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ABSTRACT 
 
It is readily apparent how important the Internet is to 
modern life. The exponential growth in its use requires 
good tools for analyzing congestion. Much has been 
written recently asserting that classical queueing models 
assuming Poisson arrivals or exponential service cannot be 
used for the accurate study of congestion in major portions 
of the Internet. Internet traffic data indicate that heavy-
tailed distributions (e.g., Pareto) serve as better models in 
many situations for packet service lengths. But these 
distributions may not possess closed-form analytic Laplace 
transforms; hence, much of standard queueing theory 
cannot be used. Simulating such queues becomes essential; 
however, previous research pointed out difficulties in 
obtaining the usual moment performance measures such as 
mean wait in queue.  In this paper, we investigate using 
quantile estimates of waiting times (e.g., median instead of 
mean), which appear to be considerably more efficient 
when service times are Pareto. 
 
1 INTRODUCTION  
 
In this study, we look at simulating M/G/1 queues with 
Pareto service (M/P/1).  Fowler (1999) gives an extensive 
table showing heavy-tailed distributions found in various 
places within the Internet, including five of the seven OSI 
protocol levels. For example, FTP transfers (application 
level) and session durations (session level) are among 
those mentioned as having Pareto distributions. Requested 
file sizes, reading time per page (both at the application 
level), and packet interarrival times (network level) are 
listed as having heavy-tailed distributions. Naldi (1999) 
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does an empirical study of dial-up to an ISP and shows that 
while arrival times appear Poisson, the holding times are 
heavy-tailed.  Paxson (2000) discussed the tremendous 
diversity in the Internet, but mentioned that one invariant is 
the presence of heavy-tailed distributions. Thus, we study 
here an M/P/1 model.  Fischer, et al (2001) showed that 
problems arose in obtaining mean wait in queue (Wq) in 
simulating M/P/1 queues.  Point estimates of Wq, when 
compared to the Pollaczek-Khintchine (PK) formula were 
as much as 50% off for run sizes as large as 20,000,000 
transactions, and confidence interval estimates using batch 
means did not come close to covering the PK value.   A 
preliminary study using the median (see Fischer et al, op 
cit) appeared to be considerably more accurate when 
compared to a numerical technique called the Transform 
Approximation Method or TAM (see Brill, et al 2000), 
even for run sizes as low as 5,000,000.  Here, we further 
investigate the median and look at estimating the .8, .9, and 
.99 quantiles as well. 
 
2 THE PARETO DISTRIBUTION 

 
The Pareto distribution is a power-tailed distribution.  A 
cumulative distribution function, F(x), has a power tail if 
there exists positive constants c and a such that for 
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That is, the tail decays geometrically in the limit (as 
opposed to the more familiar exponential decay of the 
exponential, and gamma, for example).  Power-tail 
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distributions are a subset of a broader class of distributions 
whose tails decay slower than exponential, i.e., 
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This broader class is referred to as heavy-, fat- or long-
tailed distributions, and include the lognormal and the 
Weibull (with shape parameter <1).  These latter 
distributions have tails that decay slower than any 
exponential, but not as slow as the Pareto, so that a power-
tailed distribution is also a heavy-tailed distribution, but 
not necessarily the reverse. 
 The standard form for the two-parameter (location and 
shape) Pareto distribution function defined over the 
nonnegative real numbers can be written as  
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We note that the Pareto distribution function can be 
directly derived as a gamma mixture of ordinary 
exponential densities. With no loss in generality, 
henceforth we shall use the one-parameter (shape only) 
version of the Pareto given by 
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where α is the shape parameter. The corresponding density 
function is 
 

[ ] ),0(
)1(

)( 1 ≥
+

=
+

x
x

xf
α

α  

 
and it is straightforward to show that the Pareto is indeed a 
power-tailed distribution.   

