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ABSTRACT

In this paper we investigate two issues at the kernel of
simulation reusability: interoperability and interchange-
ability. Their implications on the simulation technology
are discussed. Based on our previous work on simulation
component oriented world view and simulation component
classification, the Component-ORiented Simulation Archi-
tecture (CORSA) is devised to address both issues. The
ideas and considerations which motivated us in developing
CORSA are discussed. The design and implementation of
a prototype is also described briefly. A sequential PCS sim-
ulation has been developed using CORSA. This exercise
demonstrated several advantages of the component-based
approach: flexibility, extensibility as well as reusability. Ex-
perimental results show that the component-based approach
is only slightly slower than the monolithic approach, whose
complexity quickly grows to nearly unsurmountable pro-
portions with the growth of complexity of the simulated
system.

1 INTRODUCTION

The importance of interoperability of simulators has been
gradually realized and understood. Interoperability enables
the system designer to reuse existing simulations, and/or to
combine them with new ones to form large and complex
simulations which seemed impossible to design even a few
years ago.

The High Level Architecture (HLA)(Kuhl et al. 1999) is
the first extensive effort to attack the problem of simulation
interoperability. The publishing and subscription scheme
allows all objects in an HLA-compliant simulation to be
reused by other simulations.

However, simulation interoperability only represents
one level of reuse. Another level of reusability has often
been ignored: the interchangeability of simulation models.
A simulation model is a part of a simulation. It describes
the dynamic behavior of a component of the system being
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simulated. It differs from a simulation in that it is not
executable. For instance, an event list usually cannot be
found in a simulation model. Since the real component that
a simulation model represents may exist in different systems,
it is expected that the same simulation model should appear
in many simulations.

This, unfortunately, is not the case at all. The best
that we can achieve today is the interchangeability among
simulations built with the same simulator. When facing the
problem of simulating a real system, the first thing that the
designers consider is selecting a simulator that seems to be
best suitable for the particular application. After making a
choice, the designers start building simulations according
to the standard defined by the simulator. Selection of the
simulator is always difficult, and the choice more often
depends more on the experience of the system designer
than on the features of the simulator. In the worst case,
the chosen simulator may be later found unsuitable for the
particular application because of some reasons unforeseen at
the design stage. Switching the designed system to another
simulator usually means all models developed so far have
to be rewritten.

Our approach tries to address both interoperability and
interchangeability in a balance way. This is possible thanks
to the component-oriented world view and the simulation
component classification discussed briefly in the next section
(more detailed discussion of this classification can be found
in (Chen and Szymanski 2001)). In Section 3, we introduce
CORSA. The design considerations and implementation
issues of a prototype are discussed in Section 4 and 5. A
PCS network simulation built using the CORSA approach
is described in Section 6 which demonstrates the feasibility
and advantages of component-based simulations. Finally,
the discussion of limitations of our work and plans for future
work conclude this paper.
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2 COMPONENT-BASED SIMULATION

Component-based approach is a natural and intuitive ap-
proach to the development of large-scale simulations. To
help us understand its usefulness in building simulations,
it is necessary to turn to traditional simulation modeling
methodologies at first.

2.1 Simulation World Views

Traditional simulation world views, such as Event Schedul-
ing, Activity Scanning, and Process Interaction (Cota and
Sargent 1992), do not emphasize the composability of sim-
ulation models. When adopting these world views, the
designers tend to model the real system as a whole, which
inevitably limits the reusability of the simulation model. The
logical process paradigm (Fujimoto 1990), arising from the
necessity of simulated system partitioning in PDES (Paral-
lel Discrete Event Simulation), achieves a certain degree of
composability. However, this paradigm does not separate
the development of logical processes from the simulation
into which they are integrated, thus preventing them from
being reusable in other simulations.

We proposed a component-oriented world view in which
a simulation is composed of a number of components. Two
major differences distinguish a component from a logical
process. First, components communicate with each other
through input/output ports instead of events. Second, a
configuration phase must be performed for components be-
fore the execution or even compilation of the system. In
configuration phase, component parameters are assigned
values and component ports are interconnected. The con-
figuration phase, together with the indirect communication
via input/output ports, make the component development
completely independent of the simulation context.

2.2 Component Classification

Components are classified into three types with respect to
the way they handle the time semantics: timeless, time-
dependent and time-independent, called Type I, Type II and
Type III respectively (Chen and Szymanski 2001).

