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ABSTRACT 

Large-scale military deployments require transporting 
equipment and personnel over long distances in a short 
time. Planning an efficient airlift system is complicated 
and several models exist in the literature. Particularly, a 
study conducted on a deterministic optimization model de-
veloped by the Naval Postgraduate School and the RAND 
Corporation has shown that incorporating stochastic events 
leads to a degradation of performance. In this paper we in-
vestigate the applicability of network approximation meth-
ods to take into account randomness in an airlift network. 
Specifically, we show that approximation methods can 
model key performance features with sufficient accuracy to 
permit their use for network improvement, while requiring 
only a small fraction of the computational work that would 
have been needed had simulation been used for all of the 
performance evaluations. Also, we predict that combining 
simulation and approximation may work substantially bet-
ter than either one of these alone. 

1 INTRODUCTION 

In supporting military deployments and other operations, air-
lift practitioners must move equipment and personnel from 
multiple origins through a transportation network to destina-
tions. Aircraft available for the purpose may be of diverse 
types. Generally the time allowed for movement is limited, 
and so are the resources (aircraft and airfield space) available. 
The task of planning an efficient airlift system is compli-
cated, and modelers have developed both simulation models 
and optimization models to assist with such planning.   

The Airlift Flow Model (AFM) is a stochastic simula-
tion model of global airlift operations. As reported in 
(Rousseau, 1998) it is used by the Air Force’s Air Mobility 
Command to assess movement of both cargo and passen-
gers, examine the feasibility of war plans, and assess the 
impact of new resources or of modifications to policies or 
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infrastructure. An example of a deterministic optimization 
model is the NPS/RAND Mobility Optimizer (NRMO) de-
veloped by the Naval Postgraduate School and the RAND 
Corporation (Baker et al., 1999). 

It is well known that good operating policies may be 
very different for stochastic systems than for deterministic 
systems. For example, in a deterministic system an interme-
diate processor in the system, such as an airfield at which 
planes must land for fueling or maintenance enroute to the 
final destination, can support maximum utilization with no 
loss of efficiency. However, if elements of the system such 
as the service time and/or the interarrival times are stochas-
tic, then loading the processor to maximum utilization is dis-
astrous. In such situations one must plan for substantially 
less than full utilization in order to avoid extremely long av-
erage times in queue. Accordingly, the whole approach to 
planning the operation of the system has to be changed. 

A predecessor of the present study (Niemi, 2000) in-
vestigated the effect on optimization of incorporating sto-
chastic events into an airlift network, using the NRMO 
model as a testbed. It found a degradation of performance 
due to stochasticity. It also found that modeling the sto-
chastic features of the airlift system could significantly im-
prove effectiveness of new resources allocated to it. These 
findings underline the importance of taking into account 
the stochastic elements of airlift operations when trying to 
optimize such a system. 

Current methods for modeling and optimizing stochas-
tic systems frequently rely on simulation. However, for even 
a moderately complex network the amount of computational 
work required to simulate performance, let alone to optimize 
it with respect to parameters, can be very large. For effective 
optimization, something must be done to decrease the com-
putational load involved in repetitively simulating network 
performance. However, simulation is an essential compo-
nent of the process because it is the only known tool that en-
ables us to assess system performance accurately. 
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Approximation methods developed in queuing theory 
have been extensively applied in manufacturing systems 
(Bitran and Morabito, 1996), and their use has led to sig-
nificant improvements (Brown, 1988; Suri, 1998). One of 
the main advantages of these approximation methods is 
their rapidity of execution compared to the cost of simula-
tion models. Therefore we decided to make a preliminary 
experimental investigation to see whether we could apply 
such approximation methods to airlift operations in order 
to reduce the computational burden of modeling and opti-
mization while preserving enough accuracy so that the end 
results would be useful. We used small and simple net-
works and off-the-shelf commercial software, with the aim 
of determining whether a more extensive (and more costly) 
developmental effort would be warranted. This paper re-
ports the results of that investigation. 

