesian is one who seeks to
estimate the parameter by appropriately combining his or
her prior intuition with the information content in the data.

5.1 Evaluation Criteria

5.1.1 Point Estimation

Suppose that a sample x = (x1, x2, . . . , xn) of independent
random variables is to be drawn; and given the value of
a scalar parameter θ0, x has the conditional probability
density gθ0(x). We assume that the unknown parameter
θ0 is a random variable and refer to the distribution π0 of
θ0 as the “true prior” distribution. Here it is important to
distinguish between (a) the “true” parameter vector θ0 of
the inputs x to the real system with response y0 versus (b)
the parameter θ of the input model for the simulation with
response y = y(u, θ), even when θ is sampled from the
posterior distribution p(θ |x) as in the Simulation Replication
Algorithm of Figure 1.

For a realization θ0 obtained from π0 (which will be
unknown to the Bayesian and frequentist analysts), we as-
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sume that we can compute the true output performance
measure of the real system β0(θ0) = E(y0|θ0) (which will
also be unknown to both analysts). The analysts will then
attempt to estimate β = β(x) = E(y|x) using their respec-
tive simulation procedures based solely on observing the
experimental outcomes {x1, x2, . . . , xn} drawn from gθ0 .

Our criterion for assessing the performance of a given
estimator β̂ of β0(θ0) will be the average risk R of β̂ relative
to the true prior distribution π0 of θ0,

R(π0, β̂) = Eπ0

(
Egθ0

{[
β̂(x)− β0(θ0)

]2})
(27)

=
∫ ∫ [

β̂(x)− β0(θ0)
]2

gθ0(x)π0(θ0) d x dθ0,

where we take the simulation-based estimator β̂(x) = y
when we adopt the Bayesian Simulation Replication Al-
gorithm of Figure 1. When we adopt the frequentist ap-
proach, we compute the maximum likelihood estimator
θ̂mle = θ̂mle(x) based on the original input data, and then
in (27) we take

β̂(x) = 1

m

m∑
j=1

y
(
u j , θ̂

mle(x)
)

(28)

based on a set of m independent simulation runs.
In the Bayesian approach we will use the “operational”

prior π , chosen by the Bayesian analyst, to compute the
posterior distribution p(θ |x) of θ . The operational prior
will generally be noninformative or minimally informative.
It is also important to stress that the true prior π0 is entirely
unknown to the Bayesian and frequentist analysts. The
real contest will be to find the estimator that minimizes
R(π0, β̂).

The criterion we propose for assessing performance
makes sense and is reasonable within the Bayesian and fre-
quentist paradigms. Although the notion of a “true prior”
seemingly conflicts with the “degree of belief” interpreta-
tion of prior distributions espoused by many Bayesians, it
should be noted that the Bayesians’ degree of belief about
θ is reflected in π , not π0, and that the idea of a true prior
distribution makes perfect sense in a computer-assisted ex-
periment where θ0 is generated at random from π0, whose
form is unknown to both analysts. If the true θ0 is constant
and π0 is taken as degenerate at that constant, then the av-
erage risk reduces to the mean squared error (MSE), which
is widely used by frequentists to judge estimators. In our
framework, the average risk is precisely the squared error in
estimating β0(θ0) by β̂, averaged over all the randomness
in the problem.
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5.1.2 Interval Estimation

The Bayesian approach can be also used to develop inter-
val estimation procedures (§4.2.2) to assess its performance
compared to the classical and bootstrap methods. As in
the previous subsection, our strategy will be to use nonin-
formative priors. The main properties used to assess the
performance of a Bayesian confidence interval for β0(θ0)

are the average interval length and variance of the interval
length as well as its coverage probability. We now examine
the coverage of a Bayesian confidence interval. Adopting
the notation

B(x) ≡ [β̂L(x), β̂U(x)
]
, (29)

we define the coverage probability of the Bayesian confi-
dence interval (29) as

C(β0(θ0)) = Eπ0

{
Egθ0

[
I{β0(θ0)∈B(x)}

]}
(30)

=
∫ ∫

I{β0(θ0)∈B(x)} gθ0(x)π0(θ0) d x dθ0,

where I{β0(θ0)∈B(x)} denotes the indicator function of the
event {β0(θ0) ∈ B(x)} that the Bayesian confidence interval
(29) contains β0(θ0).