A major consequence of power-tailed behavior is the 
disappearance of moments. It is easy to see that for a 
Pareto to have its kth moment, E [Xk], we need α > k. If α > 
1, then the mean, E [X], is 
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and if α > 2, it follows that 
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Thus, no matter what the value of the parameter α, a Pareto 
random variable cannot have all its moments and hence 
does not have an analytic Laplace transform, which renders 
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standard queueing analyis of M/G/1 impossible.  Hence the 
requirement for simulation, or other numerical techniques 
(such as TAM).  

In this study, we consider Pareto distributions with α 
values of 3.5, 2.25, 2.083333, 2.05 and 2.020202, yielding 
CVs (coefficient of variation = standard deviation/ mean) 
of 1.53, 3, 5, 6.4, and 10 respectively.  (Naldi (1999) in his 
study, found that holding time CVs generally ranged 
between 1.5 and 2.5). The traffic intensity was set to 0.8 
for all runs.  Arena and GPSS/H were the major simulation 
packages used.  Resulting mean estimates of queue wait 
were compared to PK values and quantile estimates 
compared to values obtained from TAM. 
 
3 PROBLEMS WITH ESTIMATING  

MEAN QUEUE WAIT 
 
Figure 1 illustrates the difficulty in estimating mean wait in 
queue for the M/P/1 case, with Pareto shape parameter 
2.083333 (CV=5). The estimates for mean queue wait, Wq, 
for Arena and GPSSH simulations versus the run length for 
run sizes from 500,000 to 20,000,000 are shown in the 
graph, along with the PK value.  The graph shows that 
even at the longest run length, simulation estimates are 
about half the PK value. 
 Figure 2 shows percent errors from PK in estimating 
mean queue wait for all CV cases run.  Except when 
CV=1.53 (Pareto shape parameter α = 3.5), the errors are 
very sizable, with the errors increasing for increasing CV 
(decreasing shape parameter α).  We believe the problem 
for the α < 3 cases stems from the fact that the Monte 
Carlo sampling from the Pareto greatly underestimates the 
variance. 
 Table 1 presents some Monte Carlo samples from 
various Pareto distributions, illustrating this. In the table, 
percent errors from the theoretical values for mean and 
variance are shown, and we see that for α = 2.05 (CV= 
6.4), while the mean is fairly well estimated, the variance 
is over 50% underestimated.  Further, it appears from 
Table 1 that in order to get decent estimates of the nth 
moment in a Monte Carlo sample, the distribution must 
possess at least one higher moment.  For example, when α 
is 4.05, the first four moments of the Pareto exist and the 
estimates for both mean and standard deviation are quite 
good. For α = 3.05, the first three moments exist and 
estimates of the standard deviation are fairly good (except 
for the oddity of the one million run-length case). For α = 
2.05, the standard deviation cannot be estimated 
sufficiently. When α = 1.05, even the mean cannot be 
estimated to any decent degree of accuracy.  And, of 
course, for α = .8, the mean does not exist.   
 But the table also shows that good estimates of the 
median are obtainable, regardless of the existence of 
moments (errors far less than 1%).  Further, good estimates 
of the .8, .9 and even the .99 quantiles are obtained, even 
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for quite small run lengths.  This leads us to believe that 
using quantile estimates for queue waits from a simulation 
run for M/P/1 queues might be preferable to moment 
estimates such as the mean. 
 Another reason for using quantile estimates for queue 
wait in an M/P/1 is that from theory (see Cohen (1969), 
page 256 or Gross and Harris (1998), page 228), in order 
for the kth moment of the waiting time distribution to exist, 
one must have the (k+1)st  moment of the service time 
existing.  For Pareto shape parameter α < 3, the third 
moment does not exist and hence the variance of the queue 
wait does not exist yielding a poor estimate of the mean 
(see Figure 2, CV = 3,5,6.4 and 10 cases [α = 2.25 ,2.08. 
2.05, 2.02 respectively]). But for α = 3.5 (CV=1.53), the 
third moment does exist and the mean is well estimated. 
 A final reason for using quantile estimates is that they 
provide more meaningful information as to congestion in a 
queueing situation, for often of more interest than mean 
waiting time is the tail of the waiting time distribution, 
about which, quantile estimates provide information. 
 
