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ABSTRACT 

Infinitesimal Perturbation Analysis (IPA) estimators of the 
response gradient for a discrete event stochastic simulation 
are typically developed within the framework of General-
ized semi-Markov processes (GSMPs). Unfortunately, 
while mathematically rigorous, GSMPs are not particularly 
useful for modeling real systems. In this paper we describe 
a procedure that allows IPA gradient estimation to be eas-
ily and automatically implemented in the more general and 
intuitive modeling context of Event Graphs. The intent is 
to make IPA gradient estimation more easily understood 
and more widely accessible. The pictorial nature of Event 
Graphs also provides insights into the basic IPA calcula-
tions and alternative descriptions of conditions under 
which the IPA estimator is known to be unbiased. 

1 INTRODUCTION 

A common issue that arises in discrete event simulation is 
how to find the gradient of a system performance measure 
with respect to some system parameter.  For example, if θ 
is a parameter of the distribution of service times in a sin-
gle-server queue, we may wish to find the derivative of the 
average customer waiting time with respect to θ.  Such 
gradients may be required in a variety of contexts, such as 
stochastic optimization and output sensitivity analysis.  For 
examples, see Fu and Hu (1997) and Glasserman (1991). 

Infinitesimal Perturbation Analysis (IPA) is a tech-
nique for estimating the gradient of a system performance 
measure.  Its primary advantage is that derivatives with re-
spect to multiple parameters can be calculated from a sin-
gle simulation run.  By contrast, the method of finite dif-
ferencing requires two simulation runs to calculate the 
derivative with respect to a single parameter θ; runs are 
made with parameter values θ and (θ+∆θ) for some suita-
bly small ∆θ.  If L(ω,θ) is a realization of the system per-
formance measure with parameter value θ, the finite differ-
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encing gradient estimate is ( ) ( )[ ]θωθθω
θ

,,1
21 LL −∆+

∆
.  

In the calculation of an n×n Hessian matrix, IPA provides 
an (n+1)-fold computational savings. 

The intuition behind IPA is demonstrated by the fol-
lowing example.  Consider the derivative of the average 
waiting time W(θ) of customers in a single server queue 
with mean service time θ.  Figure 1 shows a sample reali-
zation of this system.  The area under the solid line is the 
overall waiting time of customers in the system.  Jumps up 
represent arrivals; jumps down represent service comple-
tions. 
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Figure 1:  Sample Realization for a Single Server Queue 

 
Let Si(ω,θ) be the service time of the ith job.  A small 

increase ∆θ in θ will cause individual service times to in-

crease by an amount ( ) ( )θ
θ

θω
θ ∆+

∂
∂

∆ oSi , .  In Figure 1 

this is represented by the width of one of the dashed rec-
tangles.  Since arrival times are unchanged, the waiting 
time of a particular job is only affected by the service times 
of jobs that come before it in the same busy period.  For 
example, the waiting time of the third job in the busy pe-
riod is lengthened by the increases in service time of the 
two jobs ahead of it.  In general, the waiting time of a job 
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is increased by the sum of the increases in service time of 
the jobs ahead of it in the busy period. 

If the change ∆θ is small enough, the sequence of 
events in the simulation run will remain fixed, and no busy 
periods will merge.  In this case we can calculate the effect 
on the overall waiting time of all jobs as follows.  Suppose 
the simulation is run for M busy periods where the mth busy 
period starts with job km.  The change in overall waiting 
time due to ∆θ is: 
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In Figure 1 the total area under the dashed lines represents 
this quantity. 

The primary rationale for IPA is that in the calculation 
of the derivative of W(θ) we let ∆θ go to zero, so the order 
of events in the simulation run remains fixed.  The sample 
path derivative can then be written as: 
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where N is the number of jobs served during the simulation 
run.  So in order to compute ( ) θωθ ddW , , we do not 
choose a particular value for ∆θ; we only track sums of 
service time derivatives. 

