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ABSTRACT

This paper discusses implementation of a sequential pro-
cedure to construct proportional half-width confidence in-
tervals for a simulation estimator of the steady-state quan-
tiles and histograms of a stochastic process. Our quasi-
independent (QI) procedure increases the simulation run
length progressively until a certain number of essentially
independent and identically distributed samples are obtained.
We compute sample quantiles at certain grid points and use
Lagrange interpolation to estimate the p quantile. It is
known that order statistics quantile estimator is asymptot-
ically unbiased when the output sequences satisfy certain
conditions. Even though the proposed sequential proce-
dure is a heuristic procedure, it does have strong basis.
Our empirical results show that the procedure gives quan-
tile estimates and histograms that satisfy a pre-specified
precision requirement. An experimental performance eval-
uation demonstrates the validity of using the QI procedure
to estimate the quantiles and histograms.

1 INTRODUCTION

Simulation studies have been used to investigate the char-
acteristics of the system under study, for example the mean
and the variance of certain system performance. In this
paper, we propose a method to construct an empirical dis-
tribution of the parameter of interest. For 0 < p < 1, the
p quantile (percentiles) of a distribution is the value at or
below which 100 p percent of the distribution lies. Related
to quantile, a histogram is a graphical estimate of the under-
lying probability density (mass) function and reveals all the
essential distributional features of output random variables
analyzed by simulation. A histogram can be constructed
with a properly selected set of quantiles. We propose a sim-
ple Quasi-Independent (QI) algorithm (see Chen and Kelton
2000a,b) to determine the simulation run length and use
grid points to construct the histogram (multiple quantiles).
Iglehart (1976), Seila (1982a,b) and Hurley and Modarres
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(1995) have developed quantile estimation algorithms based
on grid points. However, their procedures require that users
enter the values of the grid points. For an overview of
quantile estimation procedures see Law and Kelton (2000).

It is known that for both independent and identically
distributed (i.i.d.) and φ-mixing sequences, see Section 2,
sample quantiles will be asymptotically unbiased if cer-
tain conditions are satisfied. The asymptotic validity is
reached as the sample size or simulation run length get
large. However, in practical situations simulation experi-
ments are restricted in time and it is not known in advance
what is the required simulation run length for the estimator
to be unbiased. Moreover, estimating the variance of the
quantile estimator is needed to evaluate the precision of the
quantile estimator. Therefore, a workable finite-sample size
must be determined dynamically for the precision required
of a simulation.

We propose a histogram approximation based on a QI
procedure (see Section 3) for estimating quantiles from
a stationary simulation output. The proposed procedure
will sequentially determine the simulation run length so
that the quantile estimate satisfies a pre-specified precision
requirement. The asymptotic validity of our QI procedure
occurs as the subsequence appears to be independent, as
determined by the runs-up test (see Section 2).

The main advantage of our approach is that by using
grids to approximate the underlying distribution, we avoid
storing and sorting all the observations. However, the
savings come at a cost, using interpolation to obtain quantile
estimates introduces bias. Fortunately, the bias can be
reduced by specifying finer grid points, which of course
requires longer execution time. The QI procedure computes
the number of required independent samples at the beginning
of the procedure making implementation a relatively simple
task.

In Section 2 we discuss some theoretical basis of quantile
estimation in the context of simulation output analysis.
In Section 3 we present our methodologies and proposed
procedure for quantile and histogram estimation. In Section
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4 we show our empirical-experiment results of quantile and
histogram estimation. In Section 5 we give concluding
remarks.

2 BACKGROUND

This section presents the theoretical basis of our quantile
estimation: order statistics quantile estimators, φ-mixing,
and runs-up test.

Let X1, X2, · · · , Xn , be a sequence of i.i.d. random
variables from a continuous distribution F(x) with prob-
ability density function f (x). Let x p (0 < p < 1) de-
note the 100 pth percentile or the p quantile, which has
the property that F(x p) = Pr(X ≤ x p) = p. Thus,
x p = inf{x : F(x) ≥ p}. If Y1, Y2, . . . , Yn , are the order
statistics corresponding to the Xi ’s from n independent ob-
servations, (i.e. Yi is the i th smallest of X1, X2, …, Xn)
then a point estimator for x p based on the order statistics
is the sample p quantile x̂ p ,

x̂ p = y�np� (1)

where �z� denotes the integer ceiling (round-up) of the real
number z.