4 M/P/1 QUANTILE ESTIMATION 
 
Figure 3 shows results of simulation runs producing 
quantile estimates for an M/P/1 queue, with Pareto α = 
2.083333 (CV=5).  The simulated values are compared to 
values obtained from TAM (see section 1).  Note how 
quickly the simulation quantile estimates settle down as 
run size increases and that for quite small run sizes, 
quantile estimates become very close to those from TAM. 
Both GPSSH and ARENA gave quite similar results, so we 
show only the ARENA plot as the simulated values. 
 The ARENA simulation run of 20 million transactions 
took a little over 30 minutes, with about another 15 
minutes of manual-computer interaction to get the 
quantiles using the output analyzer histogram iteratively to 
zero in on the quantile values shown in Figure 3.  GPSSH 
ran faster, taking about 8 minutes for the 20 million run 
length, while TAM took less than half a minute.  Figure 3 
indicates that a simulation run-length of one million 
appears sufficient, and for that size run length, ARENA 
takes under 1.5 minutes and GPSSH under 0.5 minutes.  
While TAM is certainly more efficient than simulation, it 
is not as versatile and cannot be used in more complex 
situations, such as networks.  But the TAM and simulation 
results do appear to validate each other. 
 Table 2 shows results for TAM, ARENA and GPSSH 
runs for all the CV cases. Only the 20 million run-length 
simulation cases are shown.  Note how close the values are 
for TAM and the two simulation packages, especially for 
the .5, .8, and .9 quantiles. 
 Table 2 also shows quantile values using an 
approximation due to Brichet et al. (1996).  They show that  
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the tail of the waiting time of an M/P/1 queue 
asymptotically follows 
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where a(x) ~ b(x) means that 1)(/)(lim =∞→ xbxax , λ is 
the arrival rate, ρ is the traffic intensity, and α is the Pareto 
parameter.  The table shows that the approximation for the 
.5, .8, and .9 is not very close to either simulation or TAM.  
In other words, the .9 quantile is not far enough out in the 
tail for the approximation to be accurate.  The 
approximation begins to give better estimates for the .99 
quantile. Preliminary numerical experiments with TAM 
show that the approximation becomes much more accurate 
past the .995 quantile. For example, for the CV = 3 case, 
TAM estimates the .995 quantile to be 229.5; simulation 
gives a value of 227 (ARENA, 20 million transactions).  
These both correspond to about the .9955 quantile in 
Brichet’s approximation.  Further out in the tail, TAM 
estimates the .999 quantile to be 722, simulation gives a 
value of 845, and inverting Brichet’s approximation gives 
a value of 761. Plugging these values back into the 
approximation gives quantiles of .9989, .9991, and .9990 
respectively.  Thus, the tail is very flat, and a wide range of 
times give roughly the same quantile. Further out in the 
tail, the approximation may be a better option, since 
computing times become large for TAM and simulation. 
But, for lower quantiles like .9 or .95, numerical methods 
like simulation or TAM are needed. 
 