The average length of the confidence interval (29) is

L = Eπ0

{
Egθ0

[
β̂U(x)− β̂L(x)

]}
(31)

=
∫ ∫ [

β̂U(x)− β̂L(x)
]

gθ0(x)π0(θ0) d x dθ0,

and the variance of the confidence interval length is given
by

V = Eπ0

(
Egθ0

{[
β̂U(x)− β̂L(x)− L]2}) (32)

=
∫ ∫ [

β̂U(x)− β̂L(x)− L]2 gθ0(x)π0(θ0) d x dθ0.

5.2 Experimental Design

We developed in the previous subsections point and interval
estimation criteria to assess the performance of the frequen-
tist and Bayesian approaches in a discrete-event simulation
framework. However, criteria (27), (30), (31), and (32)
will be generally hard to compute analytically in most of
the applications and should be estimated from the output
realizations. The performance evaluation of the Bayesian
and frequentist approaches is generally conducted by Monte
Carlo computer-assisted simulation experiments. The output
of these experiments can be used to estimate our perfor-
mance criteria. Figure 3 summarizes the protocol we used to
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conduct N Monte Carlo experiments and deliver estimates
for the average risk of each estimator and its standard error,
the mean and the variance of the interval lengths, and their
coverage probabilities.

5.3 Application to a Single Server Queue

To provide a practical illustration of the above performance
evaluation framework, we consider a simple single server
queueing system. For this example, we will just compare
the performance of the Bayesian and bootstrap approaches
since the computational effort is approximately the same.
Moreover, the average risk for the classical and bootstrap
method is the same since they both use the same estimator
for the mean response. In Zouaoui and Wilson (2001a),

Choose the true prior distribution π0

For i = 1, . . . , N

Sample θ0,i from π0

Compute the true output measure β0,i = β0(θ0,i)

Sample xi from gθ0,i (x)

Compute the Bayes estimate β̂
Bayes

i = y

using an operational prior π

Compute the frequentist estimate β̂
Freq

i

as specified in (28) using θ̂ mle

Compute a CI for β0,i using each approach
end loop

For each simulation-based approach, compute:
the estimated average risk as

R̂ = 1
N

N∑
i=1

(
β̂i − β0,i

)2
with Monte Carlo standard error estimate

ŜE(R̂) =
{

1
N(N−1)

N∑
i=1

[(
β̂i − β0,i

)2 − R̂
]2
} 1

2

the estimated coverage probability as

Ĉ = 1
N

N∑
i=1

I{β0,i∈Bi (xi )}

the estimated mean of the CI length as

L̂ = 1
N

N∑
i=1

[
β̂U(xi )− β̂L(xi )

]
the estimated variance of the CI length as

V̂ = 1
N−1

N∑
i=1

[
β̂U(xi )− β̂L(xi )− L̂]2

Figure 3: Monte Carlo Experimental Design
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we consider a larger scale example with a degenerate true
prior distribution, where the main objective is to compare
the interval estimation performance of the Bayesian method
with the classical and bootstrap results of Cheng and Holland
(1997).

The single server system has customers enter the queue
according to a Poisson process with rate λ, having a “true”
Gamma prior distribution π0 with shape parameter ν1 = 50
and scale parameter φ1 that will take a range of values
corresponding to increasing levels of prior traffic intensity.
The customers receive an exponential service time with rate
µ, having a “true” Gamma prior distribution with shape
parameter ν2 = 50 and scale parameter φ2 = 100. The
objective is to estimate the average time in the system.
Monte Carlo experiments are based on data samples of size
n = 1000, and are repeated N = 500 times.