Our findings, for the simple networks that we studied, 
are: 
 

• Approximation methods model key performance 
features with sufficient accuracy to make their use 
in optimization packages feasible, while requiring 
only a small fraction of the computational work 
that would have been needed had simulation been 
used for all of the performance evaluations. 

• Accurate and credible performance evaluation re-
quires simulation, but simulation is costly. There-
fore the combination of simulation and approxi-
mation works substantially better than either one 
of these alone. This combination can significantly 
improve network performance. 

 
The rest of the paper provides details and data to sup-

port these conclusions. Our overall conclusions from this 
pilot study are that a program of developing methods for 
optimizing stochastic networks of this type by combining 
simulation with approximation has a good prospect of suc-
cess, that if successful it would provide a capability that is 
unavailable with current tools, and that it might well have 
applications in areas other than transportation. 

2 MODELING A SIMPLIFIED  
AIRLIFT NETWORK 

2.1 Description of the Simplified Airlift Network 

We consider a simplified version of the airlift network de-
scribed in (Baker et al., 1999). It has five airfields, namely 
Aerial Port of Embarkation (APOE), Aerial Port of Debar-
kation (APOD) and three intermediate airfields: England, 
Spain and Germany.  
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Cargo is transmitted from APOE to APOD via these 
intermediate airfields using three types of fleet, namely C-
5, C-17 and C-141. Each fleet consists of a specific number 
of aircraft. On intermediate airfields, aircraft can experi-
ence ground delays, for example due to repair. We assume 
that ramp space capacity at each airfield is finite. Figure 1 
gives a representation of this network. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Simplified Airlift Network 
 
Efficiency of the airlift operations is measured by out-

comes such as completion time, average flight time for de-
livery and recovery aircraft, utilization of ramp capacity at 
airfields, and average number of aircraft in various parts of 
the network at any given time. For modeling convenience 
we make certain additional assumptions: 

 
1. Each intermediate airfield is dedicated to a particu-

lar fleet type: all C-141s fly between APOE and 
APOD via England, C-17s fly via Spain and C-5s 
via Germany. (Baker et al., 1999) used this method 
to deal with the fact that servicing each type of air-
craft requires specific skills and facilities. 

2. No distinction is made between types of cargo 
(passengers (pax), outsized, oversized or bulk 
cargo), or between aircraft cargo capacities. Each 
aircraft carries one unit of cargo. The cargo deliv-
ery requirement from each fleet is known a priori. 

3. Each type of aircraft (C-5, C-17, C-141) requires 
the same amount of ramp space at any airfield. 

4. At APOE, aircraft never wait for cargo and cargo 
is loaded on the first available aircraft. 

5. Ground times and inter-airfield flight times can be 
stochastic. Inter-airfield routes have infinite capacity. 

6. The airlift operation is completed when all the 
cargo has been delivered at APOD. All aircraft re-
turn to APOE after the airlift has been completed. 

 
Table 1 lists the initial choice of input parameters, 

namely cargo requirement, ramp capacities at airfields, 
number of aircraft in different fleets (fleet size), inter-
airfield flight times and average ground times. 

APOE 

England 
C-141 service center 

Spain 
C-17 service center 

Germany 
C-5 service center 

APOD 
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Table 1: Initial Data 
Cargo Requirement per Fleet 

(units) 
Fleet Size (units) 

C-141 500 C-141 60 
C-5 500 C-5 60 
C-17 500 C-17 60 
Total Cargo 1,500 Total aircraft 180 

Ramp Capacity (units) Average Run Times (hours) 
APOE 200 APOE, APOD 10 
APOD 30 Inter-airfield flying time 7 
England, Germany 
& Spain 10 Average ground time at en-

route airfield 5 

2.2 Description of the Simulation Model 

We built a simulation model of the simplified airlift net-
work in ProModel® Version 4.2, a commercially available 
discrete event simulation package used for simulating 
manufacturing systems (see information on web page at 
<http://www.promodel.com>). The airlift network 
is therefore modeled as a manufacturing network, where 
airfields and aircraft are considered as locations and enti-
ties respectively. Figure 2 depicts the schematic of the 
simulation model. As can be seen in the figure, servers or 
locations sAPOE, sEng, sGer, sSpain and sAPOD repre-
sent the corresponding airfields of the airlift network. 

