
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

GRAPHICAL REPRESENTATION OF IPA ESTIMATION

Michael Freimer

School of Operations Research
and Industrial Engineering

Cornell University
Ithaca, NY 14853, U.S.A.

 Lee Schruben

Department of Industrial Engineering
and Operations Research

University of California at Berkeley
4135 Etcheverry Hall

Berkeley, CA 94720-1777, U.S.A.

ABSTRACT

Infinitesimal Perturbation Analysis (IPA) estimators of the
response gradient for a discrete event stochastic simulation
are typically developed within the framework of General-
ized semi-Markov processes (GSMPs). Unfortunately,
while mathematically rigorous, GSMPs are not particularly
useful for modeling real systems. In this paper we describe
a procedure that allows IPA gradient estimation to be eas-
ily and automatically implemented in the more general and
intuitive modeling context of Event Graphs. The intent is
to make IPA gradient estimation more easily understood
and more widely accessible. The pictorial nature of Event
Graphs also provides insights into the basic IPA calcula-
tions and alternative descriptions of conditions under
which the IPA estimator is known to be unbiased.

1 INTRODUCTION

A common issue that arises in discrete event simulation is
how to find the gradient of a system performance measure
with respect to some system parameter. For example, if θ
is a parameter of the distribution of service times in a sin-
gle-server queue, we may wish to find the derivative of the
average customer waiting time with respect to θ. Such
gradients may be required in a variety of contexts, such as
stochastic optimization and output sensitivity analysis. For
examples, see Fu and Hu (1997) and Glasserman (1991).

Infinitesimal Perturbation Analysis (IPA) is a tech-
nique for estimating the gradient of a system performance
measure. Its primary advantage is that derivatives with re-
spect to multiple parameters can be calculated from a sin-
gle simulation run. By contrast, the method of finite dif-
ferencing requires two simulation runs to calculate the
derivative with respect to a single parameter θ; runs are
made with parameter values θ and (θ+∆θ) for some suita-
bly small ∆θ. If L(ω,θ) is a realization of the system per-
formance measure with parameter value θ, the finite differ-

422
encing gradient estimate is () ()[]θωθθω
θ

,,1
21 LL −∆+

∆
.

In the calculation of an n×n Hessian matrix, IPA provides
an (n+1)-fold computational savings.

The intuition behind IPA is demonstrated by the fol-
lowing example. Consider the derivative of the average
waiting time W(θ) of customers in a single server queue
with mean service time θ. Figure 1 shows a sample reali-
zation of this system. The area under the solid line is the
overall waiting time of customers in the system. Jumps up
represent arrivals; jumps down represent service comple-
tions.

Customers
in Queue

Time

θ
θ

∂
∂

∆ 1S
θ

θ
∂
∂

∆ 2S

Figure 1: Sample Realization for a Single Server Queue

Let Si(ω,θ) be the service time of the ith job. A small

increase ∆θ in θ will cause individual service times to in-

crease by an amount () ()θ
θ

θω
θ ∆+

∂
∂

∆ oSi , . In Figure 1

this is represented by the width of one of the dashed rec-
tangles. Since arrival times are unchanged, the waiting
time of a particular job is only affected by the service times
of jobs that come before it in the same busy period. For
example, the waiting time of the third job in the busy pe-
riod is lengthened by the increases in service time of the
two jobs ahead of it. In general, the waiting time of a job

Freimer and Schruben

is increased by the sum of the increases in service time of
the jobs ahead of it in the busy period.

If the change ∆θ is small enough, the sequence of
events in the simulation run will remain fixed, and no busy
periods will merge. In this case we can calculate the effect
on the overall waiting time of all jobs as follows. Suppose
the simulation is run for M busy periods where the mth busy
period starts with job km. The change in overall waiting
time due to ∆θ is:

()

() ()
.

,
1

,

1

1

1

1

1

1

1

1

1

∑ ∑

∑ ∑ ∑

=

−

=
+

=

−

+=

−

=

+

+

∂

∂
∆−−=

∂

∂
∆

M

m

k

kj

j
m

M

m

k

ki

i

kj

j

m

m

m

m m

S
jk

S

θ

θω
θ

θ

θω
θ

In Figure 1 the total area under the dashed lines represents
this quantity.

