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ABSTRACT 

Stochastic simulation models are used to predict the behav-
ior of real systems whose components have random varia-
tion.  The simulation model generates artificial random 
quantities based on the nature of the random variation in 
the real system.  Very often, the probability distributions 
occurring in the real system are unknown, and must be es-
timated using finite samples.  This paper shows three 
methods for incorporating the error due to input distribu-
tions that are based on finite samples, when calculating 
confidence intervals for output parameters. 

1 INTRODUCTION 

Stochastic simulation models are used to predict the behav-
ior of real systems whose components have random varia-
tion.  The simulation model generates artificial random 
quantities based on probability distributions that represent 
the nature of the random variation in the real system.  Very 
often, the probability distributions occurring in the real 
system are unknown, and must be estimated using finite 
samples.  Any finite sample estimates the true distribution 
with some error.  The nature of the error in the empirical 
distribution’s approximation to the true distribution func-
tion is well understood, yet this error is typically ignored in 
the analysis of simulation output (e.g., in determining con-
fidence intervals for the mean value of some system per-
formance measure). 

This paper extends the discussion in Barton and 
Schruben (1993).  Three possible approaches not currently 
used in simulation practice are discussed: direct system re-
sampling, bootstrap resampling of empirical distribution 
functions, and uniformly randomizing empirical distribu-
tion functions.  Direct resampling uses new samples of 
empirical data for each simulation replication.  Bootstrap 
resampling constructs artificial new samples for each repli-
cation by sampling (with replacement) from the original 
sample.  Randomizing empirical distribution functions 
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makes (random) changes to the increments of the empirical 
distribution functions for each simulation replication. Only 
direct resampling explicitly accounts for the uncertainty in 
the input but it may require much more system data than is 
readily available. In our example, bootstrap and uniform 
randomization schemes provide greatly improved confi-
dence interval coverage without requiring additional sys-
tem data. Neither scheme is a panacea since they involve 
additional computation. However, the alternative may be 
invalid results.  The methods focus on cases where the in-
put distributions are empirical rather than parametric, but 
these methods can be extended to the case of parametric 
input distributions whose parameters are estimated from 
(finite) data sets. 

The next section presents a review of input modeling 
issues and the form of empirical distributions that we will 
use in this paper.  Section 3 illustrates how a simple confi-
dence interval calculation can provide erroneous results 
when the input distributions are based on finite empirical 
samples. 

Section 4 presents the three candidate analysis meth-
ods, along with a discussion of the difficulties with these 
approaches.  Section 5 shows the performance of these 
methods for some simple capacitated queueing models.  
Findings and future work are presented in Section 6. 

2 INPUT MODELS 

Approaches to modeling random processes range from not 
assuming anything to assuming everything with several in-
termediate positions. At one extreme is the conservative 
approach of using actual system performance records to 
drive a simulation run. This is called a trace driven simula-
tion experiment. At the other extreme, the simulation re-
sults can be viewed as conditional on specific scenarios 
that are concocted with all the probabilistic and/or deter-
ministic characteristics of the input processes specified. 
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2.1 Parametric Input Distributions 

Driving simulations with artificially generated samples 
from parametric probability distributions fitted to system 
data is probably the most commonly used method in prac-
tice. This method presumes the availability of a sample of 
independent observations of system random variables. 
There are several software packages on the market that 
take a data set as input and suggest several common para-
metric probability models that may fit the data. Widely 
available algorithms for generating artificial samples from 
the fitted distributions are then used to drive the simula-
tion. This method for generating random simulation input 
is inexpensive and fast and it facilitates easy input sensitiv-
ity analysis, replication, and time compression. Further-
more, the results of the simulation study can be generalized 
to provide answers to “what if” questions.  

The major disadvantages of this method include model 
selection error, parameter estimation error, loss of impor-
tant serial and cross dependencies in the data, and diffi-
culty in convincing others of a model’s validity. Shanker 
and Kelton (1991) demonstrate the consequences of gener-
ating data from an incorrect distribution using the Pollac-
zek-Khintchine formula for the M/G/1 queue. 