Two locations represent each airfield: one location has 
finite capacity corresponding to ramp capacity available at 
airfield, and the other is an infinite-capacity queue corre-
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sponding to the competition between aircraft for ramp 
space. One could think of this second location as a ground 
holding area. For example, the sEng location models the 
airfield at England with finite ramp capacity, while 
qAPOEEng (qAPODEng) is the corresponding infinite ca-
pacity queue, where delivery (recovery) aircraft to (from) 
APOD wait for ramp capacity. After completing their de-
livery mission, aircraft return to a home base distinct from 
other airfields (sUSA in Figure 2). An empty aircraft, after 
arriving from the entry point of the network qArrivalAir-
craft, proceeds to APOE from sUSA only if there is cargo 
to be delivered. The distinction between sUSA and sAPOE 
serves modeling convenience, but does not necessarily 
have any physical reality. The amount of cargo present at 
APOE is modeled using a variable. Consequently, the air-
lift network is modeled as a closed network with a fixed 
number of entities equal to the fleet size of aircraft. Inter-
airfield legs are modeled as locations with unlimited capac-
ity where aircraft wait for times corresponding to flight du-
rations. For example, sAPOEEng (sEngAPOE) represents 
the inter-airfield leg of a delivery (recovery) aircraft be-
tween England and APOE. Stochastic flying times and 
ground times are modeled using a random variable with 
gamma distribution having the appropriate mean. We 
chose a gamma distribution because it allows us to model a 
wide range of variability in flying and ground times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Schematic of the Airlift Network Simulated in ProModel® 
 

qArrivalAircraft sAPOE 

qEngAPOE sEngAPOE 

sEng 

qAPOEEng sAPOEEng 

sUSA 

qGerAPOE 

sAPOEGer qAPOEGer 

sGerAPOE 

sGer 

qAPODGer 

sGerAPOD qGerAPOD 

sAPODGer 

sAPOD 

sEngAPOD 

qAPODEng sAPODEng 

qEngAPOD 

sAPOESpain qAPOESpain 

sSpain 

sSpainAPOE qSpainAPOE qAPODSpain 

sSpainAPOD qSpainAPOD 

sAPODSpain 

Delivery Part 

Recovery Part 

Finite capacity location 

Unlimited capacity location 

Infinite capacity queue 
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2.3 Description of the Network  

Approximation Model 
 
We built a network approximation model of the simplified 
airlift network using MPX® Version 3.3 (Network Dynam-
ics, Inc., 1999), a commercially available package based on 
recent advances in approximation methods for queuing 
theory and reliability modeling. (Suri et al., 1993) and the 
references therein describe some of these advances. Case 
studies in (Suri, 1998) describe how network approxima-
tions have been successfully used in manufacturing.  

Figure 3 depicts the schematic of the network ap-
proximation model. As in the simulation model, airfields 
and aircraft are modeled as equipment groups and part 
types. For example, equipment groups gAPOE, gEng, 
gGer, gSpain and gAPOD represent the corresponding air-
fields of the airlift network. The number of machines in 
each equipment group corresponds to ramp capacity. MPX 
models manufacturing networks as open networks of 
queues, while the strategic airlift network is a closed net-
work with a fixed number of entities equal to the total 
number of aircraft. To model recovery aircraft returning to 
APOE, we define two part types corresponding to delivery 
aircraft and recovery aircraft. Recovery aircraft have a 
routing that is the exact reverse of delivery aircraft. Dock 
and Stock are the default starting and ending operations of 
any routing in MPX. Therefore, a delivery aircraft pro-
ceeds from Dock to gAPOE and then to gAPOD and Stock 
via an enroute airfield, while a recovery aircraft proceeds 
from Dock to gAPOD and then to gAPOE and Stock, also 
via an enroute airfield. The end demand for the delivery 
aircraft is set equal to the end demand for recovery aircraft. 
To approximately capture the effect of a fixed number of 
entities in the network, we set the demand equal to half the 
fleet size and the time horizon of the network approxima-
tion model to be equal to the average of the sum of deliv-
ery and recovery flow times. Therefore: 
 

Demand for delivery aircraft in MPX = Demand for re-
covery aircraft in MPX = (0.5)(Fleet size of aircraft).  
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Time horizon for MPX model = (0.5){(Time horizon 
of simulation model)(Fleet size) / Cargo delivered}. 
 