For the Bayesian approach, we chose the operational
prior distribution for the arrival rate λ to be noninformative
having a density proportional to λ−1. After observing a
sample x = {x1, x2, . . . , xn} of interarrival times, we com-
pute the posterior density of λ using Bayes’ rule to obtain
a Gamma density with shape parameter n and scale param-
eter 1/(

∑n
j=1 x j ). Similarly, choosing the same functional

form for the prior distribution of the service rate µ pro-
duces a proper posterior Gamma density having a shape
parameter n and a scale parameter 1/(

∑n
j=1 z j ), where

z = {z1, z2, . . . , zn} is the observed sample of service times.
Table 1 shows the results for the average risk in es-

timating the posterior mean response. It appears that the
Bayesian point estimator averages a slightly smaller risk
in all cases. As shown in Table 2, the main conclusion
concerns the excellent performance of the Bayesian method
in terms of interval estimation. The coverage probability is
very close to the nominal coverage with shorter confidence
intervals than their bootstrap counterparts. Although the
system considered here is simple and these results may not
be generalized for all systems, there is strong empirical
evidence in favor of the Bayesian approach. The other
examples detailed in Zouaoui and Wilson (2001a, b) further
support this conclusion.

6 CONCLUSIONS

In this paper we have proposed a Bayesian approach that uses
prior information and data observations for inferences on
the distribution of a simulation-generated output response.
We have derived an expression for the posterior mean, and
we have developed a Bayesian Simulation Replication Al-
gorithm to compute point and confidence interval estimators
for the posterior mean response. We have also proposed
two response surface models to decompose the posterior
variance into two components measuring the parameter and
stochastic uncertainty, respectively.
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Given the difference in frequentist and Bayesian views,
we have developed some criteria for comparing the per-
formance of both approaches in a simulation framework.
The basic criteria are: the Bayes risk for point estimation,
and the expected length of the confidence interval and its
coverage probability for interval estimation. We have con-
ducted Monte Carlo experiments on a queueing application
that show clear empirical evidence in favor of the Bayesian
approach mainly in terms of coverage probability.

In Zouaoui and Wilson (2001b) we will extend the
Bayesian framework presented in this paper to account
for model uncertainty as well as parameter and stochastic
uncertainty. It is not clear how the δ and bootstrap methods
could be extended to account for model uncertainty.

Table 1: Average Risk of Classical Bootstrap and Proposed
Bayesian Estimators for Average Sojourn Time in a Single
Server Queue

φ1 Method R̂ ŜE(R̂)

10 Bootstrap 9.3× 10−11 6.0× 10−12

Bayesian 9.1× 10−11 5.9× 10−12

30 Bootstrap 1.4× 10−10 1.0× 10−11

Bayesian 1.3× 10−10 9.8× 10−12

50 Bootstrap 2.7× 10−9 2.0× 10−10

Bayesian 2.4× 10−9 1.8× 10−10

70 Bootstrap 8.0× 10−9 1.1× 10−9

Bayesian 5.9× 10−9 6.8× 10−10

90 Bootstrap 2.5× 10−4 1.2× 10−4

Bayesian 1.1× 10−5 4.5× 10−6

Table 2: Performance of Nominal 90% Confidence Intervals
for Average Sojourn Time in a Single Server Queue

φ1 Method L̂ V̂1/2/L̂ Ĉ
10 Bootstrap 4.9× 10−5 9.5× 10−2 98.2

Bayesian 3.0× 10−5 9.6× 10−2 88.8

30 Bootstrap 6.3× 10−5 1.0× 10−1 99.0
Bayesian 3.9× 10−5 1.1× 10−1 89.6

50 Bootstrap 2.6× 10−4 1.7× 10−1 99.4
Bayesian 1.5× 10−4 1.5× 10−1 90.0

70 Bootstrap 4.0× 10−4 1.8× 10−1 98.8
Bayesian 2.3× 10−4 1.8× 10−1 90.4

90 Bootstrap 7.5× 10−3 9.3× 10−1 99.4
Bayesian 4.3× 10−3 6.0× 10−1 91.6
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