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ABSTRACT

We propose fully sequential indifference-zone selection pro-
cedures that are specifically for use within an optimization-
via-simulation algorithm when simulation is costly and par-
tial or complete information on solutions previously visited
is maintained. Sequential Selection with Memory guarantees
to select the best or near-best alternative with a user-specified
probability when some solutions have already been sampled
and their previous samples are retained. For the case when
only summary information is retained, we derive a modified
procedure. We illustrate how our procedure can be applied
to optimization-via-simulation problems and compare its
performance with other methods by numerical examples.

1 INTRODUCTION

Simulation is merely a tool for problem solving; by itself,
it cannot provide an answer. In addition to a good model,
one also needs a sound technique to utilize the information
from a simulation to make a decision. One such technique
is optimization via simulation.

As discussed in Azadivar (1999), optimization-via-
simulation problems typically lack a closed-form expression
for the objective function, any known regularity conditions
on the response surface (e.g., convexity), or other special
structure. The response and constraints are subject to uncer-
tainties and can only be estimated by simulation; therefore,
linear or non-linear programming techniques cannot be di-
rectly applied. Although the number of feasible solutions of
optimization-via-simulation problems may not be as large
as the number of solutions encountered in deterministic
combinatorial optimization, simulation of a single solution
can take so long that complete enumeration of all of the
alternatives is impossible. Thus, an inefficient optimiza-
tion algorithm may be able to visit only a small portion of
the feasible space and be forced to terminate far from the
optimum.
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Several general-purpose optimization algorithms for de-
terministic problems, including tabu search (Glover 1989)
and simulated annealing (see van Laarhoven and Aarts 1987),
are based on a neighborhood search. At each iteration, the
search may move from a current solution to a better solu-
tion that is chosen from among the neighbors of the current
solution. In the deterministic setting, selection of the “best”
neighbor is accomplished by a straightforward evaluation
of the objective function.

If we want to use neighborhood search strategies in
optimization via simulation, then uncertainty dramatically
complicates the selection of the best neighbor. Because of
randomness, multiple replications (or lengthy runs) may be
required to obtain a useful estimate of the objective func-
tion. Ideally, we want to obtain enough observations to be
confident of our choice of the best neighbor. However, if
too much computational effort is spent on the neighborhood
selection problem, then the overall search may not be able
to make much progress in the time available. Thus, the
efficiency of the local search—in terms of correct selec-
tions and computational effort required—is critical to the
overall performance of an optimization algorithm applied
to stochastic simulation.

One way to save some simulation effort is to main-
tain partial or complete information on solutions previously
encountered; for instance, all observations of the current
solution, or of the best solution seen so far, or of all so-
lutions that have been simulated, might be retained. The
selection of the best can then be considered a comparison
with a standard, where the solutions on which we retain data
are the standards. Nelson and Goldsman (2001) address
such comparisons when there is a single standard. How-
ever, there does not exist a selection procedure for the case
when we maintain “memory" of more than one solution.
Most statistical selection procedures assume that none of
the alternatives, or at most one (a standard), have already
been sampled.

We have designed a new indifference-zone selec-
tion procedure specifically to supplement optimization-via-
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simulation algorithms. Sequential Selection with Memory
(SSM) guarantees to select the best or near-best alternative
with a user-specified probability when some or all of the
alternatives have previously been sampled. SSM is intended
to aid optimization algorithms in making correct local search
steps, not to provide any overall correct selection guarantee.

The procedure is fully sequential: it takes one obser-
vation at a time from every solution that is still in play and
eliminates clearly inferior ones as soon as their inferiority
is apparent. Bechofer et al.’s (1990) numerical assessment
shows that fully sequential procedures usually perform well.
Nevertheless, their use has been limited by the high over-
head in switching among solutions. As a result, the number
of fully sequential procedures is small, and there was a large
time gap between the first work on this topic and subse-
quent work. However, optimization-via-simulation software
must be able to switch among solutions, which makes fully
sequential procedures viable.

Paulson (1964) proposed fully sequential procedures for
the selection-of-the-best problem when all solutions have
equal variances. He assumed normality and independence
within and across solutions. His procedures are applicable
for both known and unknown variance cases. Hartmann
(1988, 1991) improved Paulson’s results by using tighter
probability bounds; Boole’s inequality, which Paulson used,
was replaced by a geometric inequality, and a large deviation
bound was replaced by a Brownian motion bound. The most
recent work by Kim and Nelson (2001a) further extends
Hartmann (1988, 1991) to the problem of unequal and
unknown variances, with special emphasis on use within
the simulation context. The key difference between their
work and ours is that, in their case, no solutions have been
previously sampled.