Cargo is modeled as a component of the bill of material 
of a loaded aircraft. Stochastic run times are modeled us-
ing run time at the equipment corresponding to the op-
eration with appropriate mean. MPX output allows us to 
split the work in progress (WIP) at each equipment 
group into number of parts in process and in queue. The 
average number of parts in process at the equipment 
group indicates the number of aircraft occupying ramp 
space, while the average number of parts in queue indi-
cates the number of aircraft waiting for ramp space.The 
performance metrics used to compare the simulation and 
network approximation models are: 
 

• Completion time of airlift operations. 
• Flow times of delivery and recovery aircraft. 
• Utilization of each airfield. 
• Average time spent by an aircraft at each air-

field. 
• Average number of aircraft at each airfield. 

 
The average delivery (recovery) flow time is defined as the 
time taken by an aircraft to complete a delivery (recovery) 
trip. The utilization and the average time at each airfield 
indicate the ramp space usage and the time spent by an air-
craft at each airfield. 

3 DESIGN OF EXPERIMENTS 

To compare the performance of the two models we conducted 
three sets of experiments. Experiment (a) evaluated the impact 
of stochastic ground times and flying times aircraft experience 
in the network, Experiment (b) evaluated the impact of fleet 
size on network performance, and Experiment (c) combined 
network approximations and simulation to improve the per-
formance of the airlift network. For experiments (a) and (b) 
we ran the simulation model until all cargo had been shipped. 
After ensuring that the system was in steady state, we  
 

Dock gAPOE 

gAPOEEng gEng gEngAPOD 

gAPOD Stock gAPOEGer gGer gGerAPOD 

gAPOESpain gSpain gSpainAPOD Recovery Entity 

Delivery Entity 

Equipment group 

Figure 3: Schematic of the Airlift Network Modeled in MPX® 
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performed five replications and observed the mean value and 
the 95% confidence interval of the performance metrics. 
Then, we ran the corresponding network approximation 
model and compared its output with that obtained from simu-
lation. We ran the models on a Pentium 230 MHz machine 
under WINNT 4.0. For each experiment, run times for the 
simulation model (warm-up plus five replications) were ap-
proximately five minutes. In contrast, the network approxima-
tion model needed to be run only once, and run times were 
approximately five seconds. Also, building the simulation 
model took more time than did the approximation model, be-
cause of the higher level of detail. This is evident even by 
comparing Figures 2 and 3. 
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3.1 Impact of Stochastic Flying  
Times and Ground Times 

To study the effect of variability in flying times and 
ground times, we conducted experiments with the same 
average but varying squared coefficient of variation 
(SCV). We compared airfield utilization, flow time and 
number of aircraft in process. Table 2 contains SCV and 
output data for four scenarios, each using the numerical 
data shown in Table 1. Because the network is symmet-
ric, we aggregated results for the intermediate airfields. 
Table 2: Experiment (a) – Impact of Stochasticity on Network Performance 
Scenario a.1 a.2 a.3 a.4 

SCV 0.0 0.5 2.0 5.0 

System Performance Measures (hours) 
a.1 a.2 a.3 a.4 Scenario Simul.1 Appr.2 Simul. Appr. Simul. Appr. Simul. Appr. 

Completion Time 500 NA4 529 NA 545 NA 556 NA 
Average 30.6 32.4 33.6 34.3 Delivery 95% C.I.3 - 31.3 32.3 – 32.5 32.5 33.3 – 33.9 38.9 33.9 – 34.7 41.2 

Average 29.3 30.91 31.64 32.0 Flow Time 
Recovery 95% C.I. - 31.3 30.7 – 31.0 32.5 31.4 – 31.8 38.9 31.7 – 32.4 41.2 

1. Simulation 2. Approximation 3. 95% Confidence Interval 4. Not Applicable 

Utilization of Location (in %) 
a.1 a.2 a.3 a.4 Scenario Simul. Appr. Simul. Appr. Simul. Appr. Simul. Appr. 