A Type I component does not have the notion of simu-
lation time. It is passive in the sense that it never generates
messages without first receiving a message. A component,
when processing a messages received from other compo-
nents, may generate a new message that has the same
timestamp as the incoming message that triggered it. Yet,
the component itself is not aware of the time semantics.
Neither does it know whether it is running as part of a sim-
ulation program or part of an ordinary program. For this
reason, the timeless component is said to be time-unaware.

Type II components are time-aware. They cannot ad-
vance the simulation time themselves but they can request
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a time advance via a special entity called a timer. Timers
provide a mechanism for the component to schedule and
receive events. To schedule an event, a timer is set with
a specified value representing a future simulation time at
which the event will occur. As soon as the simulation time
reaches the value preset by the timer, the corresponding
component will be activated and will process the event that
it has scheduled.

Type III components maintain their own simulation
clock themselves. They do not have any timers. Instead,
they contain a clock, which indicates the simulation time
throughout the execution. These components can receive
a message only if such a message will not cause causality
errors. The easiest way to guarantee it is to accept only
those received messages that have timestamp larger than
the value of the simulation clock.

Type II Type IIType II Type I

Simulation Engine

Input/Output PortTimer

Figure 1: Simulation Engine for Type I and Type II Com-
ponents

Type I and Type II components can be coupled together
by a simulation engine, as illustrated in Figure 1. The
simulation engine is responsible for parameterization and
interconnection of components. During the interconnection,
it sets up channels that directly connect matched ports. The
simulation engine must also keep track of all activities
on timers. When a timer is scheduled to be active in
a future simulation time, the simulation engine inserts a
corresponding event into a priority queue. It repeatedly
removes the event with the smallest timestamp from the
priority queue and then activates the corresponding timer
by invoking the event handler of the component to which
the timer belongs.

2.3 Implications of Classification

The classification of simulation components into three types
clarifies the role of the simulation developers. A simulation
program can be divided into two parts: one part models the
behavior of the real system and the other simply makes the
model executable. In this sense, the Type III components
have nothing to do with modeling of the real system, since
they are only concerned with the underlying implementation
issues. Hence, these components should be hidden from the
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model builders who usually have no specialized knowledge
of the simulation technology. On the contrary, the Type I and
Type II components include both the code that represents the
real system and the code that allows components to execute.
The latter is the sole responsibility of the simulator builders
but should be transparent to the model builders.

The classification fits into parallel computation well. In
practice, a simulation model of a real system may contain an
excessive amount of parallelism. However, direct mapping
into a parallel program is unnecessary and often inefficient,
because the optimal granularity of runtime parallelism is
only determined by the number of processors available in a
simulation run. It is well known that two parallel programs
running on one processor always require context switching,
which incurs signification overhead.

The classification allows us to avoid this problem by
mandating that all Type I and Type II components con-
tained within a processor execute sequentially. Only one
component can be active at any one time. A Type I or
Type II component is immediately suspended after writing
to an output port. The input port connected to this output
port is then activated and the component where the input
port resides starts to process the arriving message in this
input port. If there are multiple input ports connected to the
output port, all connected input ports should be activated
in an implementation dependent order. The component that
initiated the communication resumes only after all compo-
nents connected by the output port have finished execution.
When a component processes a message arriving at an input
port, it may write to one or more output ports and transfer
execution to the successive components.

A close examination reveals that components impose
different requirements on the timestamp of the simulation
time. Type I components require copyable timestamps,
because they must copy the timestamp of a message arriving
in an input port to outgoing messages which can only occur
at the simulation time of the received message. Type II
components require addable timestamps, because when they
write a delay to a timer, they implicitly schedule an event
whose timestamp is equal to the current simulation time
plus the specified delay. Type III components naturally
ask for comparable timestamp for the purpose of selecting
the smallest timestamp. In practice, the simulation time is
usually implemented using floating-point numbers, which
possess all three above properties. These properties are the
most common requirement of each type, but not necessarily
all the required properties. For example, a component
modeling a time-variant system may require the property of
being readable, which is different from any of the properties
mentioned above.
497
3 SIMULATION PLATFORM

Historically, operating systems, the platforms on which
traditional simulations are conducted, are all component-
oriented. A complete operating system consists of many
programs, which can be viewed as components providing
a wide variety of functionalities. Users can install pro-
grams that they want and remove those they do not. An
operating system often allows a simple but efficient form
of interoperability between programs. A program may in-
voke other programs, in the form of shared library (Levine
2000), or even in a more sophisticated model like Microsoft
COM (Armstrong 2000). Model level reuse is made possible
by efforts like STL (Austern 1998).