For data that are i.i.d., the following properties of x̂ p

are well known (David 1981):

E(x̂ p) = x p − p(1 − p) f ′(x p)

2(n + 2) f 3(x p)
+ O(1/n2);

Var(x̂ p) = p(1 − p)

(n + 2) f 2(x p)
+ O(1/n2).

We say that Ln is large order of xn (as n → ∞) and write
Ln = O(xn) if there exists a constant k > 0 and N such
that ‖ Ln ‖ ≤ k|xn| for each n ≥ N . ‖ Ln ‖ denotes the
Euclidean norm of Ln .

Roughly speaking, the sequence X1, X2, · · · , Xn is φ-
mixing if Xi and Xi+ j become essentially independent as j
becomes large; see Billingsley (1999) for formal definition.
For example, the waiting time Wi of an M/M/1 delay-in-
queue is φ-mixing, because Wi and Wi+ j become essentially
independent as j becomes large (Daley, 1968). A broad class
of dependent stochastic processes possess this φ-mixing
property.

Quantile estimation can be computed using standard
nonparametric estimation based on order statistics, which
can be used not only when the data are i.i.d. but also when
the data are drawn from a stationary, φ-mixing process of
continuous random variables. It is shown in Sen (1972) that
quantile estimates, based on order statistics, have a normal
limiting distribution and are asymptotically unbiased, if
certain conditions are satisfied.
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For the case of φ-mixing sequences, quantile estimation
is much more difficult than in the independent case. The
usual order-statistic point estimate, x̂ p, is still asymptotically
unbiased; however, its variance is inflated by a factor of
SSVC/p(1 − p) (Sen, 1972), where

SSVC = C0 + 2 lim
n→∞

n−1∑
k=1

(1 − k/n)Ck

is the steady-state variance constant and Ck =
Cov[Xm, Xm+k ] is the lag k covariance of the process.

Order statistics quantile estimators are asymptotically
unbiased, however, in practice we must use a workable
finite-sample size. Chen and Kelton (2000a,b) propose
using the runs-up test on the output sequence to determine
the simulation run-length. The runs-up test looks solely
for independence and has been shown to be very powerful
(Knuth 1998). The runs-up test is used in our procedure
to determine the lag l, so that observations at least l − 1
observations apart will be independent in statistical sense.
We set α to 0.1 in the runs-up test of independence at our
procedure.

3 METHODOLOGIES

This section presents the methodologies we will use for our
quantile and histogram estimation. Although asymptotic
results are often applicable when the amount of data is
“large enough,” the point at which the asymptotic results
become valid generally depends on unknown factors. An
important practical decision must be made regarding the
sample size n required to achieve the desired precision.

3.1 Determine the Simulation Run Length

We propose a quasi-independent procedure to sequentially
estimate the required sample size, and use histogram approx-
imation to estimate quantile. The QI procedure will increase
simulation run length progressively until a subsequence of
n samples (taken from the original output sequence) ap-
pears to be independent, as determined by the runs-up test.
We accomplish this by systematic sampling, i.e., select a
number l, choose that observation and then every lth obser-
vation thereafter. Here l will be chosen sufficiently large
so that samples are statistically independent. This is possi-
ble because we assume the underlying process satisfies the
φ-mixing conditions. We compute n the required number
of independent samples and l for our systematic sampling.
The minimum required sample size is then N = nl, i.e., the
total simulation run length. In the proposed method, the
variance of the quantile estimator is estimated directly from
multiple quantile estimators. To avoid storing and sorting
the whole output sequence, we compute sample quantiles



Chen and Kelton
only at certain grid points and use (four points) Lagrange
interpolation (Knuth 1998) to compute the p quantile.

Chen and Kelton (1999) propose controlling the preci-
sion of quantile estimates by ensuring that the p quantile
estimator

x̂ p ∈ x[p±ε]1
0

(2)

where

[P]1
0 =




P if 0 ≤ P ≤ 1,
0 if P < 0,
1 if P > 1.