2.2 Empirical Input Distributions 

Difficulties in validating parametric probability distribution 
assumptions have, in part, motivated simulation modelers 
and software developers to use empirical distributions based 
on samples of data from the real system. There are many 
software packages on the market for doing this. In fact, the 
first simulation language in widespread use, GPSS, initially 
facilitated only this method of pseudo-random input genera-
tion using tabled functions. The nature of the error in the 
empirical distribution’s approximation to the true distribu-
tion function is well understood, yet this error is typically 
ignored in the analysis of simulation output. 

We denote the observed real system data, ordered 
from smallest to largest, as x1 ≤ x2 ≤ … ≤ xn. For conven-
ience, we consider estimating the distribution function as a 
two step process: first we select point estimates for the dis-
tribution function at the observed real system values, say 

)(ˆ )(
i

p xF , then we interpolate the distribution function be-
tween these observed values. Several common point esti-
mates for the first step are: 

 
)(ˆ )(

i
p xF  = i/n,  (1-a) 

)(ˆ )(
i

p xF  = i/(n + 1), and (1-b) 

)(ˆ )(
i

p xF  = (i - .5)/n. (1-c) 
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Choosing among these approximations (or others) 
amounts to choosing the total probability that is to be as-
signed to each of the following intervals: I1 = (∞  < x ≤  
x1);  I2 = (x1 < x ≤ x2); …    In+1 = (xn <  x < ∞). For the ap-
proximations above: (1-a) assigns 1/n to intervals I1 
through In and 0 to interval In+1; (1-b) assigns 1/(n+1) to 
every interval; (1-c) assigns .5/n to the two boundary inter-
vals I1 and In+1, and assigns a probability of 1/n to the other 
intervals. 

Given point estimates for the distribution function, 
)(ˆ )(

i
p xF , at the real system observations, there are many 

choices for interpolation to other values of x, including lin-
ear interpolation and kernel smoothing. The conclusions in 
this paper should hold for many if not all of these tech-
niques. Here we will describe two natural interpolations 
that are the most commonly used in simulation. Let λ(x) 
denote the index of the nearest real system observation at 
or below an arbitrary constant, x. Explicitly: λ(x) = max(i | 
xi ≤ x), which we will denote simply as λ since the value of 
x will be obvious. For discrete random variables in the set 
{xi}, our interpolated EDF will be the usual empirical dis-
tribution function, 

 
 F̂ (x) = )(ˆ pF (xλ)  for x1 ≤ x ≤ xn (2-a) 
         = 0  x  <  x1 

  = 1  x  >  xn .  

 
For continuous random variables on the interval (x0, xn+1), 
we will linearly interpolate values for our EDF between the 
point estimates, )(ˆ pF , at the real system observations. 
 

  F̂  (x) = α )(ˆ pF (xλ) + (1-α) )(ˆ pF (xλ+1)  
 

with                   (2-b) 

 
 α = (xλ+1 - x)/(xλ+1 - xλ),  
 
and the two added points,  

 
            F̂ (x0) = 0, F̂ (xn+1) = 1.   

 
Another way of smoothing the empirical distribution func-
tion is to fit Bézier curves to the EDF (Wagner and Wilson 
1995). The general conclusions in this paper should also 
apply to this approach to modeling the input distributions 
for simulating real systems. For the examples in Section 5, 
we will use EDF (1-b) smoothed with approximation (2-b) 
with  x0 = 0 and xn+1 = xn + (xn - xn-1). 
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3 INFERENCE ERRORS FOR SIMULATIONS 

USING INPUT DISTRIBUTIONS BASED ON 
FINITE SAMPLES 

Consider the following scenario. A simulation model has 
been constructed for a capacitated (capacity = 10) single-
server queue.  The model uses empirical distributions for 
the interarrival and service distributions.  Samples of size n 
= 100 are used to construct the empirical distributions.  
Suppose in this scenario that the true probability models 
generating the data (unknown to the simulationist) are ex-
ponential with rates 1.0 and 0.7 for service and interarrival, 
respectively.  For this scenario, the value for E(W) is ap-
proximately 3.04. 