The primary rationale for IPA is that in the calculation
of the derivative of W(θ) we let ∆θ go to zero, so the order
of events in the simulation run remains fixed. The sample
path derivative can then be written as:

()

() ()

()
()

∑ ∑

∑ ∑

=

−

=
+

=

−

=
+→∆

+

+

∂

∂
−−=

∂

∂
∆−−

∆
=

M

m

k

kj

j
m

M

m

k

kj

j
m

m

m

m

m

S
jk

N

S
jk

N

d
dW

1

1

1

1

1

10

1

1

,
11

,
111lim

,

θ

θω

θ

θω
θ

θ

θ
ωθ

θ

where N is the number of jobs served during the simulation
run. So in order to compute () θωθ ddW , , we do not
choose a particular value for ∆θ; we only track sums of
service time derivatives.

An immediate concern is how to interpret a “service
time derivative,” i.e. a derivative of a random variable. If
we think of a random variable as generated by the method
of inverse transformation, its realization is a function of the
distribution parameter, θ, and of a random number, U(ω).
For example, in the m/m/1 queue, where θ is the mean ser-
vice time, we have

() ()() ()()ωθθωθω UUFS S −−== − 1ln,, 1 , and
() ()() ()θω

θ
ω

θ
θω ,11ln, SUS

=−−=
∂

∂ . In this case the

service time derivative is a function of the service time it-
self. In other words, we can compute the derivative di-
rectly from the observed service time. As we shall see, this
is an important requirement for implementing IPA. Suri
(1987) and others have argued it also allows us to imple-
423
ment IPA not just for simulated systems, but for physical,
real-time systems as well.

The IPA derivative calculated above is a sample path
derivative. In other words, it is the derivative with respect
to θ of the performance measure calculated for a particular
realization of the sample path. However we may be inter-
ested in the derivative of the expected performance meas-
ure, ()[] θθωω ∂∂ ,LE . A central question is whether
the IPA sample path derivative is an unbiased estimator.
In other words, under what conditions is it true that

() ()[]

θ
θω

θ
θω ω

ω ∂
∂

=

∂
∂ ,, LELE ?

The conditions for unbiasedness and many other use-

ful IPA results are often derived in the framework of gen-
eralized semi-Markov processes (GSMPs). See, for exam-
ple, Fu and Hu (1997) and Glasserman (1991). GSMPs
have a well-defined structure that facilitates formal proofs,
and a variety of useful systems can be defined as GSMPs.
However the GSMP structure is relatively awkward for
model building. It may be difficult to see how a particular
system can be modeled as a GSMP, and sometimes the ge-
neric framework has to be modified to fit a particular sys-
tem; in these cases the IPA results must be tailored to fit as
well.

In contrast, event graphs were introduced by Schruben
(1983) specifically to facilitate model building for discrete-
event systems. Event graphs are a general modeling para-
digm that includes GSMPs as a subset. Schruben and Sav-
age (1996) describe a direct translation from GSMPs to
event graphs and provide an example of an event graph
that cannot be described in the generic GSMP framework.
Additional work concerning event graphs has been done by
Som and Sargent (1989).

Event graphs, with their visual representation of the
relationships between events, present a natural framework
for implementing IPA. In Freimer and Schruben (2001)
we compute an IPA derivative for event graph models and
give conditions under which the derivative is an unbiased
estimator. Our purpose in this paper is to describe how this
computation can be easily implemented. In Section 2 we
review the formal definition event graphs, and in Sections
3 and 4 we describe the implementation of IPA for event
graphs and give an automatic procedure for implementa-
tion.