This paper is organized as follows: We define the
selection-of-the-best problem in Section 2 and then present
our procedures in Sections 3–4. We illustrate how our
procedures can be applied in the optimization-via-simulation
context with numerical examples in Section 5, followed by
future research directions in Section 6.

2 FRAMEWORK

We consider the problem of selecting the “best” from a
finite number of solutions. Let πi denote solution i , i =
1, 2, . . . , k. The observations taken from πi , Xip , are i.i.d.
normally distributed with mean µi and variance σ 2

i , where µi

and σ 2
i are unknown and not necessarily equal for different

solutions. Without loss of generality, we assume that the
true means of the solutions are indexed such that

µ1 ≤ µ2 ≤ · · · ≤ µk .

As is traditional, the best solution is defined as the one
with the largest mean, which is µk in the current problem.
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Our procedure guarantees to select πk with probability at
least 1 − α whenever the difference between the best and
the next best solution is worth detecting:

Pr{select πk} ≥ 1 − α whenever µk − µk−1 ≥ δ. (1)

The indifference-zone parameter is denoted by δ > 0. Even
when the indifference-zone condition is not satisfied (µk −
µk−1 < δ), our procedures still select a “good" solution
whose mean is within δ of µk with probability at least 1−α.

In the context of optimization via simulation,
π1, π2, . . . , πk represent solutions to be compared in a
neighborhood search step of the optimization algorithm.
At the start of the procedure, we may have already sampled
some of the solutions. Let ni be the number of observations
obtained on solution i and let n0 be the minimum number
of observations that we take on any solution. If ni = 0
for all i = 1, 2, . . . , k, our procedure becomes Kim and
Nelson (2001a). If some solution i , ni = 0, we obtain n0
observations on all such solutions before the elimination
step begins.

3 PROCEDURE SSM

In SSM, we sequentially take one observation at a time from
surviving solutions, immediately followed by screening.
Depending on their sample sizes at the start of the procedure,
we may or may not take more observations from the solutions
we have already sampled. Screening eliminates the solutions
whose cumulative sums fall short of the best of the rest
minus some positive tolerance level. As more observations
are taken, this tolerance level decreases.

The continuation region (see Figure 1) illustrates the
elimination step. Suppose we have only two solutions, πi

and π j . Our procedure continues as long as the sum of the
difference between solution i and solution j,

∑r
p=1(Xip −

X j p), stays within the triangular region. The sum can leave
this region in three ways: First, if the sum drifts below
the lower boundary, we eliminate πi (recall that bigger is
better). Second, if the sum goes above the upper boundary,
we eliminate π j . Lastly, if the sum exits the continuation
region to the right of the triangular area (r > Nij ), we select
the solution with the maximum average as the better one.
The procedure is finite; at most, we take one step beyond
the continuation region.
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Figure 1: Continuation Region

To make this precise, we define some notation. Let
i ∈ {1, 2, . . . , k}.

V = set of solutions we have “visited" before;

ni > 0 for i ∈ V

V c = set of solutions we see for the first time;

ni = 0 for i ∈ V c

= {1, 2, . . . , k} \ V

Nij =
⌊ai j

λ

⌋
Ni = max

j �=i
{Nij }

N = max
i

Ni , (2)

X̄i (r) = 1

r

r∑
p=1

Xip,

σ 2
i j = Var (Xip − X j p)

n0 = minimum initial number of observations

from any solution

S2
i j = estimator of σ 2

i j = Var (Xip − X j p)

= 1

n0 − 1

n0∑
p=1

(
Xip − X j p − [X̄i (n0) − X̄ j (n0)]

)2
(3)

f = n0 − 1

Note that �x� is the largest integer less than or equal to x ,
and Ni + 1 is the maximum number of observations taken
from πi .
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Procedure SSM

1. Initialization: Take initial samples to estimate the
variance σ 2

i j .

• For each πi , i ∈ V c, take n0 ≥ 2 observations,
and set ni = n0.

• For i ∈ V , if ni < n0, take additional obser-
vations so that ni = n0, and update V and
V c:

V c = V c ∪ {i}
V = V \ {i}.

Compute S2
i j using (3).