Average 12.9 13.1 13.6 13.2 APOE 95% C.I. - 13.3 13.1 – 13.1 13.3 13.2 – 13.8 13.3 13.1 – 13.3 13.3 

Average 86.2 87.7 88.0 88.66 APOD 95% C.I. - 88.7 87.5 – 88.0 88.7 87.3 – 88.7 88.7 87.7 – 89.5 88.7 

Average 86.2 87.5 88.7 89.0 England, Spain,  
Germany 95% C.I. - 88.7 87.1 – 87.8 88.7 87.7 – 89.8 88.7 87.7 – 90.2 88.7 

Average Time in Location (hours) 
a.1 a.2 a.3 a.4 Scenario Simul. Appr. Simul. Appr. Simul. Appr. Simul. Appr. 

Average 9.9 9.9 10.0 9.9 APOE 95% C.I. - 10.0 9.8 – 10.0 10.0 9.9 – 10.0 10.0 9.9 – 9.9 10.0 

Average 9.9 9.9 9.9 9.9 APOD 95% C.I. - 10.0 9.8 – 10.0 10.0 9.8 – 10.0 10.0 9.8 – 10.0 10.0 

Average 0.9 1.5 1.9 2.4 Queue before APOD 95% C.I. - 0.7 1.3 – 1.6 0.9 1.8 – 2.0 3.2 2.0 – 2.9 3.8 

Average 4.9 5.01 4.9 5.0 England, Spain, 
Germany 95% C.I. - 5.0 4.96 – 5.07 5.0 4.9 – 5.0 5.0 4.9 – 5.0 5.0 

Average 0.5 1.9 2.6 2.9 Queue before England, 
 Spain, Germany 95% C.I. - 1.6 1.8 – 2.0 2.5 2.4 – 2.8 6.8 2.7 – 3.1 8.6 

Average Content of Location (units) 
a.1 a.2 a.3 a.4 Scenario Simul. Appr. Simul. Appr. Simul. Appr. Simul. Appr. 

Average 25.8 26.3 27.2 26.5 APOE 95% C.I. - 27.0 26.1 – 26.6 27.0 26.7 – 27.8 27.6 26.3 – 26.8 26.6 

Average 25.8 26.4 27.1 26.5 APOD 95% C.I. - 27.0 26.1 – 26.6 27.0 26.6 – 27.5 27.6 26.3 – 26.7 26.6 

Average 2.5 3.9 5.2 6.5 Queue before APOD 95% C.I. - 3.4 3.6 – 4.3 5.6 4.7 – 5.6 17.6 5.5 – 7.5 19.9 

Average 8.6 8.8 9.0 8.8 England, Spain, 
Germany 95% C.I. - 9.0 8.7 – 8.9 9.0 8.9 – 9.2 9.2 8.7 – 9.0 8.9 

Average 0.8 4.7 4.7 5.3 Queue before England, 
 Spain, Germany 95% C.I. - 3.0 4.3 – 5.0 4.5 4.4 – 5.0 12.5 4.8 – 5.8 15.1 

Other Average 72.3 75.6 73.3 75.6 76.5 75.6 75.0 74.4 
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This first experiment gives several insights: 
 
• Increasing SCV tends to increase airlift comple-

tion time and flow times. As would be expected, 
when there is more and more randomness in the 
system it takes longer to complete the operation. 

• Utilizations remain roughly the same, since only 
the SCV of flying times and ground times are 
changed and not the mean. Similarly, average 
ground times and average number of aircraft at 
airfields do not change significantly. 