2 THE EVENT GRAPH FRAMEWORK

An event graph model consists of several components.
The state of the system is described by a set of state vari-
ables. In the graph, a set of event vertices, V, represents
the events, and a set of directed edges, D, represents the
way in which events are scheduled. Associated with each

Freimer and Schruben

vertex a∈V is a function ha(.) that describes the state
changes caused by the event. The basic building block of
the event graph is shown in Figure 2.

a btab
(cab)

{s=ha(s)} {s=hb(s)}
Figure 2: Event Graph Building Block

This construct indicates that “whenever event a oc-

curs, the system state s changes to ha(s). Then, if condition
cab is true, event b will be scheduled after a delay of tab.”
The event graph model can be interpreted by reading each
component in a similar way. Appropriate labels are omit-
ted if the time delay is zero or if the scheduling is uncondi-
tional. We use Fab(.) to refer to the distribution of tab; it is
possible for b to be scheduled to occur without any simu-
lated delay.

As an example, Figure 3 shows an event graph repre-
sentation of a system with a single queue and two identical
servers. Here the state variable Q is the number of waiting
customers in the system, and S is the number of free serv-
ers. The random time between customer arrivals is de-
noted as ta, and the random time of customer service as ts.
Figure 3 also shows a common feature of event graphs, a
Start or Run vertex, which represents the first event to be
executed. State variables are often initialized by this event.

Run

{Q=0,
 S=2}

Arriveta

ta

{Q=Q+1}

Finish
Service

Start
Service

ts
(S>0)

(Q>0)

{Q=Q-1,
 S=S-1}

{S=S+1}

Figure 3: System with Two Servers, Single Queue

The evolution of an event graph model is similar in

spirit to that of GSMPs, the modeling paradigm for which
IPA results are usually derived. (For a formal definition of
GSMPs, see Glasserman (1991).) As with the GSMP, the
state variables remain constant except when an event oc-
curs. (We sometimes say that an event is “executed.”) As-
sociated with the simulation run are a simulation clock and
a future events list (FEL). The FEL is an appointment
book that records information about events scheduled to
take place after the current clock time. An element of the
FEL is an ordered pair (a, Ca) where:

• a∈V is the event type;
• Ca is the clock time at which the event is sched-

uled to take place.
424
The FEL may contain more than one event of the same
type; for example, in the two-server queue shown above
there will be two Finish Service events on the FEL when
both servers are busy.

When the simulation run begins, the system clock is
advanced to the time of the first event on the FEL. If this
event is of type a, the state variables are updated according
to function ha(.). The event may also schedule one or more
additional events to take place in the future; these events
are added to the FEL as follows. For each directed edge
eab leading from event vertex a to another vertex b on the
event graph, we evaluate an edge condition. If the condi-
tion is true, we add an instance of event b to the FEL with
clock time: Cb = Ca + tab, where tab is drawn from
distribution Fab(.). After the FEL has been updated, the
current event a is removed from the list, and the system
clock is advanced to the time of the next event on the list.
The simulation executes this next event, updates the FEL,
and continues in a similar fashion.

To simplify the results in the next section, we will as-
sume that every event graph contains a Run vertex, and
that the initial FEL contains only the Run event, scheduled
at time 0. In practice this is a very mild assumption.

When it is possible for more than one event on the
FEL to be scheduled for the same time, it may be important
to specify the order in which the events are to be executed.
If event a should be executed before event b, we say a has
a higher priority than b. We assume the priority relation-
ships among events satisfy a transitive property.

We now define some notation for use with event
graphs:

• V: set of event types (vertices of the event graph);
• X(a,n): nth clock sample used to schedule an event

of type a∈V;
• an: event type of the nth event to occur during the

simulation run;
• τn: epoch of the nth event to occur (τ0 ≡ 0);
• sn: nth state visited by the process (s0 is the initial

state at time 0).

A sample path of length n is the sequence {(τi, si), i =
0,…,n; (ai), i = 1,…,n}. The clock sample X(a,n) refers to
the edge delay time t•,a used to schedule the nth instance of
event a.