The simulation model will be used to develop a 90% 
confidence interval for E(W), the average time in the sys-
tem.  The conventional strategy (nr:  no resampling, Stu-
dent t interval) is used to construct a confidence interval 
for W, based on an experiment consisting of ten replica-
tions, with 5000 customers per replication.  Sample means 
do not include the first 1000 customers, in order to reduce 
initialization bias.  In this scenario, if the modeler knew the 
actual form of the interarrival and service distributions, 
then the simulation runs could use these true distributions 
for generating random arrival and service times. The con-
ventional confidence interval for W, after deleting the ini-
tial transient of c jobs (or beginning in steady state), would 
be 

 
 ]/[ 1,21 rStW Wr −−± α , (3) 
 

where rWW
r

i
i /

1
∑

=

=  is the average over all r ( = 10) rep-

lications with Wi the average time a job spends in the sys-
tem for the ith simulation replication, 
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where Wi,j is the time in the system for the jth job in the ith 
simulation run (replication), and S

W
 is the sample standard 

deviation of the r Wi values,  S
W

 = )1/()( 2

1

−−∑
=

rWW
r

i
i

. 

Figure 1 shows the results of one such experiment.  
Each point, Wi, corresponds to the average time in the sys-
tem for the last 4000 customers in the ith replication.  The 
vertical line indicates the true value of W based on the un-
derlying exponential distributions. For this example, the 
confidence interval for E(W) computed from the ten nr rep-
lications is [3.66, 3.88], which fails to cover the true value.  
Of course, a 90% confidence interval will fail to cover the 
true value occasionally:  on average, 10% of such intervals 
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will fail to cover the true value. We will see in Section 5, 
however, that if this experiment were repeated many times, 
the intervals would fail to cover the true value approxi-
mately 79% of the time, not 10%.  Making replication runs 
of the simulation model using the same sample data to set 
the EDF values (Barton and Schruben 1993 and Cheng 
1994) risks significantly underestimating the variability in 
the response due to the finite sample size. 

Plotted on the same figure are two other sets of data.  
The set labeled tm is the set of run averages that would be 
obtained if the true models (exponential with parameters 
1.0 and 0.7) had been substituted for the empirical distribu-
tions.  The confidence interval computed from this set of 
Wi values is [2.89, 3.06] which does cover the true value of 
E(W), and if the experiment were repeated many times, 
only 10% of these confidence intervals would fail to cover 
the true value. 

 

 

Figure 1: Replication Results and Confidence Intervals for 
Three Methods 

 
Unfortunately, the simulationist does not know the 

true probability model, and so one might be tempted re-
strict any inference about system performance to be condi-
tional on the chosen input distributions. It turns out that 
this restriction is not necessary.  The data set labeled dr 
was created by directly resampling a new sample of 100 
data points for each of the ten replications, thus requiring 
1000 data points in all.  The confidence interval computed 
from this set of Wi values is [2.40, 3.51] which does cover 
the true value.  Without knowledge of the true distribu-
tions, this resampling strategy provides much better cover-
age than the no-resampling strategy.  The larger size of the 
interval reflects the uncertainty cause by constructing input 
distributions from less-than-infinite sample sizes. Based on 
the Monte-Carlo studies described in Section 5, approxi-
mately 25% of such intervals would fail to cover the true 
value. 

Despite the low coverage and larger interval, this 
strategy requires ten times as much input data as the nr 
strategy.  The bootstrap and uniform randomization resam-
pling methods described in the next section provide 
approximately correct coverage without requiring 
additional empirical data.  The cost, however, is even 
larger confidence intervals. 