• However, increasing SCV tends to increase the 
waiting times aircraft experience before landing at 
airfields. Also, the waiting queues before airfields 
with limited ramp capacity contain more aircraft 
and for longer times. Both simulation and network 
approximation models indicate that variability can 
cause increases by up to a factor of 6 in waiting 
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times and average number of aircraft waiting for 
ramp space, though the divergence between their 
predicted waiting times increases with SCV. A 
deterministic model would miss this significant 
impact of stochasticity on airlift performance. 

3.2 Impact of Fleet Size with Stochastic Ground Times 

To study the impact of fleet size on system performance, 
we ran the models with 20, 50, 80 and 100 aircraft in each 
fleet, comparing airfield utilization, flow times and num-
bers of aircraft in process. For each of these scenarios the 
numerical data are as in Table 1. Ground times are stochas-
tic with SCV of 5.0. Because the network is symmetric, re-
sults for intermediate airfields are aggregated. Tables 3a 
and 3b show the results of this experiment. 
Table 3a: Experiment (b) – Impact of Fleet Size on Network Performance 
 

Scenario b.1 b.2 b.3 b.4 
Fleet size 20 50 80 100 

System Performance Measures (hours) 
b.1 b.2 b.3 b.4 Scenario Simul.1 Appr.2 Simul. Appr. Simul. Appr. Simul. Appr. 

Completion Time 1,472 NA4 616 NA 533 NA 525 NA 
Average 29.0 30.7 45.2 56.9 Delivery 95% C.I.3 28.8 – 29.2 29.0 30.4 – 31.1 34.0 44.2 – 46.2 60.7 54.4 – 59.4 64.2 

Average 28.9 30.2 38.4 46.0 Flow Time 
Recovery 95% C.I. 28.6 – 29.1 29.0 30.0 – 30.4 34.0 37.3 – 39.4 60.7 43.9 – 48.2 64.2 

1. Simulation 2. Approximation 3. 95% Confidence Interval 4. Not Applicable. 

Utilization of Location (in %) 
b.1 b.2 b.3 b.4 Scenario Simul. Appr. Simul. Appr. Simul. Appr. Simul. Appr. 

Average 5.1 12.1 14.2 14.1 APOE 95% C.I. 5.1 – 5.2 5.2 12.0 – 12.1 12.2 14.0 – 14.4 14.1 13.9 – 14.4 14.2 

Average 34.1 81.0 93.6 95.7 APOD 95% C.I. 33.9 – 34.3 34.4 80.5 – 81.5 81.4 92.6 – 94.6 94.2 94.6 – 96.7 94.7 

Average 34.3 81.5 94.3 95.5 England, Spain,  
Germany 95% C.I. 33.9 – 34.5 34.4 80.4 – 82.5 81.4 93.1 – 95.6 94.2 94.1 – 96.9 94.7 

Average Time in Location (hours) 
b.1 b.2 b.3 b.4 Scenario Simul. Appr. Simul. Appr. Simul. Appr. Simul. Appr. 

Average 10.0 9.9 10.0 9.9 APOE 95% C.I. 9.9 – 10.1 10.04 9.8 – 10.0 9.9 9.9 – 10.1 10.0 9.8 – 10.0 10.0 

Average 9.9 9.9 9.9 10.0 APOD 95% C.I. 9.9 – 9.9 10.04 9.8 – 10.0 9.9 9.8 – 10.0 10.0 9.8 – 10.1 10.0 

Average 0.0 0.5 8.6 16.7 Queue before APOD 95% C.I. - 0.0 0.4 – 0.7  1.2 7.3 – 9.9 10.9 12.7 – 20.5 12.4 

Average 4.9 5.0 5.0 4.9 England, Spain,  
Germany 95% C.I. 4.9 – 5.0 5.08 4.9 – 5.0 4.9 4.9 – 5.0 5.0 4.9 – 5.0 5.0 

Average 0.0 1.2 8.4 14.0 Queue before England,  
Spain, Germany 95% C.I. - 0.12 1.1 – 1.3 3.8 7.7 – 9.2 20.0 12.0 – 15.8 23.2 
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Table 3b: Experiment (b) – Impact of Fleet Size on Network Performance 
Average Content of Location (units) 
b.1 b.2 b.3 b.4 Scenario Simul. Appr. Simul. Appr. Simul. Appr. Simul. Appr. 

