
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

A CAPACITY PLANNING TOOL FOR THE TUXEDO MIDDLEWARE
USED IN TRANSACTION PROCESSING SYSTEMS

Tayfur Altiok
Wei Xiong

Department of Industrial Engineering

Rutgers University
Piscataway, NJ 08854, U.S.A.

 Mesut Gunduc

Staff Engineer

BEA Systems Inc.
Liberty Corner, NJ 07938, U.S.A.

ABSTRACT

In this paper, we present a brief overview of Tuxedo mid-
dleware system (BEA Systems) and introduce an object-
oriented computer simulation template developed for the
purpose of capacity planning and performance analysis of
Tuxedo application environments. Arena/Siman (Rock-
well Software) simulation software is chosen and a
CP_Tool template specific to Tuxedo environment is de-
veloped. The template consists of a number of modules
representing client and server nodes, network nodes and
other critical components of the system. Any Tuxedo envi-
ronment can be created using the modules from the
CP_Tool. The paper discusses the tool and its capabilities.

1 INTRODUCTION

The Tuxedo System provides a three-tier Client/Server ap-
plication programming framework that enables the con-
struction, execution, and the administration of high per-
formance distributed applications. The Tuxedo system
renders a scalable, standards-based software architecture
supporting a variety of hardware platforms, operating sys-
tems and networks (Andrade et al 1996). Over the past
decade, the changes in business needs and environments
have given a tremendous boost to the client/server technol-
ogy. Today’s businesses need responsive, flexible, inte-
grated and comprehensive applications to support the com-
plete range of business processes. Clearly, demand and
user expectations on the system bring issues of capacity,
availability and performance. As new applications are
added or additional load is experienced due to increased
demand, response times tend to increase as a result of sys-
tem bottlenecks. The current state in the business world
necessitate the use of performance analysis tools to answer
questions of “What is the impact of a 20% increase in cus-
tomer transactions on the response time of our system?”, or
“If we were to allocate service i to server node k, how
much would the response time be reduced?” or “What
502
good would it do to move an RM operation to a remote.
node?” These questions are among the many other similar
questions one would ask while designing a new system or
while managing an existing system. Capacity planning is
the activity that responds to these questions. More for-
mally, capacity planning is the process of predicting sys-
tem performance for a given set of resource requirements
and in turn using this information to decide on the re-
sources to achieve a desired level of performance. In a cli-
ent server system, probably the most important measure of
system performance is the response time. Capacity plan-
ning effort predicts the response time and unearths the bot-
tlenecks in the system (Menace and Almeida 1998).
 Also, server performance is critical for E-commerce
applications, and is becoming even more important as Web
protocols are applied to performance-sensitive applications
(Comer 1997). For instance, electronic imaging systems
require servers to perform computation-intensive image fil-
tering operations. Likewise, database applications based
on Web protocols (such as Alta Vista Search by Digital)
require complex queries that usually generate a higher
number of disk I/O operations. As the Web grows with its
current pace, it will be inevitable that every new Web ap-
plication will have to be designed with the help of a capac-
ity-planning tool.

In this paper, we introduce a tool, CP_Tool, designed
to perform capacity planning in Tuxedo application envi-
ronments. Tuxedo is a middleware system developed by
BEA Systems, Inc., and currently being used as the mid-
dleware in transaction processing type client/server sys-
tems worldwide (Andrade et al 1996). CP_Tool is an ob-
ject-oriented software tool developed based on a combined
approach using simulation and queueing theory. Cli-
ent/Server systems involve a number of complex queueing
problems both on the client side and the server side, that
are not yet mathematically studied. In this paper, we will
describe some of these queueing problems and incorporate
them into the CP_Tool.

Altiok, Xiong, and Gunduc

2 CLIENT/SERVER ENVIRONMENT

In a typical client/server environment, there are a number
of client nodes, a number of server nodes (that usually
form a cluster), a network, possibly a database server (re-
source manager) and a number of disks local to any of the
server nodes. In transaction processing applications, trans-
actions are service requests that are initiated by the client
nodes, processed by the server nodes and eventually are
returned to the initiating client nodes. Middleware, known
as the TP monitor in transaction processing parlance (Or-
fali 1996) is the software that provides a unified view of
the server cluster to the clients (transparency). First, it co-
ordinates the co-existence of server nodes in the cluster.
Among many others services, middleware provides loca-
tion and migration transparency for the application soft-
ware running on the system. Second, it gets control of
every transaction submitted to the system and guarantees
its proper completion and return to the initiating client.
The TP monitor technology is promising to be the most ef-
fective solution for client/server architectures for systems
with thousands of users.