5 4 3 2 
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Method True E(W) 
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4 RESAMPLING METHODS 

The poor coverage of the conventional confidence interval 
described above is due to neglecting the uncertainty intro-
duced by replacing the true interarrival and service distri-
butions with finite-sample empirical approximations. In 
this section, we examine three ways to generate input ran-
dom variables for simulation experiments that attempt to 
account for the uncertainty in the probability models used 
for the simulation input. We call these methods direct 
(EDF) resampling, bootstrap (EDF)  resampling, and uni-
formly randomized (EDF) resampling. In direct resam-
pling, a different real world data set is used to create a new 
EDF for every run of the simulation. This can be done by 
partitioning a real world data set into r exclusive subsets 
and using a different subset of data to create a new set of 
EDF’s for every run of the simulation. This is equivalent to 
collecting a new set of real system observations for each 
run. The central idea in the bootstrap and uniform ran-
domization techniques presented in this section is to simu-
late the collection of a new set of actual system data for 
each run of the simulation. 

4.1 Direct Resampling 

As shown in Figure 1, confidence intervals for our queue-
ing example that account for input uncertainty can be con-
structed by using a completely new sample of n empirical 
interarrival and n empirical service times to create a new 
EDF for each replications in the experiment.  But this re-
quires a factor of r increase in the amount of data available 
for fitting input models.  Alternatively, the set of n data 
values can be divided into r subsets (assume that n is a 
multiple of r).  One can view this approach as direct re-
sampling with sample sizes of n/r. 

Unfortunately, there is little justification for construct-
ing Student t confidence intervals for E(W) for the system 
based on Wi values from direct resampling replications.  
Each replication uses different input distributions.  If this 
variability dominates the variability due to the finite length 
(e.g. 5000 customers) of the simulation, then the Central 
Limit Theorem need not apply.  Further, the average of the 
Wi values need not tend to E(W).  Figure 2 shows a histo-
gram of 500 Wi values for direct resampling with subset 
sample sizes of 10, for a capacity 10 single server system 
with service rate 1.0 and arrival rate 0.7 (the parent distri-
butions).  The Wi values are right-skewed.  The median of 
the Wi values (3.04) provides a better estimate for E(W) 
(3.04) than the mean of the Wi values (4.54).  This diffi-
culty is less severe for larger subsample sizes and smaller 
numbers of replications. 
375
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Figure 2: Histogram of 500 Wi Values for Empirical Ser-
vice and Arrival Distributions Based on 10 Samples Each 

4.2 Bootstrap Resampling 

One way to capture the uncertainty in the input distribu-
tions without resorting to collecting additional (or parti-
tioning) real world samples is to apply the bootstrap tech-
nique to create a new EDF for use in each simulation run. 
The bootstrap technique has been used primarily to charac-
terize the sampling distribution of complex statistics (Efron 
1982, Babu and Rao 1993).  Before each simulation repli-
cation, a new bootstrap sample is drawn by selecting, ran-
domly with replacement, n values from the real world data 
set. This sample is used to construct an EDF to be used in 
the run. Bootstrap resampling has been applied in simula-
tion settings by a number of authors.  See for example 
Cheng and Jones (2000), and Kleijnen, Cheng and Betton-
vil (2000) and the references therein. 

Resampling is done for each distribution for each ran-
dom variable used in the simulation. Since resampling is 
done with replacement, some of the observations in the 
original data set may appear more the once or might disap-
pear altogether from the bootstrap sample. 

In a simulation experiment, the bootstrap EDF resam-
pling scheme is implemented as follows: 

 
1. Let i = 1. For each of the random quantities (in-

dexed by q) modeled with an empirical input dis-
tribution, sample n values from the observed data 
set with replacement. Call the ordered resampled 
values vi

q(1), vi
q(2), ..., vi

q(n). 
2. Construct an empirical distribution for each ran-

dom quantity based on {vi
q(1), vi

q(2), ..., vi
q(n)}. The 

experiments in this paper used (1-b) and (2-b) to 
construct the empirical distributions. 