2. Procedure parameters:
Let c be a positive integer. We choose λ and ai j

as follows:

λ = δ

2c
and ai j = η f S2

i j

4(δ − λ)
(4)

where η satisfies
c∑

�=1

(−1)�+1
(

1 − 1

2
11(� = c)

)
·

(
1 + (2c − �)�η

2c − 1

)− f/2
= α

k − 1
. (5)

The indicator function is represented as 11(·). Equa-
tion (5) has a closed-form solution for c = 1:

λ = δ

2
and ai j = f S2

i j

4(δ − λ)

[(
k − 1

2α

)2/ f

− 1

]
.

If n0 > N (defined in (2)), stop and select the
solution with the largest X̄i (ni ) as the best. Other-
wise, let I = {1, 2, . . . , k} be the set of surviving
solutions, set r = n0, and proceed to Screening.
From here on V represents the set of solutions on
which we have obtained more than r observations,
while V c is the set of solutions with exactly r
observations.

3. Screening: Set I old = I . Let

I =
{

i : i ∈ I old and

Ri ≥ max
j∈I old, j �=i

(
R j − ai j

)+ rλ

}

where

R j =
{ ∑r

p=1 X j p for j ∈ V c

r X̄ j (n j ) for j ∈ V .
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In essence, for πi with ni > r , we substitute r X̄(ni )

for
∑r

p=1 Xip .
4. Stopping rule: If |I | = 1, then stop and report

the only survivor as the best; otherwise, for each
i ∈ (I ∩ V c), take one additional observation from
πi and set r = r + 1. If r = N + 1, terminate
the procedure and select the solution in I with the
largest sample average as the best; otherwise, for
each i ∈ (I ∩ V ) with ni = r ,

V c = V c ∪ {i}
V = V \ {i},

and go to Screening.

We show that our procedure satisfies the probability
guarantee (1) in Theorem 1, and that a good solution is
selected even if the indifference-zone condition does not
hold via Corollary 1. The proofs are given in Pichitlamken
(2001). The impact of c is discussed in Kim and Nelson
(2001a).

Theorem 1. Suppose that Xip, p = 1, 2, . . ., are i.i.d.
normally distributed, and that Xip and X jq are independent
for i �= j . Then SSM guarantees that (1) holds.

Corollary 1. Suppose µk − µk−1 < δ. Then SSM selects
a solution whose mean is within δ of µk with probability
at least 1 − α.

4 APPROXIMATE PROCEDURE

The SSM procedure uses the variance estimator S2
i j

that requires retaining individual observations, specifically
(Xi1, Xi2, . . . , Xin0 ). This requirement may impose a stor-
age problem if the number of solutions is large and we
retain data on many of them. Welch’s (1947) approx-
imation offers an alternative that avoids saving the raw
data by estimating σ 2

i j from the marginal variance estima-

tors for each solution, S2
i and S2

j . Therefore, instead of
(Xi1, Xi2, . . . , Xin0 ), we are only required to maintain the
triplet (ni ,

∑ni
p=1 Xip ,

∑ni
p=1 X2

ip). Notice that the approxi-

mate procedure allows us to estimate σ 2
i j using all available

observations, not just n0 observations from each solution, πi

and π j . Therefore, the variance estimator used in Welch’s
approximation may be more accurate than (3). However,
the modified procedure is approximate in the sense that
we can no longer prove the probability of correct selection
guarantee (although it appears to hold in experiments).

Welch’s approximation was originally intended to solve
the Behren-Fisher problem (a test for equality of means of
two normal populations with unequal variances and unequal
sample sizes). In it, the distribution of the standardized
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difference between sample means is approximated as a
Student’s t distribution.

We hypothesize that our approximate procedure is
asymptotically valid as the indifference zone δ approaches
zero using the regime described in Kim and Nelson (2001b).
Kim and Nelson (2001b) extends their fully sequential pro-
cedure to steady-state simulation (stationary, but dependent
and non-normal data), and they are able to prove the statisti-
cal validity of their procedure under certain conditions, one
of which is that δ → 0. See Goldsman, Kim, Marshall and
Nelson (2001) for an empirical evaluation of this procedure.

Although letting δ → 0 is only a proof technique in
Kim and Nelson (2001b), actually decreasing δ over the
course of an optimization run may make sense. Recall that δ
is defined as the difference in performance between the best
and the next-best solution that is worth detecting. By letting
δ get small, the procedure becomes increasingly demanding
when selecting the best solution in the neighborhood. As the
search gets close to the optimum, or a long exploration time
has elapsed, the search becomes more and more certain about
the best solution. Thus, it should become more and more
difficult to accept a new solution as the optimal solution.
Having δ → 0 is one way to enforce this preference, with δ

playing a role similar to a “cooling schedule” in simulated
annealing.