That is, we will have 1 − α1 confidence that the p quantile
estimator x̂ p is between the [p −ε]1

0 and [p +ε]1
0 quantiles,

i.e.,

Pr[|F(x̂ p) − p| ≤ ε] ≥ 1 − α1,

where ε is the maximum proportional half-width of the
confidence. The proportional half-width ε is dimensionless;
it is a proportion value with no measurement unit and must
be between 0 and max(p, 1 − p), 0 < p < 1.

Using the this precision requirement (i.e. equation
(2)), the required sample size n p for a fixed-sample-size
procedure of estimating the p quantile of an i.i.d. sequence
is the minimum n p that satisfies

n p ≥ z2
1−α1/2 p(1 − p)

ε2 , (3)

where z1−α1/2 is the 1−α1/2 quantile of the standard normal
distribution, ε is the maximum proportional half-width of
the confidence interval, and 1 − α1 is the confidence level.
For example, if the data are independent and we would like
to have 95% confidence that the 0.5 quantile estimator has
no more than ε = 0.005 deviation from the true but unknown
quantile, the required sample size is n p ≥ 1.96020.5(1−0.5)

0.0052 .
So n p = 38, 416.

3.2 Histogram Approximation

We propose a simple quasi-independent algorithm and use
grid points to construct histogram (multiple quantiles). We
require users enter the value of the required parameters ε

and α. The number of main grid points is computed by
G RI D = 1/ε, where ε is the desired proportional half-
width. The number of auxiliary grid points is G RI D2 =
2 × A × G RI D + 3, where 0 < A < 1. Based on our
experiment, we recommend A ≥ 10%. The total number
of grid points is G = G RI D + G RI D2. For the following
discussion, the value of ε is set to 0.01 and A = 10%.
Therefore, G RI D = 100, G RI D2 = 23, and the number
of total grid points is G = 123. The value of the grid
points g0, g1, . . . , g122 will be constructed as followings:
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g0 and g122 are set to −∞ and ∞ (i.e., the minimum and
maximum of the underlying computer) respectively.

If the analyst knows what may be the minimum or
maximum values of the distribution, those values should
be used. For example, the waiting-time of any queuing
systems can not be negative, the analyst should enter 0
as the minimum. Grid point g11 is set to the minimum
of the initial n or 2n samples, depending on whether the
data appear to be independent, as determined by the runs-
up test. Grid points gi+11, i = 1, 2, . . . , 100, are set to
the i% quantile of the initial n or 2n samples, depending
on whether the data appear to be independent. We will
set grid points g1 through g10 and g112 through g121 to
appropriate values so that g1 through g12 will have the
same segment length and g110 through g121 will have the
same segment length. Therefore, the grids will be dense
where the probability distribution has high values and will
be sparse where the probability distribution has low values.
A corresponding array of n0, n1, . . . , n122 is used to store
the number of observations between two consecutive grid
points. For example, the number of observations between
gi−1 and gi is stored in ni .

The initial sample size n is computed according to
equation (3), however, if n < 4000 then n = 4000 will be
used. The simulator will generate n ≥ 4000 (the minimum
recommended sample size for the runs-up test) observations
initially (0th iteration). For the following discussion, we
assume n = 4000. We allocate a buffer A with size t =
12, 000 (3×n) to store our QI sequence. We then carry out
a runs-up test with these 4000 samples y1, y2, y3, . . . , y4000,
as our initial (0th) iteration. See chen and Kelton (2000b)
for detail on how sample sizes are determined.

The following shows the incremental sample sizes at
each iteration:

0 1A 1B

4000(4000) 4000(8000) 4000(12000)

0 : 1B 2A 2B

12000(6000) 4000(8000) 8000(12000)

0 : 2B 3A 3B

24000(6000) 8000(8000) 16000(12000)

. . .