3. Conduct a simulation run using these new input 
distributions. 

4. Repeat steps 1 - 3 r times, for i = 2, 3, ..., r. Con-
struct confidence intervals using the outputs of the 
r replications. 
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Conventional protocol for bootstrapping methodology 
is to use percentile confidence intervals to emulate the 
classical t-intervals in (3). See Efron and Tibshirani (1986, 
1993) and Babu and Rao (1993) for discussions and justifi-
cation. 

The bootstrap percentile interval calculation in our set-
ting is not strictly valid.  Bootstrap methodology assumes 
that the statistic of interest is computed deterministically 
from the sample (or resample).  That is, if two (re)samples 
are exactly the same, the computed value of the statistic 
will be exactly the same.  For our simulation examples, the 
finiteness of the run length adds a source of variability 
(which in conventional output analysis is the only source 
of variability).  That is, given the same empirical input dis-
tributions, two replications will produce different values 
for Wi (unless common random numbers are used).   

In the examples that we consider in this paper, the 
variability due to the finite empirical samples is  signifi-
cantly larger than the variability induced by the finite 
simulation run length, and so the assumptions for the boot-
strap percentile intervals are not grossly violated.  There is 
a need to develop a more general confidence interval con-
struction method when the variability from the finite run 
length is large relative to the variability from the finite em-
pirical sample sizes.  This issue is examined in the para-
metric bootstrap setting by Cheng (1994). 

4.3 Uniformly Randomized EDF or  
Bayesian Bootstrap Resampling 

Another approach to modeling distribution uncertainty for 
continuous random variables is by randomizing the EDF in 
a different way. This approach is based on the well-known 
fact that if F is the cumulative distribution function of the 
random variable, X, then F(X) will have the distribution of 
a Uniform(0, 1) random variable, U. For an ordered real 
world sample X(1),X(2),…X(n), the joint distribution of 
F(X(1)),...,F(X(n)) corresponds to the n order statistics of 
from a uniform distribution. The marginal distribution for 
F(X(m)) is beta(m, n-m+1) (Law and Kelton 2000). 

Although we do not know F, we can observe an or-
dered real world sample of horizontal coordinates, {X(i): i = 
1, 2, …, n}, and generate an ordered sample of vertical co-
ordinates, {U(i): i = 1, 2, …, n}, for n random points (X(i), 
F(X(i)) on F.  The uniform variates can be generated by 
sorting a set of n uniform variates, or by a direct method 
that does not require sorting (Schucany 1972, Schmeiser 
1978). This assigns random probabilities to each of atoms 
in the empirical distribution function. A randomized distri-
bution function to drive a simulation run can be obtained 
by smoothing these points. We do that by using the Um as 
the values for )(ˆ pF (x(m)) in (2-b).  

A standard procedure for choosing the atoms, 
)(ˆ pF (x(m)), in an EDF is to use a good estimator for the 

expected value of F(X(m)). However, here we are not ulti-
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mately interested in obtaining a good estimate of F, but 
rather in simulating our ignorance about F. The random-
ized EDF sampling method used here is an application of 
the Bayesian bootstrap approach (Rubin 1981).  

In a simulation experiment, randomized EDF sampling 
is implemented as follows: 

 
1. Let i = 1.  For each of the random quantities (in-

dexed by q) modeled with an empirical input dis-
tribution, order the observed data as { xq(1), xq(2), 
..., xq(n)}.  For each q, generate a sample of n or-
dered values  ui

q(1), ui
q(2), ..., ui

q(n) from a Uni-
form(0,1) distribution. 

2. Set )(ˆ p
qF (xq(1)) = ui

q(1), …, )(ˆ p
qF (xq(n)) = ui

q(n), and 
construct a smoothed empirical distribution. (Here 
we used 2-b.) 