5 CONFIDENCE INTERVALS FOR QUANTILES   
 
Section 3 and 4 results show the difficulty in estimating 
moment-based measures for the M/P/1 queue, and the 
improved convergence in obtaining quantile estimates for 
the M/P/1.  However, further work in output analysis for 
quantile-based estimators must be done. Wood and 
Schmeiser (1995) have done some work with overlapping 
batch quantiles, and conclude that very large sample sizes 
and batch sizes are needed to obtain reliable standard error 
estimators when using overlapping batch quantiles, even 
for i.i.d. data. Heidelberger and Lewis (1984) describe two 
extensions of the method of batch means to quantile 
estimation. Chen and Kelton (1999) discuss algorithms for 
quantile-based confidence interval estimation, but nothing 
has been done on queues with power- or heavy-tailed 
service. This section discusses the use of some of these 
estimation procedures with power-tailed service. 
 Chen and Kelton (1999) propose two methods of 
estimating confidence intervals for quantiles: a fixed 
sample size procedure, and a sequential procedure.  Due to 
the complexity of their sequential procedure, we choose to 
focus on the fixed sample size procedure.  The required 
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sample size np for a fixed sample size procedure estimating 
the p quantile is the minimum np that satisfies 
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where z1-α/2  is the 1 - α/2 quantile of the standard normal 
distribution, ε′ is the maximum proportion half-width of 
the confidence interval, and 1 - α is the  confidence level. 
This sample size np ensures that the p quantile estimator is 
approximately between the p - ε′ and p + ε′ quantiles. 
Often in simulation studies the process {Xi} is dependent 
(ϕ-mixing) instead of i.i.d., which is certainly the case with 
successive queue waiting times from simulation output. 
The sample size for ϕ-mixing processes needs to be further 
inflated by a factor which is proportional to )0(

pxP , the 

initial point on the spectrum of a binary process In(xp), 
where In(x) = 1 if Xn ≤ x. The quantity )0(

pxP  is estimated 

using spectral methods (Heidelberger and Lewis, 1984), 
and uses least squares to fit a low order polynomial of 
degree d to the logarithm of the first K values of the 
averaged periodogram of )ˆ( pn xI , where px̂ is the 
estimated p quantile. 
 Here we use the Chen and Kelton fixed sample size 
procedure to select the run length np, and in addition 
perform independent replications of these runs to construct 
a confidence interval for the p quantile since we compute 
np using the assumption of i.i.d. data. Due to the 
complexity of estimating )0(

pxP , we investigate the 

impact of omitting the inflation factor due to ϕ-mixing 
sequences. We select the M/P/1 queue, with CV=3, 5, and 
10, ε′ = .003, and the .5, .8, .9, and .99 quantiles for these 
experiments using GPSSH.  
 As seen in Table 3, for the .5, .8, and .9 quantiles at all 
CVs, the 95 percent confidence interval half-width covers 
the value obtained using one long run, although the half-
widths are quite large, especially for the .9 quantile case. 
For the .99 quantile at CV=5 and CV=10, the 95 percent 
confidence interval half-width does not cover the value 
obtained using one long run, which is not surprising given 
the small sample size given by the Chen and Kelton 
formula. If the required inflation factor due to ϕ-mixing 
sequences had been incorporated, the confidence interval 
half-widths would likely be smaller since the number of 
observations per replication would have been greater. The 
run times were short, although manual-computer 
interaction was required; this time is not included. This 
manual-computer interaction consisted of getting the 
quantile value for each run from the output file using a 
GPSSH statement that allows one to obtain the distribution 
of residence time in a queue, and then copying to a 
spreadsheet.  This takes about 15 minutes of additional 
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time per quantile.  An alternative simulator written in 
Visual Basic using Lindley’s equation (Gross and Harris, 
1998) to simulate the M/P/1 queue gave similar results. 
Use of Visual Basic had the advantage of eliminating the 
required manual-computer interaction, although run times 
were significantly longer. 
 Next we investigate use of methods of generating 
confidence intervals for quantiles, which do not require 
estimation of the inflation factor due to ϕ-mixing 
sequences. We perform independent replications of various 
lengths including n=100,000, based on the Chen and 
Kelton (1999) sample sizes computed above. In addition, 
n=500,000, and n=5,000,000 were run. 
 Table 4 indicates that using the longer run length of 
500,000 observations per replication significantly tightens 
the 95 percent confidence intervals; half-widths are about 
one-fourth the magnitude of the half-widths at n=100,000. 
Also, at n=500,000 mean quantile values are closer to the 
quantile values obtained from a single long run of 
20,000,000. As expected, the shorter run length of 
n=100,000 gives 95 percent confidence interval half-
widths similar to the fixed sample size results in Table 3. 
Increasing the sample size to n=5,000,000 results in mean 
quantile values similar to those at n=500,000, and further 
decreases the confidence interval half-widths to about one-
half the half-widths at n=500,000. Again, manual-
computer interaction was required, and took about 40 
minutes of additional time per CV investigated.   
 In summary, use of the fixed sample size procedure 
for estimating run lengths while omitting the inflation 
factor due to ϕ-mixing sequences does result in sample 
sizes that do not yield very good accuracy.  Longer run 
lengths are required. Additionally, it would be very helpful 
for the simulation software packages to include in their 
output analysis an easy way to get quantile estimates so 
that manual-computer interaction between replications is 
not required. 
 