The approximate procedure differs from the exact one
only through ai j . The modification is explained below:

1. The variance of Xip − X j p is estimated from the
marginal variance estimators for each solution as

S2
i j = S2

i (ni ) + S2
j (n j ). (6)

S2
i (ni ) = 1

ni − 1


 ni∑

p=1

X2
ip − ni X̄2

i (ni )




2. The resulting degrees of freedom are approximated
by

fi j =


(

S2
i (ni )+S2

j (n j )
)2−2

(
S4

i (ni )
fi +2 + S4

j (n j )

f j +2

)

S4
i (ni )
fi +2 + S4

j (n j )

f j +2

 (7)

fi = ni − 1

3. With the approximate procedure, the degrees of
freedom are unequal, so f is replaced by fi j . We
substitute S2

i j from (6) and fi j from (7) in (4) to
yield ai j .
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5 ILLUSTRATIVE EXAMPLES

We show how our procedures can be applied to select the
best alternative in a neighborhood via numerical examples.
Consider the following optimization problem:

max
x∈�

E [G(x)] ,

where the feasible space � is two-dimensional, finite and
discrete,

� = {(x1, x2) :
xi ∈ {−N,−N + 1, . . . , N − 1, N}, i = 1, 2}

where N is a positive integer we set to 10 in the experiments
reported here. The observed response G(x) is normally
distributed with the random noise being a function of the
true response:

G(x) = g(x) + N
(

0, σ 2(g(x))
)

.

The response surface g(x) is the paraboloid,

g(x) = −(0.5x1 − 1)2 − (1.5x2 − 1)2 + x1x2 − 4

which is unimodal with a maximum x∗ at (6,2), and g(x∗) =
0. The standard deviation of the random errors, σ(g(x)), is
either directly or inversely proportional to the true response
as follows:

σ1(x) = √|g(x)| + 1

σ2(x) = 1√|g(x)| + 1
.

For simplicity, we use a hill-climbing algorithm as our
global search strategy; the search iteratively moves from the
current solution to one of its neighbors that is better than
itself and any other solution in the neighborhood. In other
words, the pool of alternatives considered by a selection
procedure consists of the current solution and its neighbors.
If the current solution is still deemed best, the search is
trapped, and it terminates. The other way that the search
may stop is when the total budget is expended. At the
end of the search, we compare the sample averages of the
current solution and the best seen so far and select the one
with the larger sample average as the optimum.

The neighbors of solution (x1, x2) are (x1−1, x2), (x1+
1, x2), (x1, x2−1) and (x1, x2+1). We exclude any neighbor
that lies outside the feasible space � from the selection
process. Only the previous observations of the current
solution and the best solution seen so far are maintained;
other solutions are re-sampled upon each visit. The past
information on the current solution is re-used in the selection
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step, and further sampling may be done if required by a
selection method.

We compare SSM to three other schemes for neighbor-
hood selection of the best: Nelson and Goldsman’s (2001)
comparison with a standard (NG), a naïve approach (NA)
and a sequential t-test (TT). In the naïve approach, we take
equal numbers of observations from each alternative and
select the one with the maximum average. The sequential
t-test is modified from Costa and Silver’s (1998) neighbor-
hood selection method which was developed in the context
of applying tabu search in the presence of randomness.
Each neighbor receives equal numbers of replications and
then competes with the best neighbor seen so far on a 1-1
basis using a one-side null hypothesis and a t-test. The
differences between our TT and Costa and Silver’s (1998)
version are the following: They exclude the current solu-
tion from the competition, and they perform two rounds of
sampling and hypothesis testing while we have one; in their
scheme, the second round is needed only if a contestant
beats the incumbent in the first round.

For SSM we set c = 1, the initial number of replications
to n0 = 10, the probability of correct selection to 1−α = 0.9
and the indifference zone δ = 0.2 (smaller than g(x′)−g(x∗)
where x′ is a neighbor of x∗). We used the same settings
for n0, 1 −α and δ for NG. For NA and TT, the number of
replications per solution was 1000, and we used confidence
level 0.9 for TT.

For each optimization problem (directly and inversely
proportional standard deviation) and computational budget
(B total observations), the search is repeated 1000 times
using each local search strategy (SSM, NG, NA and TT).
The initial solution in each search is sampled uniformly
from the feasible space.