3. Conduct a simulation run using these new input 
distributions. 

4. Repeat steps 1 - 3 r times, for i = 2, 3, ..., r.  Con-
struct bootstrap confidence intervals using the 
outputs of the r replications.  

 
The next section applies these three methods to the 

construction of confidence intervals for some simple ca-
pacitated single-server queues. 

5 CONFIDENCE INTERVALS FOR E(W)  
FOR SOME CAPACITATED QUEUES 

We examined the performance of these three resampling 
methods in computing confidence intervals for E(W) for 
some simple capacitated single server queues.  Four real 
systems were modeled:  two M/M/1/10 systems with traf-
fic intensity either 0.7 or 0.9, and two systems with 
exponential interarrival rates 0.7 or 0.9, and Uniform (0.5, 
1.5) service times.  90% confidence intervals for E(W) 
were computed using simulation models with empirical 
interarrival and service time distributions based on three 
sample sizes: 50 observations each of interarrival and 
service times, 100 each, and 500 each. 

Figure 3 shows the actual coverage of 90% confidence 
intervals for the M/M/1/10 systems.  The notation for each 
column indicates the sample size and the interarrival rate.  
For example, the label 100: 0.7 indicates the results when 
100 samples were available and the interarrival rate was 
0.7.  The poor coverage of the conventional no resampling 
approach is apparent, as was suggested by the discussion 
accompanying Figure 1.  The direct resampling method in-
tervals have low coverage for sample sizes of 50 (split into 
ten groups of five) and 100 (split into ten groups of ten), 
but are still much better than the conventional analysis, 
even when the individual replications are based on empiri-
cal distributions using only five samples each. Both boot-
strap methods perform well, the uniformly randomized 
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EDF performing slightly better than the conventional boot-
strap in terms of coverage. 

Figure 4 shows similar results for the two systems 
with uniformly distributed service times.  Presumably these 
systems should exhibit less variation in time-in-system, 
and so the expected time in the system should be easier to 
estimate.   

The figure shows coverages are better generally.  The 
bootstrap and uniformly randomized EDF methods exhibit 
comparable coverage for all three sample sizes and for 
both interarrival rates.  Coverage for the direct resampling 
approach is inferior to the bootstrap coverages for the two 
smaller sample sizes. The figure also shows that the con-
ventional approach still produces confidence intervals with 
coverage that is much less than 90%. 
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Figure 3: Coverage for Two Exponential/Exponential 
Examples 
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Figure 4: Coverage for Two Exponential/Uniform Exam-
ples 

6 SUMMARY 

The example warns us that current simulation practice of 
not resampling the EDF can be very risky. In other investi-
gations, we have found that parametric distributions se-
lected using distribution-fitting software also performed 
poorly when the finiteness of the empirical sample was not 
taken into account. This is not just a problem with using 
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simulation.  Not knowing the exact values of input parame-
ters can cause serious errors for some analytical queueing 
models as well.  Simulation textbooks and much of the re-
search literature treats input distribution estimation and 
output analysis as distinct topics. When a great deal of 
simulation data is generated, and input uncertainty is ig-
nored, the consequences can be disastrous. 

In light of these findings, what should a practitioner 
do?  Direct, bootstrap, or uniformly randomized EDF re-
sampling methods can be applied in any simulation of a 
real system where data can be collected. Of course, it is not 
sensible to generalize to all situations based on our limited 
analysis of some simple systems. However, it does appear 
that if real world data collection is expensive it may be 
good practice to split any large sample of real system data 
into 10 or so subsamples of data and compute t-based con-
fidence intervals using the direct resampling method. This 
recommendation is consistent with Schmeiser’s classic pa-
per that indicates that the marginal value of more than 
about 20 replications is small (Schmeiser 1982). If suffi-
cient real-system data is not available for at least 10 sub-
samples, then bootstrap or randomized EDF sampling 
along with percentile intervals may be able to account for 
some of the input uncertainty. 
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