It is important to notice that for two or more events of
type a, the order in which they are added to the FEL is not
necessarily the order in which they are executed. In par-
ticular, the clock sample used to schedule the nth execution
of an event of type a is not necessarily the same sample
used for the nth addition of an event of type a to the FEL.
Hence we define I(a,n) to be the index of the clock sample
used to schedule the nth execution of an event of type a, an
index into the series {X(a,1), X(a,2),…}. If we define
N(a,n) to be the number of instance of an event of type a

Freimer and Schruben

up to and including the nth event epoch, then I(an,N(an,n))
is the index of the clock sample used to schedule the nth
event, an index into the series {X(an,1), X(an,2), …}. To
ease the notation, we define I(n) ≡ I(an,N(an, n)).

We say that the ith event is triggered or scheduled by a
previous event numbered κ(i) if the event graph contains a
directed edge from aκ(i) to ai that caused the ith event to be
added to the FEL at time τκ(i). Adapting Fu and Hu’s nota-
tion (Fu and Hu 1997), the triggering event index set Ψi of
ai is defined recursively: (){ } ()ii i κκ Ψ∪=Ψ if i>1, and

φ=Ψi if i=1. The set Ψi contains the genealogy of event
ai. Using this notation we have:

 ()()∑

Ψ∈

=
ni

in iIaX ,τ (1)

for n ≥ 1.

To close this section, we describe an enrichment to the
basic event graph setup: the ability to pass attribute values
from one event into parameters of a scheduled event. The
attribute values are determined when the originating event
is executed and remain unchanged until the destination ver-
tex assigns them to its parameters. These values are de-
termined after the edge conditions are evaluated and stored
on the FEL if the event is scheduled. Under this enrich-
ment the FEL is now an ordered triple: (a, Ca, wa) where
a∈V is the event type, Ca is the clock time at which the
event is scheduled to take place, and wa is the vector of at-
tribute values.

A vector of parameters corresponding to the vector of
passed attributes must be included in the description of the
destination vertex. When executing an event, the assignment
of parameters is done prior to any state changes. A pictorial
representation of attributes and parameters is given in Figure
4. This construct indicates that “whenever event a occurs,
the system state s changes to ha(s). Then, if condition (cab) is
true, event b(j) will be scheduled after a delay of tab with the
parameter j equal to attribute value k.” Typically k is a string
of state variables, and j is a string of their future values.

a btab
(cab)

{s=ha(s)} {s=hb(s)}

k
(j)

Figure 4: Event Graph Building Block with Parameters
and Attributes

Common uses of attributes and parameters include
simulating a system with many identical components
(where the attribute is the ID number of a particular com-
ponent) and simultaneous replications of a simulation run
(where the attribute is the number of the replication). At-
425
tributes and parameters are generally used to reduce the
visual size of a model without hindering its ability to depict
large systems.

3 IPA IN THE EVENT GRAPH FRAMEWORK

In Freimer and Schruben (2001) we derived an IPA sample
path derivative (with respect to a parameter of an edge de-
lay time) for an event graph simulation. The derivation is
similar to that given for GSMPs by Fu and Hu (1997) and
Glasserman (1991), but modified to accommodate the
structure of event graphs. The essential result is the fol-
lowing proposition: for all θ in a compact interval Θ and
every n≥0, the sequence {(si, ai, Ψi), i = 1, …, n} is a.s.
constant in some neighborhood of θ. For conditions on the
event graph under which this holds and a formal proof, see
Freimer and Schruben (2001).

Taken with equation (1), the implication of this propo-
sition is that epoch τj is the sum of a fixed sequence of de-
lay times X(ai,I(i)) in some neighborhood of θ. If we as-
sume these delay times are differentiable in θ, the
derivative of τj may be written:

() () ()()

()() ()()[]∑
Ψ∈

∆+→∆

→∆

−
∆

=

−∆+
∆

=

ji
ii

jj
j

iIaXiIaX

d
d

,,1lim

1lim

0

0

θθθθ

θ

θ

θτθθτ
θθ

θτ

 ()()
nj

d
iIadX

ji

i ,...,1for ,
== ∑

Ψ∈ θ
 (2)

As Suri (1987) and others have noted, these deriva-

tives are easy to calculate over the course of the simulation
run. When event ai schedules some future event ak, k>i,
we have:

 () () ()()
θθ

θτ
θ
θτ

d
kIadX

d
d

d
d kik ,

+= .