6 CONCLUSIONS 
 
In modeling congestion on the Internet, there are many 
places where holding time distributions are of the heavy- 
or power –tail type.  We have studied the M/P/1 queue, 
where service times are Pareto – a power tail distribution, 
and found that the usual moment type measures of 
congestion (e.g., mean wait in queue) cannot be adequately 
estimated, even in very long simulation runs.  However, 
much better results occur using quantile estimates (e.g., 
median), even for relatively short simulation runs.  Further, 
quanitle estimates give more and better information 
regarding congestion (e.g., the percent of users that have to 
wait more than T time units in the queue).  One problem 
with quantile estimates, however, is the difficulty in 
obtaining confidence interval estimates, and this is an area 
where some work has been done, but more is needed.   
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Simulation vs PK Estimate of Mean Queue Wait, CV=5
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Figure 1: Simulation vs. PK Value, CV=5 
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Figure 2: Errors in Simulating Mean Queue Wait vs. CV 
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Table 1: Monte Carlo Samples of Pareto Distributions 
alpha CV No. Obs. % error % error % error % error % error % error 

   Mean std. Dev median .8 q’tile  
value 

.9 q’tile  
value 

.99 q’tile      
value 

0.8 inf 100,000 NA NA -0.47 -0.51 -0.33 -5.59 
  500,000 NA NA -0.25 -0.24 -0.38 -0.58 
  1,000,000 NA NA -0.18 -0.07 -0.38 -1.30 
  5,000,000 NA NA -0.18 -0.14 -0.29 -0.92 

1.05 inf 100,000 -59.00 NA -0.43 -0.42 -0.26 -4.33 
  500,000 -57.13 NA -0.22 -0.20 -0.30 -0.45 
  1,000,000 261.04 NA -0.11 -0.06 -0.30 -1.01 
  5,000,000 10.18 NA -0.17 -0.11 -0.22 -0.70 

2.05 6.4 100,000 -1.03 -57.44 -0.33 -0.30 -0.13 -2.47 
  500,000 -0.43 -56.04 -0.20 -0.13 -0.18 -0.25 
  1,000,000 0.75 68.48 -0.08 0.03 -0.18 -0.55 
  5,000,000 0.00 -13.43 -0.08 -0.05 -0.13 -0.39 

3.05 1.7 100,000 -0.54 -3.87 -0.38 -0.14 -0.13 -1.91 
  500,000 -0.20 -2.55 -0.18 -0.14 -0.22 -0.21 
  1,000,000 -0.06 14.27 -0.10 -0.03 -0.17 -0.43 
  5,000,000 -0.06 1.82 -0.14 -0.07 -0.13 -0.29 

4.05 1.4 100,000 -0.44 -1.56 -0.36 -0.25 -0.13 -1.64 
  500,000 -0.17 -0.67 -0.20 -0.11 -0.15 -0.13 
  1,000,000 -0.10 2.10 -0.12 -0.03 -0.15 -0.36 
  5,000,000 -0.05 0.13 -0.14 -0.07 -0.12 -0.22 
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Quantile Estimates, CV=5, TAM vs Arena Simulation
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Figure 3: Simulation Runs for M/P/1, CV =5 
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Table 2: TAM and Simulation Results for Quantile Estimates 

CV 
Pareto 
alpha quantile                 quantile values  

Brichet 
Approx. 