An immediate concern is how to interpret a “service 
time derivative,” i.e. a derivative of a random variable.  If 
we think of a random variable as generated by the method 
of inverse transformation, its realization is a function of the 
distribution parameter, θ, and of a random number, U(ω).  
For example, in the m/m/1 queue, where θ is the mean ser-
vice time, we have 

( ) ( )( ) ( )( )ωθθωθω UUFS S −−== − 1ln,, 1 , and 
( ) ( )( ) ( )θω

θ
ω

θ
θω ,11ln, SUS

=−−=
∂

∂ .  In this case the 

service time derivative is a function of the service time it-
self.  In other words, we can compute the derivative di-
rectly from the observed service time.  As we shall see, this 
is an important requirement for implementing IPA.  Suri 
(1987) and others have argued it also allows us to imple-
423
ment IPA not just for simulated systems, but for physical, 
real-time systems as well. 

The IPA derivative calculated above is a sample path 
derivative.  In other words, it is the derivative with respect 
to θ of the performance measure calculated for a particular 
realization of the sample path.  However we may be inter-
ested in the derivative of the expected performance meas-
ure, ( )[ ] θθωω ∂∂ ,LE .  A central question is whether 
the IPA sample path derivative is an unbiased estimator.  
In other words, under what conditions is it true that 
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The conditions for unbiasedness and many other use-

ful IPA results are often derived in the framework of gen-
eralized semi-Markov processes (GSMPs). See, for exam-
ple, Fu and Hu (1997) and Glasserman (1991).  GSMPs 
have a well-defined structure that facilitates formal proofs, 
and a variety of useful systems can be defined as GSMPs.  
However the GSMP structure is relatively awkward for 
model building.  It may be difficult to see how a particular 
system can be modeled as a GSMP, and sometimes the ge-
neric framework has to be modified to fit a particular sys-
tem; in these cases the IPA results must be tailored to fit as 
well. 

In contrast, event graphs were introduced by Schruben 
(1983) specifically to facilitate model building for discrete-
event systems.  Event graphs are a general modeling para-
digm that includes GSMPs as a subset. Schruben and Sav-
age (1996) describe a direct translation from GSMPs to 
event graphs and provide an example of an event graph 
that cannot be described in the generic GSMP framework.  
Additional work concerning event graphs has been done by 
Som and Sargent (1989). 

Event graphs, with their visual representation of the 
relationships between events, present a natural framework 
for implementing IPA.  In Freimer and Schruben (2001) 
we compute an IPA derivative for event graph models and 
give conditions under which the derivative is an unbiased 
estimator.  Our purpose in this paper is to describe how this 
computation can be easily implemented.  In Section 2 we 
review the formal definition event graphs, and in Sections 
3 and 4 we describe the implementation of IPA for event 
graphs and give an automatic procedure for implementa-
tion. 

2 THE EVENT GRAPH FRAMEWORK 

An event graph model consists of several components.  
The state of the system is described by a set of state vari-
ables.  In the graph, a set of event vertices, V, represents 
the events, and a set of directed edges, D, represents the 
way in which events are scheduled.  Associated with each 
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vertex a∈V is a function ha(.) that describes the state 
changes caused by the event.  The basic building block of 
the event graph is shown in Figure 2. 

 

a btab
(cab)

{s=ha(s)} {s=hb(s)}  
Figure 2:  Event Graph Building Block 

 
This construct indicates that “whenever event a oc-

curs, the system state s changes to ha(s).  Then, if condition 
cab is true, event b will be scheduled after a delay of tab.”  
The event graph model can be interpreted by reading each 
component in a similar way.  Appropriate labels are omit-
ted if the time delay is zero or if the scheduling is uncondi-
tional.  We use Fab(.) to refer to the distribution of tab; it is 
possible for b to be scheduled to occur without any simu-
lated delay. 

As an example, Figure 3 shows an event graph repre-
sentation of a system with a single queue and two identical 
servers.  Here the state variable Q is the number of waiting 
customers in the system, and S is the number of free serv-
ers.  The random time between customer arrivals is de-
noted as ta, and the random time of customer service as ts.  
Figure 3 also shows a common feature of event graphs, a 
Start or Run vertex, which represents the first event to be 
executed.  State variables are often initialized by this event. 