In the next section we will present an automated method
for tracking these sums in an event graph using parameter
passing.

We can now compute the derivative of the perform-
ance measure, L(θ). The usual construction of the per-
formance measure is the general form:

 () ()()∫=
ft

t dtZfL
0

θθ , (3)

where Zt(θ) is the state of the process at time t, and tf is a
stopping time, the time at which the system state enters a
pre-specified set of stopping values Φf. Note that this defi-

Freimer and Schruben

nition includes as special cases several common methods
for terminating a simulation:

1. the overall number of events reaches a pre-
specified value n0;

2. the number of events of type a reaches a pre-
specified value k;

3. a pre-specified termination time T is reached.

We can expand the state space to include a counter for the
overall number of events or for the number of events of
type a. Alternatively, we can add to the event graph a
Terminate event, an edge from Run to Terminate with de-
lay time T, and a state variable that counts the number of
times Terminate is executed.

From performance measures of the type given in (3)
we can construct a variety of other performance measures
that may be of interest. For examples, see Fu and Hu
(1997) and Glasserman (1991).

Now define N(t) to be the number of events that have
been executed up to and including time t. Since a basic as-
sumption of event graphs (and GSMPs) is that the system
state remains constant between events, we can write the
performance measure as:

 () ()[]
()
∑

−

=
+ −=

1

0
1

ftN

i
iiisfL ττθ .

Now consider the derivative of the performance measure
L(θ) with respect to θ:

 () ()
()
∑

−

=

+

 −=

1

0

1
ftN

i

ii
i d

d
d

dsf
d

dL
θ
τ

θ
τ

θ
θ .

Adapting some notation from Suri (1987), we define:

() () ()

() ()

=
<<−

=∆
−

−

fi

fii
s tNisf

tNisfsf
f

i if
0 if

1

1 . (4)

We now have:

 () ()
∑

=

∆=
f

i

tN

i

i
s d

df
d

dL
1 θ

τ
θ
θ .

Substituting equation (2) we have:

 () ()()()
∑ ∑

= Ψ∈

∆=
f

i

i

tN

i j

j
s d

jIadX
f

d
dL

1

,
θθ

θ . (5)

We call this sum the IPA sample path derivative. In the
next section we show how to modify an event graph so as
to implement these calculations automatically.
426
4 IMPLEMENTING IPA FOR EVENT GRAPHS

Event graphs, with their visual representation of the rela-
tionships between events, present a natural framework for
implementing IPA. Given an arbitrary event graph there is
a straightforward method for implementing the calculations
at the end of Section 3 using attributes and parameters. We
first introduce a new state variable A, the accumulator,
which at the end of the run contains the sum in equation
(5), the IPA sample path derivative. Another state vari-
able, G, will be used to pass delay time derivatives.

The algorithm for implementing IPA in an event graph
is as follows:

1. Initialize variables A=0 and G=0 in the Run ver-

tex.
2. Select an event vertex a∈V from the event graph.
3. Define G as a parameter of event a. (Ignore this

step for the Run vertex.)
4. Decide how to calculate ∆fa, the change in the

function f when event a takes place. As is indi-
cated by (4), this change may depend on the sys-
tem state at the time a is executed. (Ignore this
step for the Run vertex.)

5. To the set of state changes for event a add:
 ∆fa = (calculation determined in step 4)
 A = A + ∆fa⋅G
(Ignore this step for the Run vertex.)

6. For each edge e exiting vertex a, determine
θddte , where te is the delay time along this

edge. (If edge e leads to vertex b, θddte is
() θdbdX ⋅, .)

7. To each edge e exiting vertex a, add attribute
value

θd
dtG e+ .

Repeat steps 2-7 for each vertex in the set V.

The algorithm is represented graphically in Figure 5.

a
(G) θd

dtG e+te

s = ha(s),

∆fa = ___ ,

A = A + ∆fa⋅G

Figure 5: Building Block for IPA
Implementation

As is indicated by (4), a slight modification must be

made to handle the last event in the simulation. This may

Freimer and Schruben

be achieved by a post processing calculation, or in some
cases by a direct modification of the event graph.