     TAM ARENA GPSSH  
1.528 3.5 0.5 1.24 1.23 1.25  2.30 

   0.8 4.4 4.37 4.42 3.31  
   0.9 7.09 7.05 7.1 4.37 
  0.99 17.9 17.8 18.0 10.99 

3 2.25 0.5 3.33 3.3 3.33  5.28 
   0.8 15.31 15.27 15.31  10.99 
   0.9 28.89 28.8 29.05 19.13 
  0.99 133.13 139.00 139.5 120.68 

5 2.083333 0.5 4.22 4.23 4.22  6.82 
   0.8 21.33 21.34 21.31  15.88 
   0.9 42.97 42.56 43.2 30.12 
  0.99 246.02 259.30 269.2 252.29 

6.4 2.05 0.5 4.45 4.46 4.44  7.25 
   0.8 22.99 23.14 23.01  17.34 
   0.9 46.96 47.43 47.4 33.56 
  0.99 334.2 320.9 314.8 300.71 

10 2.020202 0.5 4.68 4.66 4.67  7.68 
   0.8 24.77 24.58 24.74  18.85 
   0.9 51.53 51.31 51.8 37.18 
  0.99 329.82 394.10 364.50 355.25 

Table 3: M/P/1 Confidence Interval Estimation Using Fixed Sample Size Procedure, ε′ = .003 
Fixed Sample Size Procedure w/ Replications, GPSSH  ARENA  

quantile  CV 
No. Obs./ 

Rep 
No. of 
Reps 

quantile 
value 

quantile 
CIHW 

Time (min) 
(500 Mhz) 

quantile value 
(no reps, 

n=20000000) 
0.5 3 106,711 20 3.43 0.13 1.56 3.30 
0.8 3 68,295 20 15.61 1.24 1.29 15.27 
0.9 3 38,416 20 54.31 45.70 1.11 28.80 

0.99 3 4,226 20 107.29 50.93 0.88 139.00 
0.5 5 106,711 20 4.18 0.25 1.98 4.23 
0.8 5 68,295 20 21.61 1.91 1.55 21.34 
0.9 5 38,416 20 46.65 10.98 1.21 42.56 

0.99 5 4,226 20 160.94 83.57 0.90 259.30 
0.5 10 106,711 20 4.78 0.27 2.09 4.65 
0.8 10 68,295 20 28.65 8.16 1.92 24.63 
0.9 10 38,416 20 168.65 199.63 1.36 51.17 

0.99 10 4,226 20 191.60 103.25 0.88 394.10 
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Table 4: M/P/1 Confidence Interval Estimation Using Replications of Various Lengths, CV=5 
GPSSH  ARENA 

quantile 
No. 

Obs./Rep 
No. of 
Reps 

quantile 
value 

quantile 
CIHW 

Time (min) 
(500 Mhz) 

quantile value 
(no reps, 

n=20000000) 
0.5 100,000 20 4.08 0.275 4.23 
0.8 100,000 20 20.99 2.096 21.34 
0.9 100,000 20 45.10 8.659 

2.8 
42.56 

0.5 500,000 20 4.24 0.073 4.23 
0.8 500,000 20 21.48 0.556 21.34 
0.9 500,000 20 43.33 1.861 

5.1 
42.56 

0.5 5,000,000 20 4.24 0.035 4.23 
0.8 5,000,000 20 21.52 0.277 21.34 
0.9 5,000,000 20 43.78 0.824 

40.4 
42.56 
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