 

Run

{Q=0,
 S=2}

Arriveta

ta

{Q=Q+1}

Finish
Service

Start
Service

ts
(S>0)

(Q>0)

{Q=Q-1,
 S=S-1}

{S=S+1}

 
Figure 3:  System with Two Servers, Single Queue 
 
The evolution of an event graph model is similar in 

spirit to that of GSMPs, the modeling paradigm for which 
IPA results are usually derived.  (For a formal definition of 
GSMPs, see Glasserman (1991).) As with the GSMP, the 
state variables remain constant except when an event oc-
curs.  (We sometimes say that an event is “executed.”)  As-
sociated with the simulation run are a simulation clock and 
a future events list (FEL).  The FEL is an appointment 
book that records information about events scheduled to 
take place after the current clock time.  An element of the 
FEL is an ordered pair (a, Ca) where: 

 
• a∈V is the event type; 
• Ca is the clock time at which the event is sched-

uled to take place. 
424
The FEL may contain more than one event of the same 
type; for example, in the two-server queue shown above 
there will be two Finish Service events on the FEL when 
both servers are busy. 

When the simulation run begins, the system clock is 
advanced to the time of the first event on the FEL.  If this 
event is of type a, the state variables are updated according 
to function ha(.).  The event may also schedule one or more 
additional events to take place in the future; these events 
are added to the FEL as follows.  For each directed edge 
eab leading from event vertex a to another vertex b on the 
event graph, we evaluate an edge condition.  If the condi-
tion is true, we add an instance of event b to the FEL with 
clock time:  Cb = Ca + tab, where tab is drawn from 
distribution Fab(.).  After the FEL has been updated, the 
current event a is removed from the list, and the system 
clock is advanced to the time of the next event on the list.  
The simulation executes this next event, updates the FEL, 
and continues in a similar fashion. 

To simplify the results in the next section, we will as-
sume that every event graph contains a Run vertex, and 
that the initial FEL contains only the Run event, scheduled 
at time 0.  In practice this is a very mild assumption. 

When it is possible for more than one event on the 
FEL to be scheduled for the same time, it may be important 
to specify the order in which the events are to be executed. 
If event a should be executed before event b, we say a has 
a higher priority than b.  We assume the priority relation-
ships among events satisfy a transitive property. 

We now define some notation for use with event 
graphs: 

 
• V:  set of event types (vertices of the event graph); 
• X(a,n): nth clock sample used to schedule an event 

of type a∈V; 
• an: event type of the nth event to occur during the 

simulation run; 
• τn: epoch of the nth event to occur (τ0 ≡ 0); 
• sn: nth state visited by the process (s0 is the initial 

state at time 0). 
 
A sample path of length n is the sequence {(τi, si), i = 
0,…,n; (ai), i = 1,…,n}.  The clock sample X(a,n) refers to 
the edge delay time t•,a used to schedule the nth instance of 
event a. 

It is important to notice that for two or more events of 
type a, the order in which they are added to the FEL is not 
necessarily the order in which they are executed.  In par-
ticular, the clock sample used to schedule the nth execution 
of an event of type a is not necessarily the same sample 
used for the nth addition of an event of type a to the FEL.  
Hence we define I(a,n) to be the index of the clock sample 
used to schedule the nth execution of an event of type a, an 
index into the series {X(a,1), X(a,2),…}.  If we define 
N(a,n) to be the number of instance of an event of type a 
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up to and including the nth event epoch, then I(an,N(an,n)) 
is the index of the clock sample used to schedule the nth 
event, an index into the series {X(an,1), X(an,2), …}.  To 
ease the notation, we define I(n) ≡ I(an,N(an, n)). 

We say that the ith event is triggered or scheduled by a 
previous event numbered κ(i) if the event graph contains a 
directed edge from aκ(i) to ai that caused the ith event to be 
added to the FEL at time τκ(i).  Adapting Fu and Hu’s nota-
tion (Fu and Hu 1997), the triggering event index set Ψi of 
ai is defined recursively:  ( ){ } ( )ii i κκ Ψ∪=Ψ  if i>1, and 

φ=Ψi  if i=1.  The set Ψi contains the genealogy of event 
ai.  Using this notation we have: 

 
 ( )( )∑

Ψ∈

=
ni

in iIaX ,τ  (1) 

 
for n ≥ 1. 