However, current operating systems do not provide
sufficient support for the configuration phase required by the
component-oriented world view. For example, although it is
possible to parameterize a program by passing command line
arguments, the parameters represented by these arguments
are program-specific, thus parameterization cannot be done
in a unified way. Binding a function call to the address
of the function resembles linking an output port with an
input port, but multiple connections to one port cannot be
defined.

For this reason, we propose a simulation platform,
called CORSA (Component-ORiented Simulation Archi-
tecture), based on the component-oriented world view. The
component classification described in the previous section
plays an important role in the design and implementation
of this simulation platform.

CORSA defines a component development standard
which serves as a contract between the developers of simu-
lation engines and the developers of components. It enables
a scenario in which once a CORSA-compliant simulation
engine has been designed to link a certain type of compo-
nents, it will be able to accept any components that belong
to this type. The term ‘simulator’ will be synonymous with
the term ‘simulation engine’. Non-compliant simulators not
designed within the CORSA model can be wrapped and
treated as Type III components but they will not be able to
use standard components.
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Figure 2: The CORSA Simulation Platform

Figure 2 shows the architecture of the CORSA simula-
tion platform. Built on top of an operating system, it provides
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supports for standard simulators. Non-standard simulators
are wrapped with interfaces with allow them to be plugged
into the simulation platform. The simulation platform also
contains a component repository to facilitate management
of the components. The key part of the development will
be a simulation API (Application Programming Interface).
Besides common functionalities required by simulation pro-
gramming, like random number generators, priority queues,
message passing, etc., it must allow the simulators to access
the information of components and their input/output ports,
timers, and clocks.

4 DESIGN OF A CORSA PROTOYTYPE

We have developed a prototype of the proposed simulation
platform. The main purpose of this prototype is to demon-
strate that both interoperability and interchangeability are
achievable at the same time. One important part that is
missing is the simulation API. Design of this API is by
no means a trivial task: it must be based on the knowl-
edge and experience gained from continuous efforts in the
component-based simulation.

4.1 Two Levels of Reuse

As mentioned in the first section, the interoperability enables
simulation-level reuse and the interchangeability enables
model-level reuse. These two kinds of reuses can be achieved
in two ways, depending on the form and class of components
involved. Type III components are in the form of either
binary libraries or source code, but Type I and Type II
components exist only as source code modules. Therefore,
two types of simulation engines are possible: one type
accepts binary libraries and the other accepts source code
modules. Type I or Type II components can be compiled
into binary libraries. Such compilation is useful when a
Type I or Type II component is to be linked to Type III
binary components. For example, a delay between two Type
III components can be modeled as a component of Type II,
therefore a delay model can be retrieved from the component
repository and then compiled into a binary component.

Binary components are actually shared libraries. This is
a natural choice because it allows the simulation platform
to load components during the run-time. A predefined
component creation function is required to be implemented
by every binary component. It will create a component
instance upon invocation after the component library is
loaded into the computer memory for execution. An existing
simulation can be easily wrapped with a few necessary
functions to become a shared library.
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4.2 Component Interface Description Language

A CIDL (Component Interface Description Language) is
defined to describe the interface of components. A CIDL
file describes the name and type of every port, timer or clock
in a component. This way of describing interface is similar
to the CORBA IDL. However, CORBA IDL cannot be
directly used to describe CORSA components, because the
primitive elements are different. Moreover, CORBA only
deal with Type I component according to our classification.
Examples of CIDL interfaces can be found in Section 6.

We have also implemented a CIDL compiler to facili-
tate the development of components. The CIDL compiler
translates a CIDL interface into a skeleton from which the
component implementation can be derived. Currently only
CIDL to C++ mapping has been implemented.

5 IMPLEMENTATION ISSUES

In this section, we introduce the class hierarchy of compo-
nents used in the simulation platform prototype. The use
of function objects is also described.