Average 10.3 24.2 28.4 28.3 APOE 95% C.I. 10.2 – 10.4 10.3 24.0 – 24.3 24.4 27.9 – 28.8 28.3 27.9 – 28.8 28.4 

Average 10.2 24.3 28.0 28.7 APOD 95% C.I. 10.1 – 10.3 10.3 24.1 – 24.4 24.4 27.8 – 28.3 28.3 28.4 – 29.0 28.4 

Average 0.0 1.4 24.4 48.1 Queue before APOD 95% C.I. - 0.0 1.1 – 1.7 6.2 20.8 – 28.0 61.8 37.1 – 59.1 71.1 

Average 3.4 8.1 9.4 9.5 England, Spain,  
Germany 95% C.I. 3.3 – 3.4 3.4 8.0 – 8.2 8.1 9.3 – 9.5 9.4 9.4 – 9.6 9.5 

Average 0.0 2.0 15.9 26.8 Queue before England,  
Spain, Germany 95% C.I. - 0.1 1.8 – 2.2 6.2 14.4 – 17.4 39.1 23.3 – 30.3 44.2 

Other Average 28.6 28.8 67.6 68.4 78.2 79.2 79.2 79.8 

 

 

This second experiment gives several insights. 
 
• Very small fleet sizes tend to increase airlift com-

pletion time. In this case there is no competition 
for ramp space between aircraft. On the other 
hand, very large fleet sizes could reduce airlift 
completion time (by 64% for our data set), but 
flow times could inflate (by about 100% for our 
data set). 

• Increasing fleet size tends to increase utilization of 
ramp space. After a point, increasing fleet size also 
results in increasing wait for ramp space. Corre-
spondingly, waiting time and number of aircraft 
waiting for ramp space increase considerably. 

 
Since both the simulation and network approximation 

models incorporate stochastic elements, we are able to 
demonstrate the significant impact fleet size has on deliv-
ery flow times. 

3.3 Combination of Network Approximations and 
Simulation in an Improvement Process 

Experiments (a) and (b) seem to indicate the importance of 
including stochastic effects in any modeling tool used for 
analyzing or designing airlift networks. In addition, they 
show that network approximations require much less 
computation time (a 98% reduction in this case), while 
simulation enables us to estimate performance with better 
accuracy. In experiment (c) we combined network 
approximations and simulation in order to improve an airlift 
network. Since network approximations are faster we used a 
simple design of experiments to predict the impact of differ-
ent variables on network performance. We then confirmed 
the predicted improvement with one simulation run on the 
variable set that promised best system performance. 

Specifically, in the network approximation model we 
used a 24 factorial design, with four quantitative variables: 
SCV, ramp space at APOD and intermediate airfields, fly-
ing times and ground times at airfields, and fleet size. The 
responses are the delivery flow time and the utilization 
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rates of intermediate airfields. After analyzing the results 
of our experiment, we adjusted one parameter accordingly 
in the airlift network and made one simulation run to see 
whether the improvement predicted by the network ap-
proximation model would actually happen. Table 4 shows 
the input data for the two levels of the factorial design. 

 
Table 4: Experiment (c) – data for the 24 factorial design 

 SCV Fleet Size (units) 
Low 0.5 40 
High 5.0 60 

Ramp Capacity (units) Average Run Times (hours) 
 

APOD 
England, 
Germany, 

Spain 

APOE, 
APOD 

Flying 
time 

England, 
Germany, 

Spain 
Low 48 16 8 5.6 4 
High 72 24 12 8.4 6 

 
Figures 4 and 5 show the main and two-factor interac-

tion effects on the utilization rates of intermediate airfields 
and delivery flow times. 