The equation inside the parenthesis shows the number of
samples stored in buffer A. For example, at the beginning
of the 2th

A iteration. There are 6000 samples in the buffer
and each sample is the lag 2 observations, thus, there are
12000 observations in total. At the 2th

A iteration, we generate
another 4000 observations and store 2000 samples that are
lag 2 observations in the buffer. Therefore, at the end
of the 2th

A iteration there are 8000 samples in the buffer.
Note that the entire observations are used to compute the
quantile estimates. We discard samples in the QI sequence
so that the size of the QI sequence will be no more than
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t . Samples in the QI sequence are used by the runs-up test
to determine sample sizes and are not used to compute the
quantile estimates. The information in the grid points will
be updated each time a new observation xi is generated. The
number stored in ni is increased by one if gi−1 < xi ≤ gi .

Theoretically the sample quantile of the QI subsequence
will be an unbiased quantile estimate. Our experimental
results confirm this. Because samples in the QI subsequence
are statistically independent, consequently, the variance of
a mean estimator can be computed indirectly from the
variance of individual samples. One disadvantages of using
only the QI subsequence for quantile estimation is that
we will waste lots observations for highly correlated data.
Moreover, for extreme quantiles (p > 0.95), the quantile
variance estimators are biased low. This maybe because
the extreme values are not captured as frequently as they
happened.

Once the QI algorithm have determined the sample
size is large enough for the required precision, we can
then compute the point quantile estimator by Lagrange
interpolation of the quantile at four grid points. The array
ni , i = 1, 2, . . . , G − 1 stores the number of observations
between grid points gi−1 and gi , therefore, the quantile of gi

at the grid point i can be computed by pi = ∑i
j=1 n j/N , for

i = 1, 2, . . . , G −1, where N = ∑G−1
j=1 n j is the number of

all observations. Thus, for some k such that pk−1 < p ≤ pk ,
the p quantile point estimator can be computed as follows:
Let

w j =
4∏

j ′=1, j ′ 
= j

p − pk+ j ′−3

pk+ j−3 − pk+ j ′−3
, for j = 1, 2, 3, 4,

then

x̂ p =
4∑

j=1

w j gk+ j−3. (4)

In two extreme cases, p0 < p ≤ p1 or pG−2 < p ≤ pG−1,
linear interpolation will be used.

Because we are estimating quantiles of stochastic sys-
tems, it is unreliable to make inference based on only one
output sequence. Therefore, we will run R (we use 3 in our
algorithm) replications to get R quantile estimators. Let
x̂ p,r denote the estimator of x p in the r th replication. We
use

¯̂x p = 1

R

R∑
r=1

x̂ p,r (5)

as a point estimator of x p. Assuming the asymptotic approx-
imation is valid with the simulation run length determined
by our procedure, then each x̂ p,r has a limiting normal dis-
tribution, by the central limit theorem a confidence interval
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(CI) for x p using the i.i.d. x̂ p,r ’s can be approximated using
standard statistical procedures. That is, the ratio

T =
¯̂x p − x p

S/
√

R

would have an approximate t distribution with R − 1 d.f.
(degrees of freedom), where

S2 = 1

(R − 1)

R∑
r=1

(x̂ p,r − ¯̂x p)
2

is the usual unbiased estimator of σ 2
p(n), the variance of

x p. This would then lead to the 100(1 − α2)% CI, for x p,

¯̂x p ± tR−1,1−α2/2
S√
R

, (6)

where tR−1,1−α2/2 is the 1 − α2/2 quantile for the t distri-
bution with R − 1 d.f. (R ≥ 2).

This confidence interval estimator is approximately
valid when the sample size N becomes large because the
quantile estimator x̂ p,1, x̂ p,2, . . . , x̂ p,R become almost nor-
mally distributed (from the theorem of Sen (1972) for φ-
mixing sequences) and become almost independent (since
the process satisfy the φ-mixing conditions). Our QI pro-
cedure addresses the problem of determining the simulation
run length that is required to satisfy the assumptions of
independence and normality of the quantile estimate. The-
oretically, if these assumptions are satisfied, then the actual
coverage of the CI’s should be close to the pre-specified
level. However, we are not sure whether the asymptotic
approximation is valid, therefore, the CI constructed by
equation (6) may have coverage less than specified. On
the other hand, the quantile estimators should satisfy the
precision requirement of equation (2).