To close this section, we describe an enrichment to the 
basic event graph setup: the ability to pass attribute values 
from one event into parameters of a scheduled event.  The 
attribute values are determined when the originating event 
is executed and remain unchanged until the destination ver-
tex assigns them to its parameters.  These values are de-
termined after the edge conditions are evaluated and stored 
on the FEL if the event is scheduled.  Under this enrich-
ment the FEL is now an ordered triple:  (a, Ca, wa) where 
a∈V is the event type, Ca is the clock time at which the 
event is scheduled to take place, and wa is the vector of at-
tribute values. 

A vector of parameters corresponding to the vector of 
passed attributes must be included in the description of the 
destination vertex.  When executing an event, the assignment 
of parameters is done prior to any state changes.  A pictorial 
representation of attributes and parameters is given in Figure 
4.  This construct indicates that “whenever event a occurs, 
the system state s changes to ha(s).  Then, if condition (cab) is 
true, event b(j) will be scheduled after a delay of tab with the 
parameter j equal to attribute value k.”  Typically k is a string 
of state variables, and j is a string of their future values. 
 

a btab
(cab)

{s=ha(s)} {s=hb(s)}

k
(j)

 
Figure 4:  Event Graph Building Block with Parameters 
and Attributes 
 

Common uses of attributes and parameters include 
simulating a system with many identical components 
(where the attribute is the ID number of a particular com-
ponent) and simultaneous replications of a simulation run 
(where the attribute is the number of the replication).  At-
425
tributes and parameters are generally used to reduce the 
visual size of a model without hindering its ability to depict 
large systems. 

3 IPA IN THE EVENT GRAPH FRAMEWORK 

In Freimer and Schruben (2001) we derived an IPA sample 
path derivative (with respect to a parameter of an edge de-
lay time) for an event graph simulation.  The derivation is 
similar to that given for GSMPs by Fu and Hu (1997) and 
Glasserman (1991), but modified to accommodate the 
structure of event graphs.  The essential result is the fol-
lowing proposition: for all θ in a compact interval Θ and 
every n≥0, the sequence {(si, ai, Ψi), i = 1, …, n} is a.s. 
constant in some neighborhood of θ.  For conditions on the 
event graph under which this holds and a formal proof, see 
Freimer and Schruben (2001). 

Taken with equation (1), the implication of this propo-
sition is that epoch τj is the sum of a fixed sequence of de-
lay times X(ai,I(i)) in some neighborhood of θ.  If we as-
sume these delay times are differentiable in θ, the 
derivative of τj may be written: 
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As Suri (1987) and others have noted, these deriva-

tives are easy to calculate over the course of the simulation 
run.  When event ai schedules some future event ak, k>i, 
we have: 

 

 ( ) ( ) ( )( )
θθ

θτ
θ
θτ

d
kIadX

d
d

d
d kik ,

+= . 

 
In the next section we will present an automated method 
for tracking these sums in an event graph using parameter 
passing. 

We can now compute the derivative of the perform-
ance measure, L(θ).  The usual construction of the per-
formance measure is the general form: 

 

 ( ) ( )( )∫=
ft

t dtZfL
0

θθ , (3) 

 
where Zt(θ) is the state of the process at time t, and tf is a 
stopping time, the time at which the system state enters a 
pre-specified set of stopping values Φf.  Note that this defi-
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nition includes as special cases several common methods 
for terminating a simulation: 
 

1. the overall number of events reaches a pre-
specified value n0; 

2. the number of events of type a reaches a pre-
specified value k; 

3. a pre-specified termination time T is reached. 
 

We can expand the state space to include a counter for the 
overall number of events or for the number of events of 
type a.  Alternatively, we can add to the event graph a 
Terminate event, an edge from Run to Terminate with de-
lay time T, and a state variable that counts the number of 
times Terminate is executed. 

From performance measures of the type given in (3) 
we can construct a variety of other performance measures 
that may be of interest.  For examples, see Fu and Hu 
(1997) and Glasserman (1991). 