5.1 Class Hierarchy of Components

Figure 3 shows the class hierarchy of the prototype of
the CORSA simulation platform. A Component class is
defined as the base class of all types. It contains public
member functions for parameterization and interconnection
required by the component standard. In addition, it defines
a SimTime() function which returns the current simulation
time.

SimEng

...

CostSimEng

...

SeqSimEng

...

TypeIII

Run()
double m_clock

TypeII

SetTimer()
CancelTimer()

TypeI

Component

SimTime()
...

Platform

...

Figure 3: The Class Hierarchy for the CORSA Simulation
Platform

The Type I component class is a trivial derived class
of the Component class. It does not introduce any new
member functions.

The Type II component class defines two new member
functions: SetTimer() and CancelTimer(). The SetTimer()
function sets a timer with a specified delay. As soon as
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the simulation time expired since the instance in which the
timer was set is equal to the delay, this timer will become
active. CancelTimer() simply disables a timer.

Type III components are provided with a new member
function Run() because they can manage the simulation
clock themselves so that they are runnable. The member
variable m_clock contains the value of the current simulation
time.

An abstract SimEng class is also defined in the class hi-
erarchy. It serves as the interface for all simulation engine
classes, i. e., every simulation engine class should im-
plement the pure virtual functions declared in the SimEng
class.

Because a simulation engine is also a component, either
of Type II or of Type III, a simulation engine class is derived
using multiple-inheritance. A simulation engine that is of
Type II permits hierarchical modeling methodology. We
have developed two Type III sequential simulation engines:
SeqSimEng accepts binary components and CostSimEng
accepts source code components.

5.2 Function Object

Function object (also called Functor) is widely used in the
implementations of the ports and timers. Conceptually, it
is a generalization of the function pointer (Austern 1998).
In C++, function objects are constructed using operator
overloading. Figure 4 shows the class hierarchy of the
function objects.

TernaryFunctor

operator()(T1 t1, T2
t2, T3 t3)

BinaryFunctor

operator()(T1 t1, T2
t2)

UnaryFunctor

operator()(T t)

TriggerFunctor

operator ()()

Functor

virtual ~Functor()

TernaryMFunctor

operator()(T1 t1, T2
t2, T3 t3)

BinaryMFunctor

operator()(T1 t1, T2
t2)

UnaryMFunctor

operator()(T t)

TriggerMFunctor

operator ()()

Figure 4: Functor Objects Used in the Implementation

First, a base Functor class is defined. Next, a set of
function object classes are derived, each of which takes
different numbers of arguments. Finally, a set of member
function object classes are derived from the corresponding
non-member function object classes.

The advantage of using function objects is that type
checking for ports becomes possible. For instance, when
we connect an input port with an output port we need to
make sure that they are matched. That means, both of them
should take the same number of argument, and arguments
in the same position should be of the same type. Without
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function objects, type checking of two arbitrary ports is
impossible because two port may reside in two shared
libraries compiled separately, thus the compiler cannot detect
the type mismatching. Using function objects, the pointer
to a function object is first upcast to a pointer to a Functor
object. This pointer is then passed to the port in another
shared library. To decode this pointer to its original type, the
C++ operator dynamic_cast is used. Decoding the pointer
to any other type will result in a null pointer, which can be
detected by the component during the run time.

6 PCS SIMULATION USING CORSA

A PCS (Personal Communication Service) network contains
a geographically distributed radio ports (Carothers et al.
1994; Boukerche et al. 1999). The users in the coverage
area (or cell) of a port can use the channels assigned to that
port. When a user moves from one cell to another during
a phone call, a hand-off is said to occur. In such a case,
the PCS network attempts to allocate a radio channel in the
new cell to allow the phone call connection to continue.

The PCS network simulation involves two object types:
cell and portable. The cell allocates the radio channels to
the portables and detects portables that have moved out of
its coverage area. The portables simulate call activities and
movements.

6.1 Two Reusable Components

In the PCS simulation experiments, we adopt a parti-
tion scheme different from those used for parallel simu-
lation (Carothers et al. 1994; Boukerche et al. 1999).
A cell component simulates all the cells, that is, it pro-
cesses all the requests of channel allocation and release.
A portable component simulates all the portables. This
partition scheme is difficult to be applied to parallel simu-
lation, but is well-suited for the purpose of demonstrating
the advantages of the component-based simulation and of
comparing the overhead of inter-component communication.