Let the half-width

H = tR−1,1−α2/2
S√
R

,

the final step in the QI procedure is to determine whether
the CI meets the user’s half-width requirement, a maximum
absolute half-width ε′ or a maximum relative fraction r of
the magnitude of the final point quantile estimator ¯̂x p . If
the relevant requirement

H ≤ ε′, (7)

or

H ≤ r | ¯̂x p| (8)
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for the precision of the confidence interval is satisfied,
then the QI procedure terminates, return the point quantile
estimator ¯̂x p and the CI with half-width H . If the precision
requirement (7) or (8) is not satisfied with R replications, then
the QI procedure will increase the number of replications
by one. This step can be repeated iteratively until the
pre-specified half-width is achieved.

For large sample sizes, it becomes impractical to store
and sort the entire sequence. These limitations can be
overcome by using the proposed histogram approximation,
which computes quantiles only at grid points and uses quasi-
independent algorithm to determine the required simulation
run length. Savings in storage and sorting are substantial for
our method. The proposed histogram approximation method
can estimate multiple quantiles simultaneously without much
extra effort. However, the simulation run length and run
time will grow quickly because the Bonferroni inequality is
used. Because histogram was used to estimate quantiles, we
can use the histogram to generates an empirical distribution
of the output sequence. We can then estimate the 1 − α2
confidence interval of any quantile separately, i.e., without
claiming that all CIs are satisfied with 1 − α2 confidence
simultaneously.

The quasi-independent algorithm uses runs-up test to
determine the simulation run length, which has strong the-
oretical basis. The QI algorithm is easy to implement
because the sample sizes (not the simulation run length) is
determined at the beginning of the procedure. This method
works well and is a solid practical procedure.

4 EMPIRICAL EXPERIMENTS

In this section we present some empirical results obtained
from simulations using the quasi-independent procedure
proposed in this paper. The purpose of the experiments
was not only to test the methods thoroughly, but also to
demonstrate the interdependence between the correlation
of simulation output sequences and simulation run lengths,
and the validity of our methods. We tested two stochastic
models: AR(1), and M/M/1 delay-in-queue processes. In
these experiments, no relative precision or absolute precision
were specified, therefore, the half-width of the CI is the
result of the default precision. In all experiments, we
conservatively set the required parameters of determining
the simulation run length (i.e. equation (2)) with p = 0.5,
ε = 0.5%, and α1 = 0.05. The confidence level α2 of the
quantile CI (i.e. equation (6)) is set to 0.1.

A stochastic model that is covariance stationary and
admits an exact analysis of performance criteria is the first-
order auto-regressive (AR(1)) process, generated by the
recurrence relation

Xi = µ + ϕ(Xi−1 − µ) + εi for i = 1, 2, . . . ,
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where

E(εi ) = 0, E(εiε j ) =
{

σ 2 if i = j ,

0 otherwise

0 < ϕ < 1,

and X0 is specified to be some constant x0. The εi ’s are
commonly called error terms.

The AR(1) process shares many characteristics ob-
served in simulation output processes, including first- and
second-order stationarity, and autocorrelations that decline
exponentially with increasing lag. If we make the additional
assumption that the εi ’s are normally distributed, since we
have already assumed that they are uncorrelated, they will
now be independent as well, i.e., the εi ’s are i.i.d. N (0, 1),
where N (µ, σ 2) denotes a normal distribution with mean µ

and variance σ 2. It can be shown that X has asymptotically
a N (0, 1

1−ϕ2 ) distribution, and the steady-state variance

constant of the AR(1) process is 1/(1 − ϕ)2.
We tested two AR(1) models with ϕ set to 0.75, and 0.90

respectively. µ is set to zero for these two models. In order to
eliminate the initial bias, X0 is set to a random variate drawn
from the steady-state distribution. The summary of our
experimental results of the AR(1) process is listed in Tables
1 and 2. Each design point is based on 100 replications. The
p row lists the quantile we want to estimate. The quantile
row lists the true p quantile value. The cover p row lists
the percentage of the estimators satisfy equation (2). The
coverage row lists the percentage of the CIs that cover the
true p quantile value. The avg. rp row lists the average
of the relative precision of the quantile estimators. Here,
the relative precision is defined as r p = abs(x̂ p − x p)/x̂ p,
where abs(x) is the absolute value of x . The stdev rp row
lists the standard deviation of the relative precision of the
quantile estimators. The avg. hw row lists the average of
the confidence interval half-width. The stdev hw row lists
the standard deviation of the CI half-width. The avg. samp
row lists the average of the sample size of each independent
run. The stdev samp row lists the standard deviation of the
sample size.