In the two-server queue example shown in Figure 3,
∆fa is determined by the event type of a:

−
=∆

otherwise 0
event a is 1

event an is 1
iceStart Serva

Arrivea
fa

Suppose this is an m/m/2 system, where θ is the mean

service time, and we are generating service times via in-
verse transformation. In this case the only edge whose de-
lay time is affected by a perturbation in θ is the one from
Start Service to Finish Service, so

=
otherwise 0

 to from is edge

viceFinish Ser

iceStart Serve
t

d
dt

e

e
θ

θ

The resulting event graph for the single server queue is
shown in Figure 6.

Run

{Q=0,
 S=2,
A=0,
G=0}

Arrive
(G)

ta

ta

{Q=Q+1,
 ∆f = -1,
 A=A+∆f⋅G}

Finish
Service

(G)

Start
Service

(G)

T(S>0)

(Q>0)

{Q=Q-1,
 S=S-1,
 T=EXP(θ),
 ∆f = 1,
 A=A+∆f⋅G}

{S=S+1,
 ∆f=0,
 A=A+∆f⋅G}

G+0

G+0

G+0

G+0

T

θG+

Figure 6: IPA Implementation for Multiple Server Queue

5 CONCLUSION

Since event graphs are a more flexible modeling frame-
work than GSMPs, it is useful to be able to apply IPA re-
sults derived for GSMPs to event graphs. In this paper we
have extended some of these results to event graphs, and
described an automated implementation procedure.

ACKNOWLEDGMENTS

The research reported here was partially supported by a
joint src (fj-490) and nsf (dmi-9713549) research project in
semiconductor operations modeling.

REFERENCES

Freimer, M., and L. Schruben. 2001. Visualizing Infini-
tesimal Perturbation Analysis Estimators. Tech. Re-
port # 1291. School of ORIE, Cornell University.
427
Ithaca, NY. Available online via <http://www.
orie.cornell.edu>.

Fu, M., and J. Hu. 1997. Conditional Monte Carlo: Gradi-
ent Estimation and Optimization Applications. Boston,
MA: Kluwer.

Glasserman, P. 1991. Gradient Estimation via Perturba-
tion Analysis. Boston, MA: Kluwer.

Schruben, L. 1983. Simulation Modeling with Event
Graphs. Communications of the ACM 26 (11): 957–
963.

Schruben, L. and E. Savage. 1996. Visualizing Generalized
Semi-Markov Processes. In Proceedings of the 1996
Winter Simulation Conference, ed. J. M. Charnes, D.
M. Morrice, D. T. Brunner, and J. J. Swain, 1465–
1470. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Som, T., and R. Sargent. 1989. A Formal Development of
Event Graphs as an Aid to Structured and Efficient
Simulation Programs. ORSA Journal on Computing 1
(2): 107–125.

Suri, R. 1987. Infinitesimal Perturbation Analysis for Gen-
eral Discrete Event Systems. Journal of the Associa-
tion for Computing Machinery 34 (3): 686–717.

AUTHOR BIOGRAPHIES

MICHAEL FREIMER is a Ph.D. candidate at Cornell
University’s School of Operations Research and Industrial
Engineering. He received his undergraduate degree in
mathematics from Harvard. Prior to attending graduate
school he worked for an operations research consulting
firm, Applied Decision Analysis, Inc. in Menlo Park, CA.
His research interests are in simulation modeling and reve-
nue management. His email address is <mfreimer@
orie.cornell.edu>.

LEE SCHRUBEN is a Professor in the Department of In-
dustrial Engineering and Operations at the University of
California at Berkeley. His research interests are in statis-
tical design and analysis of simulation experiments and in
graphical simulation modeling methods. His simulation
application experiences and interests include semiconduc-
tor manufacturing, dairy and food science, health care,
banking, and the hospitality industry. His email address is
<schruben@ieor.berkeley.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