The interface of the cell component, which is a Type I
component, is given below. The parameters width and height
define the number of cells in the horizontal and vertical
direction, respectively. The parameter channels_per_cell
specifies the number of available channels that each cell
initially possesses. The input port GetChannel is activated
when a portable needs to make a phone call. The cell
component then checks if there is any channel currently
available in the cell specified by the argument index. The
availability is returned by the argument available that is
passed by reference. The input port ReleaseChannel is
activated when a portable releases a channel that it has
been using.
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component cell
{

param int width;
param int height;
param int channels_per_cell;
inport GetChannel(int index,

bool& available);
inport ReleaseChannel(int index);

}

The portable component is a Type II component. The
parameter portables_per_cell states the number of portables
in each cell at the beginning of the simulation. The parame-
ters next_call_mean and next_move_mean define the average
time between two consecutive calls, and two consecutive
moves, respectively. The parameter call_time_mean indi-
cates the average duration time of a call. All time durations
are drawn from exponential distributions. Two output ports,
GetChannel and ReleaseChannel, are used to request and
release channels. The portable component also contains a
timer, which is set with the smallest timestamp of all future
events occurring to this portable component. When this
timer is activated, the portable component knows that it is
its turn to process the next event.

Component portable
{

param int width
param int height;
param int portables_per_cell;
param double next_call_mean;
param double next_move_mean;
param double call_time_mean;
outport GetChannel(int index,

bool& available);
outport ReleaseChannel(int index);
timer next;

}

There are two advantages to modeling PCS networks in
that way. First, this model separates the cell component from
the portable component, thus making it fairly easy to modify
the cell component when a different channel allocation policy
is adopted. Second, the simulation constructed in this way
is fully extensible. For example, some of the portables may
be carried by moving vehicles, and we want to simulate
the behavior of vehicles as well. We can create a new
vehicle component, and link it with the cell component.
The resulting three components (cell, portable, and vehicle)
will work correctly with each other without any additional
considerations for their synchronization!
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6.2 Experimental Results

A series of experiments have been conducted to test the
performance of the component-based approach. Figure 5
shows the simulation speeds in these experiments. Two
simulation engines mentioned earlier were tested. For each
simulation engine, two experiments were performed. First,
the simulation was constructed using one cell component
and one portable component. Next, one cell component
and two portable components were used, with each portable
component simulating half of the workload. The number
of event processed in one simulation run remains the same.
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Figure 5: Comparison of Simulation Efficiency

It is no surprise that the monolithic approach is the
fastest. In general, the component-based approach is ap-
proximately 20% slower than the monolithic approach for
the PCS simulation. It is worth mentioning that the PCS
model is fine-grained: the amount of computation required to
process each event is relatively small. Hence, the overhead
of inter-component communication becomes more signif-
icant. For coarse-granularity models, the inter-component
communication would impact the overhead and overall per-
formance to a lesser degree.

We can also see that the simulation engine CostSimSim
is faster than SeqSimEng. This is understandable because
the former integrates source code components so it is more
tightly-coupled. Dividing the workload into two portable
components only slightly slows down the execution speed.

7 CONCLUSION

The Component-ORiented Simulation Architecture,
CORSA, is presented in this paper. It supports both
interoperability and interchangeability. We have con-
ducted a PCS simulation using CORSA and defined two
components run by a simulation engine. The same two
components that simulate cells and portables can be used
in two different simulation engines. Experimental results
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show that the component-based approach incurs insignif-
icant inter-component communication overhead, while
supporting reusability, composability and extensibility.

However, the prototype that we presented here is far
from being a full-fledged simulation platform that we have
envisioned. The design of a key part of the simulation plat-
form, the simulation API, has been omitted in this prototype.
The component development standard, which serves as a
contract between the simulator developers and the model
builders, is still informal and subject to future changes.

Another limitation of our work is that the component-
based approach is only tested on sequential simulations.
As mentioned earlier, the component classification fits into
parallel computation well. Therefore, its real power will be
fully exploited in parallel discrete event simulations. The
emphasis on interchangeability will allow parallel simulators
based on different algorithms to reuse the same components.
A comprehensive comparison of existing parallel algorithms
on a wide variety of applications will hence become feasible.
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