All quantile estimators satisfy the precision requirement
of equation (2). The CI coverage of these four design points
are around the specified 90% confidence level. For the 0.5
quantile estimates, the average relative precision is 1.0 and
the standard deviation of the relative precision is 0, because
the parameter under investigation x0.5 is 0. The simulation
run length increases as the correlation coefficient ϕ of the
AR(1) process increases. For the AR(1) process, the PDF
(Probability Distribution Function) values decrease as the
quantile increases from 0.50 to 0.95. Therefore, the average
half-width increases as quantile increases. This is because
with the same amount of quantile deviation, the coverage
deviation is smaller where PDF is smaller.
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Table 1: Coverage of 90% Confidence Quantile Estimators
for the AR(1) Process with ϕ = 0.75

Precision Correlation Coefficient ϕ

0.75
p 0.50 0.95

quantile 0.0 2.487326
cover p 100% 100%

coverage 92% 90%
avg. rp 1.0 0.002022
stdev rp 0.0 0.001467
avg. hw 0.013044 0.018933
stdev hw 0.007366 0.010497

avg. samp 247352
stdev samp 43389

Table 2: Coverage of 90% Confidence Quantile Estimators
for the AR(1) Process with ϕ = 0.90

Precision Correlation Coefficient ϕ

0.90
p 0.50 0.95

quantile 0.0 3.774373
cover p 100% 100%

coverage 90% 89%
avg. rp 1.0 0.002007
stdev rp 0.0 0.002157
avg. hw 0.020172 0.026635
stdev hw 0.011936 0.015294

avg. samp 689197
stdev samp 118128

Figure 1 shows the empirical distributions of the AR(1)
process with ϕ = 0.90, generated from the first run of our
experiments. The theoretical steady-state distribution of
this AR(1) process is N (0, 1/0.19). This graph shows that
the histogram estimate provides an excellent approximation
of the underlying steady-state distribution. The empirical
distribution reveals all the essential distributional features of
output random variables under estimation and can provide
valuable insights.

The average lag of the AR(1) process with ϕ = 0.75
to appear independent is around 6.44. The required sample
size to estimate 0.50 quantile of an independent sequence
is 38416. Consequently, the average simulation run length
is around 38416 × 6.44 = 247399, which is much smaller
than the theoretical required sample size of 2458624 (≥
1.9602SSVC

0.0052 , where SSVC = 1/(1 − ϕ)2 = 16). Despite

4

our simulation run length is much smaller than the theoretical
sample size, we still get good results. We believe this is
because the theoretical sample size is for the worst-case
scenario and too conservative.

Figure 1: The Empirical Distribution of the AR(1) Process
with ϕ = 0.90

Queuing systems are usually positively correlated and
often strongly so. Furthermore, the skewness of the ex-
ponential distribution causes exponential-servers queuing
models to yield output data that might be considered “worst
case.” Some feel that if an output-analytic method works
well for an exponential-servers model, it is likely to work
well in practice. We tested three M/M/1 queuing models.
The service rate (ν) is set to 1.0 per period for these three
models. The arrival rate (λ) is set to 0.50, 0.75, and 0.90
per period respectively. The steady-state variance constant
of the waiting time of the M/M/1 delay-in-queue process

is SSVC ≈ C
(

(1+ρ)
(1−ρ)

+ 2ρ(3−ρ)

(2−ρ)(1−ρ)2

)
, where C = ρ3(2−ρ)

λ2(1−ρ)2

and ρ = λ/ν is the traffic intensity (Daley, 1968).
Let {An} denote the interarrival-time i.i.d. sequence

and {Sn} denote the service-time i.i.d. sequence. Then the
waiting-time sequence {Wn} is defined by