Now define N(t) to be the number of events that have 
been executed up to and including time t.  Since a basic as-
sumption of event graphs (and GSMPs) is that the system 
state remains constant between events, we can write the 
performance measure as: 
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Now consider the derivative of the performance measure 
L(θ) with respect to θ: 
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Adapting some notation from Suri (1987), we define: 
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We now have: 
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Substituting equation (2) we have: 
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We call this sum the IPA sample path derivative.  In the 
next section we show how to modify an event graph so as 
to implement these calculations automatically. 
426
4 IMPLEMENTING IPA FOR EVENT GRAPHS 

Event graphs, with their visual representation of the rela-
tionships between events, present a natural framework for 
implementing IPA.  Given an arbitrary event graph there is 
a straightforward method for implementing the calculations 
at the end of Section 3 using attributes and parameters.  We 
first introduce a new state variable A, the accumulator, 
which at the end of the run contains the sum in equation 
(5), the IPA sample path derivative.  Another state vari-
able, G, will be used to pass delay time derivatives. 

The algorithm for implementing IPA in an event graph 
is as follows: 

 
1. Initialize variables A=0 and G=0 in the Run ver-

tex. 
2.  Select an event vertex a∈V from the event graph. 
3. Define G as a parameter of event a.  (Ignore this 

step for the Run vertex.) 
4. Decide how to calculate ∆fa, the change in the 

function f when event a takes place.  As is indi-
cated by (4), this change may depend on the sys-
tem state at the time a is executed.  (Ignore this 
step for the Run vertex.) 

5. To the set of state changes for event a add: 
 ∆fa = (calculation determined in step 4) 
 A = A + ∆fa⋅G 
(Ignore this step for the Run vertex.) 

6. For each edge e exiting vertex a, determine 
θddte , where te is the delay time along this 

edge.  (If edge e leads to vertex b, θddte  is 
( ) θdbdX ⋅, .) 

7. To each edge e exiting vertex a, add attribute 
value 

θd
dtG e+ . 

 
Repeat steps 2-7 for each vertex in the set V. 

The algorithm is represented graphically in Figure 5. 
 

a
(G) θd

dtG e+te

s = ha(s),

∆fa = ___ ,

A = A + ∆fa⋅G
 

Figure 5:  Building Block for IPA 
Implementation 

 
As is indicated by (4), a slight modification must be 

made to handle the last event in the simulation.  This may 
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be achieved by a post processing calculation, or in some 
cases by a direct modification of the event graph. 

In the two-server queue example shown in Figure 3, 
∆fa is determined by the event type of a: 

 

 






−
=∆

otherwise  0
event  a is   1

event an  is   1
iceStart Serva

Arrivea
fa

 

 
Suppose this is an m/m/2 system, where θ is the mean 

service time, and we are generating service times via in-
verse transformation.  In this case the only edge whose de-
lay time is affected by a perturbation in θ is the one from 
Start Service to Finish Service, so 

 

 













=
otherwise  0

            

 to from is  edge  

viceFinish Ser

iceStart Serve
t

d
dt

e

e
θ

θ

  

 
The resulting event graph for the single server queue is 
shown in Figure 6. 
 

Run

{Q=0,
 S=2,
A=0,
G=0}

Arrive
(G)

ta

ta

{Q=Q+1,
 ∆f = -1,
 A=A+∆f⋅G}

Finish
Service

(G)

Start
Service

(G)

T(S>0)

(Q>0)

{Q=Q-1,
 S=S-1,
 T=EXP(θ),
 ∆f = 1,
 A=A+∆f⋅G}

{S=S+1,
 ∆f=0,
 A=A+∆f⋅G}

G+0

G+0

G+0

G+0

T

θG+

 
Figure 6:  IPA Implementation for Multiple Server Queue 

5 CONCLUSION 

Since event graphs are a more flexible modeling frame-
work than GSMPs, it is useful to be able to apply IPA re-
sults derived for GSMPs to event graphs.  In this paper we 
have extended some of these results to event graphs, and 
described an automated implementation procedure. 
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