Ramp space has a large main effect on intermediate 
airfield utilization rates, and some main effect on delivery 
flow times. Therefore, if we consider scenario (b.3) we can 
hypothesize that increasing APOD and intermediate air-
fields ramp space will reduce (i.e. improve) these perform-
ance measures. Indeed, Table 5 gives the main perform-
ance measures of the airlift network, obtained from the 
network approximation and simulation models, where the 
data are as in scenario (b.3) except that the APOD and in-
termediate airfields have ramp space of 45 and 15 respec-
tively. Utilization decreased by 9.1% and delivery flow 
time by 31.6%. The completion time for MPX in Table 5 is 
deduced from the delivery flow time and number of trips 
needed to achieve a cargo requirement of 500. 

As a check, we ran the same factorial design using 
simulation instead of network approximation methods. As 
might have been expected, we found substantial differ-
ences, reflecting the inaccuracy of some of the network ap-
proximations. However, the key point is that the approxi-
mations proved accurate enough to guide network 
improvement, at a 98% reduction in computation time. 
8



Granger, Krishnamurthy and Robinson 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Experiment (c) – Main and Interaction Effects on 
Utilization (in %) of Intermediate Airfields 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Experiment (c) – Average Main and Interaction 
Effects on Delivery Flow Time (in hours) 
 

Table 5: Performance Measures of Improved Scenario (b.3) 
System performance measures (in hours) 

 Approximation Simulation 
Average 30.9 Delivery flow time 95% C.I. 31.9 30.6 – 31.2 

Completion time 398 391 
Utilization of Location (in %) 

 Approximation Simulation 
Average 84.5 APOD 95% C.I. 82.3 83.5 – 85.5 
Average 85.7 England, Spain, Ger-

many 95% C.I. 82.3 84.7 – 86.7 
 

One might wonder why we did not use a more sophisti-
cated optimization method than a factorial design. In particu-
lar, since much of the computational work to obtain network 
approximations involves solution of equations, one would 
expect better results from incorporating these equations into 
the improvement process, rather than just using a few out-
puts. We entirely agree, but because this was a preliminary 
experimental effort we used off-the-shelf software, and 
MPX®  permits access only to outputs, not to the equations 
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that produce them. In future developmental work we hope to 
use the structure of the approximations to much better advan-
tage than we were able to do here. 

4 CONCLUSION 

This experimental study on a very simple airlift network 
gives several insights. First, we see that increased stochas-
ticity of ground times results in a considerable increase in 
waiting time at airfields. Therefore, performance in a given 
scenario could be quite different from what would be pre-
dicted by a deterministic model. Second, our experiments 
indicate that fleet size has opposing impacts on completion 
times of airlift operations and on delivery flow times. 
Third, we found that network approximation models could 
be run in about 2% of the time required for simulation 
models, though they could also result in loss of accuracy. 
Our experiments indicated that when utilization rates of 
airfields were not too high, the estimates of all perform-
ance measures matched satisfactorily. At high utilization 
rates, although the average content in the whole network 
matched closely between simulation and network approxi-
mation models, they differed in their estimates of average 
content and average time in waiting queues. There could be 
several reasons for this difference. One is that our choice 
of commercially available network approximation soft-
ware, namely MPX, required modeling the airlift network 
as an open network of queues. Another is that network ap-
proximations may not be very accurate when a network 
operates under conditions of heavy traffic. Nevertheless, 
for reasonable network loads, network approximations 
model key performance features with sufficient accuracy, 
while requiring only a small fraction of the computational 
work that would have been needed had we solely relied on 
simulation.  

The work reported above leads us to suspect that a 
combination of simulation and network approximations 
should yield substantially better performance than either 
one of these alone. Roughly speaking, one would use the 
network approximations to explore the variable space and 
identify parameter values that promise improvements in 
system performance, then validate these using simulation. 
In our study, network approximations required only about 
2% of the time needed to generate the same quantities by 
simulation, and we suspect that the advantage in speed 
would be even more pronounced for a larger and more 
complex network. Thus, using approximations for explora-
tion should save considerable amounts of time. We expect 
that using the structure of the approximations explicitly 
(rather than outputs only, as we did here) should make the 
technique more effective. Overall, we concluded that it 
should be worth the effort to develop a combination of 
these two methods, and that such a combination could have 
significant potential for practical benefit. 
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