Wn+1 = (Wn + Sn − An+1)
+ for n ≥ 1,

where w+ = max(w, 0). In order to eliminate the initial
bias, w1 is set to a random variate drawn from the steady-
state distribution. Because the waiting-time distribution
function of a stationary M/M/1 delay-in-queue is F(x) =
1 − λ

ν
e−(ν−λ)x , the quantiles for M/M/1 delay-in-queue are

applicable only when the estimated quantiles are large than
or equal to (1−λ/ν). The waiting time of a stationary M/M/1
delay-in-queue distribution function F(x) is discontinuous at
F(x) = 1−λ/ν, (i.e. x = 0). Therefore, it is useful before
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Table 3: Coverage of 90% Confidence Quantile Estimators
for the M/M/1 Delay-in-Queue Process with ρ = 0.50

Precision Traffic Intensity ρ

0.50
p 0.50 0.95

quantile 0.00 4.605170
cover p 100% 100%

coverage 88% 94%
avg. rp 1.0 0.006305
stdev rp 0.0 0.004085
avg. hw 0.006622 0.093919
stdev hw 0.004485 0.041834

avg. samp 172839
stdev samp 31686

conducting an informative experiment to know whether a
desired quantile is attainable.

The summary of our experimental results of the M/M/1
delay-in-queue process is summarized in Tables 3 through 5.
Again, all quantile estimators satisfy the precision require-
ment of equation (2) and CI coverages are above or close to
the specified 90%. We experienced some problems when
estimating the 0.50 quantile of the M/M/1 queuing process
with ρ = 0.5 (ρ = λ/ν is the traffic intensity), because
the distribution is not continuous at the true quantile value
0. For example, if the histogram indicates that more than
50% of the distribution is less than or equal to zero, the
algorithm will interpolate between −∞ and 0 to estimate
the 0.5 quantile. Therefore, some of the 0.5 quantile es-
timators of the M/M/1 queuing process with ρ = 0.5 will
have very large negative values. To correct this problem, we
assume that the analyst knows the underlying distribution is
non-negative and use 0 instead of −∞ as the minimum in
the algorithm for this estimation. This is a very reasonable
assumption because the waiting-time can not be negative.
Furthermore, for the 0.5 quantile estimates of the M/M/1
delay in queue with ρ = 0.5, the average relative precision
is 1.0 and the standard deviation of the relative precision
is 0, because the parameter under investigation x0.5 is 0.

The average sample size increases as the traffic inten-
sity increases. Because the PDF values of the steady-state
distribution of M/M/1 delay-in-queue also decrease as quan-
tile increases from 0.50 to 0.95, the rest of the results have
the same implications as the results from the AR(1) pro-
cess. The average CI half-width of the 0.95 quantiles of
the M/M/1 delay in queue are much larger than those of the
0.50 quantiles, this is because the quantile under estimation
has larger value. Figure 2 shows the empirical distributions
of the M/M/1 delay-in-queue process with ρ = 0.90, gener-
ated from the first run of our experiments. The theoretical
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Table 4: Coverage of 90% Confidence Quantile Estimators
for the M/M/1 Delay-in-Queue Process with ρ = 0.75

Precision Traffic Intensity ρ

0.75
p 0.50 0.95

quantile 1.621860 10.832200
cover p 100% 100%

coverage 87% 90%
avg. rp 0.005018 0.004979
stdev rp 0.003736 0.003977
avg. hw 0.024738 0.178979
stdev hw 0.015167 0.099925

avg. samp 938536
stdev samp 196939

Table 5: Coverage of 90% Confidence Quantile Estimators
for the M/M/1 Delay-in-Queue Process with ρ = 0.90

Precision Traffic Intensity ρ

0.90
p 0.50 0.95

quantile 5.877865 28.90370
cover p 100% 100%

coverage 93% 92%
avg. rp 0.003136 0.004953
stdev rp 0.002631 0.003790
avg. hw 0.058634 0.446812
stdev hw 0.032374 0.243081

avg. samp 7355313
stdev samp 1678455

steady-state distribution of this M/M/1 queuing process is
1 − 0.9e−0.1x , where x ≥ 0. Again, our experimental re-
sults show that the histogram estimate provides an excellent
approximation of the underlying steady-state distribution.