The performance measures we considered were n̄, the
number of observations used per search averaged over 1000
searches, and C P , the number of convergent paths out of
1000 (a convergent path is one that terminates with the
optimal solution).

The simulation results for the directly proportional stan-
dard deviation problem (σ1(x)) are shown in Table 1, and
for the inversely proportional standard deviation problem
(σ2(x)) in Table 2. As expected, the number of convergent
paths increased with the available budget B across all se-
lection methods for both types of standard deviation. SSM
outperforms the other schemes for both σ1(x) and σ2(x);
given the same budget, SSM is able to achieve a much
higher C P and lower n̄.

NA and TT are comparable for either type of standard
deviation. This finding suggests an assertion that if a sta-
tistical test (in this case, a t-test) is naïvely incorporated
into a search scheme without taking into consideration the
multiplicity effect—the number of alternatives in the selec-
tion pool—the resulting scheme may not do any better than
one without a statistical test at all. In addition, NA and TT
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Table 1: Performance of Selection-of-the-best Procedures with Directly Proportional Standard Deviation, σ1(x)

B SSM NG NA TT
n̄ C P n̄ C P n̄ C P n̄ C P

20,000 12,000 660 20,000 7 19,500 116 19,500 104
30,000 14,000 868 30,000 8 28,000 220 28,000 230
40,000 15,000 935 39,800 27 36,000 320 36,000 317
50,000 15,000 975 50,000 31 43,000 498 43,000 443

100,000 15,000 973 98,000 72 56,000 971 56,000 851
200,000 15,000 972 190,000 125 56,000 993 56,000 867

1,000,000 16,000 978 770,000 412 58,000 993 56,000 882

Table 2: Performance of Selection-of-the-best Procedures with Inversely Proportional Standard Deviation, σ2(x)

B SSM NG NA TT
n̄ C P n̄ C P n̄ C P n̄ C P

20,000 1,000 978 4,900 974 19,600 94 19,500 110
30,000 1,000 974 4,800 973 28,000 249 29,000 229
40,000 1,000 976 4,800 973 37,000 294 36,000 330
50,000 1,000 980 4,800 981 42,000 481 42,000 485

100,000 1,000 987 4,800 973 56,000 973 57,000 972
200,000 1,000 981 4,800 970 57,000 1000 58,000 1000

1,000,000 1,000 982 4,800 968 57,000 1000 56,000 1000
do not adapt to the level of randomness; even when σ2(x)

is generally much lower than σ1(x) for most x ∈ �, NA
and TT obtain approximately equal numbers of convergent
paths (for a given B) for both standard deviation functions.

NA and TT are superior to NG in the case of σ1(x),
but NG performs better than either of them for inversely
proportional standard deviation, σ2(x). When the standard
deviation is relatively high, NG does not work well as it
requires a large sample and, therefore, uses up its compu-
tational budget before approaching the optimum. This is
a consequence of how NG is designed: it is a two-stage
procedure whose second-stage sample size is based on the
first-stage variance estimates, among other factors, but not
the relative performance of other solutions under consider-
ation. However, for low variability, such as σ2(x), NG does
not fare drastically worse than a fully sequential procedure
like SSM which takes into account the relative performance
of every surviving candidate in the selection.

6 THE FUTURE

We have designed Sequential Selection with Memory specif-
ically for use in a context that is common in optimization via
simulation: Due to expensive simulation, an optimization
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algorithm maintains some information on solutions previ-
ously visited. In addition, there is a continuing need to select
the best from a number of (neighboring) solutions as part of
a local search step. SSM is highly efficient in this problem
setting because it is fully sequential; i.e., every solution is
allowed to simultaneously eliminate every other solution,
and one observation at a time is taken from each surviving
solution. Moreover, SSM lets the search re-use the past
information it has gained, thereby avoiding re-sampling at
every encounter. We expect that SSM will similarly en-
hance the performance of better search heuristics than the
hill-climbing algorithm employed here.

However, SSM may pose a storage problem when the
number of solutions is large. With Welch’s approximation,
we are able to circumvent this issue by maintaining either
the triplet (ni ,

∑ni
p=1 Xip,

∑ni
p=1 X2

ip) for each solution i
or keeping (Xi1, Xi2, . . . , Xini ) only for the best solution
seen so far and the current solution. We would like to
prove the statistical validity of SSM modified with Welch’s
approximation and assess of the trade-offs between different
record keeping options via numerical studies.
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