The average lag of the M/M/1 delay-in-queue sequence
with ρ = 0.75 to appear independent is around 24.43.
The required sample size to estimate 0.50 quantile of an
independent sequence is 38416. Consequently, the average
simulation run length is about 38416 × 24.43 = 938502,
which is much smaller than the theoretical required sample

size of 115708992 (≥ 1.9602SSVC
0.0052 , SSVC = 753).

5 CONCLUSIONS

We have presented an algorithm for estimating the histogram
and quantile x p of a stationary process. Some quantile es-
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Figure 2: The Empirical Distribution of the M/M/1 Queuing
Process with ρ = 0.90

timates require more observations than others before the
asymptotics necessary for quantile estimates to become
valid. Our proposed quasi-independent algorithm works
well in determining the required simulation run length for
the asymptotic approximation to become valid. The results
from our empirical experiments show that the procedure is
excellent in achieving the pre-specified accuracy. However,
the variance of the simulation run length from our sequen-
tial procedure is large when estimating highly correlated
sequence. This is not only because of the randomness of
the output sequence, but also because we double the lag
length l every two iterations. Because the sample size grows
rapidly at later iterations, further research is then to develop
new algorithms so that the simulation run length does not
need to be doubled every two iterations.

Our proposed histogram approximation algorithm com-
putes quantiles only at grid points and use Lagrange interpo-
lation to estimate p quantile. The algorithm also generates
an empirical distribution (histogram) of the output sequence,
which can provide insights of the underlying stochastic pro-
cess. Savings in storage and sorting are substantial for our
method. Our approach has the desirable properties that it is
a sequential procedure and it does not require users to have
a priori knowledge of values that the data might assume.
This allows the user to apply this method without having
to execute a separate pilot run to determine the range of
values to be expected, or guess and risk having to re-run the
simulation. Either of these options represents potentially
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large costs to the user because many realistic simulations are
time-consuming to run. The main advantage of our approach
is that by using a straightforward runs-up test to determine
the simulation run length and obtain quantiles at grid points,
we can apply classical statistical techniques directly and do
not require more advanced statistical theory, thus making
it easy to understand, simple to implement, and fast to run.
The simplicity of this method should make it attractive to
simulation practitioners and software developers.

Moreover, the proposed procedure can be used to esti-
mate proportions (Chen 2001). For example, let pq denote
the proportion of customers wait no more than q minutes
in a queue before they get served, we can find some k such
that gk−1 < q ≤ gk , the proportion of customers wait no
more than q minutes can be estimated by: Let

w j =
4∏

j ′=1, j ′ 
= j

q − gk+ j ′−3

gk+ j−3 − gk+ j ′−3
, for j = 1, 2, 3, 4,

then p̂q = ∑4
j=1 w j pk+ j−3, where gi and pi are computed

as discussed in Section 3.
Chen and Kelton (2000b) point out that the modified

runs-up test also works well for discrete distributions. Thus,
our method can also be used to determine the required
simulation run length to obtain discrete distributed quantile
estimate that satisfies a pre-specified precision. However,
the quantile estimate is computed through interpolation so
it may not be a valid value of the underlying discrete
distribution. If the output data can be read through again,
then a valid value can be estimated. In the first phase we
obtained lower and upper bound of the quantile. When we
read the data again in the second phase, we will count the
number of observations that are less than the lower bound,
record the values that are between lower and upper bounds
and count the number of observations in each of those
values. For example, if there are N observations in total,
n0 observations are less than the lower bound, k values (Xi ,
i = 1, 2, . . . , k) are between the lower and upper bound and
their corresponding number of observations are ni (i.e., ni

is the number of observations having the value Xi ), then the
p quantile will be the value X j such that N p ≤ ∑ j

i=0 ni .
The QI algorithm can also be used to estimate the vari-

ance and batch size of batch means methods for estimating
the mean of stochastic process output sequences, for detail
see Chen and Kelton (2000a,b).
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