A client/server application is primarily a network of
message queues. Transactions experience delays in client
node queues, in network queues, and in the various server
node queues. Response time of a transaction starts at the
moment it is initiated at the client node and includes the
time until its response is processed back in the client node.
This time includes all time segments that are delays in pro-
cess queues, processing times and the I/O related times
(Cady and Howarth 1990). Due to inherent complexities in
maintaining a middleware on top of the operating system at
each node, it is quite difficult to identify every time seg-
ment on the path of a transaction in the system. No matter
how detailed it may be, every approach to describe the
sample path of a transaction turns out to be an approximate
one. In this paper, we report on a detailed analysis of
server nodes in Tuxedo application environments. Experi-
ence shows that the time spent on the client side and in the
network are significantly lesser that the times spent on the
server side. Therefore, most of our effort in the develop-
ment of CP_Tool concentrated on the server side, even
though CP_Tool models the entire client server system.

3 TUXEDO ENVIRONMENT

Tuxedo is a message-based middleware for client-server
systems. Client and server processes communicate by
sending messages to each other. Tuxedo offers a rich set of
communication paradigms including request/reply, connec-
tion-oriented events and persistent-storage based message
queues. Among them, request/reply messaging is the most
common. With this type of communication paradigm, ap-
plication clients issue service requests against some ser-
vices offered by the server processes hosted on Tuxedo
503
domain server nodes. Once a request is serviced, a reply
message is constructed by the server (serving the request)
and is sent back to the client who initiated the request. In
the meantime (while the request is being processed), the
client is blocked, waiting for a reply. This is the synchro-
nous version of request/reply communication type. There
is also an asynchronous version of it in which the client
process sends a service request and does not get blocked
while waiting for a reply, and thus proceeds to do other
things, i.e. issue other service requests.

In a typical Tuxedo application domain, client nodes
host Tuxedo client processes that generate requests (i.e.
tpcall()) against services via Tuxedo ATMI, as shown in
Figure 1. Services are provided by the server processes re-
siding on the server nodes. While processing a request, a
server process may communicate with a Resource Manager
(RM), i.e. a RDBMS, or another Tuxedo domain. When
processing a request is completed, the server process con-
structs a reply message and sends it to the client via an ap-
propriate Tuxedo ATMI, i.e. tpreturn().

Figure 1: A Typical Tuxedo Application Environment

It is also possible that the client may decide not to re-

ceive a reply, in which case no reply message is generated.
Client processes may in fact reside on one or more of the
server nodes together with Tuxedo administrative and ap-
plication server processes. The scenario depicted in Figure
1 indicates that a client residing at the /WSC node requests
the execution of Service A. This request arrives at node
N_1 via network NET_1. It is then sent, via NET_2, to
Node N_2 where Service A is offered. While being proc-
essed at N_2, the server process providing Service A re-
quests data base operations at a remote RM node via
NET_3. Eventually, processing of the request is completed
and the server process produces a tpreturn(). This reply
goes back to N_1 and finally to /WSC via networks NET_2
and NET_1. The entire time the request for Service A
spends in the system includes waiting times at the local cli-
ent and server nodes, processing time at these nodes, time
spent in the RM node and the network transmission times.
While designing Tuxedo application domains or while
measuring the performance of existing systems, the most
critical performance measure to look at is the response
time that encapsulates all these time delays requests ex-

/WSC Net 3

 Net_2

 Net_1

N_n
N_3

N_2
N_

RM

TUXEDO Domain

B

A

A

Altiok, Xiong, and Gunduc

perience. Naturally, users want the system to be respon-
sive with short response times. Clearly, there are cost con-
siderations also, thus making the design problem a chal-
lenge. Other critical measures are the waiting times and
utilization at integral components of the system, i.e. the
server processes.

All the nodes in a Tuxedo application environment are
interconnected via various LAN/WAN networks, FDDI,
Ethernet, ATM, token ring, etc. Tuxedo is transparent to
the underlying network, provided that it supports TCP/IP
protocol stack. Tuxedo also provides server process loca-
tion transparency to clients. In other words, client proc-
esses are not aware of the location of the server processes
that provide a specific service. Each server node is associ-
ated with a set of client nodes in such a way that it is re-
sponsible for selecting the server process (anywhere in the
Tuxedo domain) for the requests coming from these client
nodes. Server node constructs a message containing the
request and ships it to the queue of the server process it se-
lects. Inter-server nodes communication is handled by a
group of Tuxedo administrative processes, called BRIDGE
processes, one per server node. Given an incoming re-
quest, Tuxedo’s TP Monitor selects the target server proc-
ess by the following algorithm: A local idle server process
is selected if it provides the service requested. Otherwise,
the server process with the smallest load factor (user as-
signed), anywhere in the domain, providing the requested
service is selected. Below, we discuss how transactions,
client, network and server nodes are viewed in Tuxedo en-
vironment.

3.1 Transactions

Transactions are identified through their attributes. These
attributes include transaction type (e.g., request/reply or
request only), service requested, message sizes for requests
as well as replies and service priority. Note that there may
be several transactions requesting the same service but
with different message sizes.

3.2 Client Node

A client node is a computer that may host a number of cli-
ent processes each with possibly several instances as
shown in Figure 2. Transactions (or service requests) ar-
rive at client process queues according to their types and
arrival frequencies.
 Active client processes reside either in the CPU queue
or on the CPU initiating the transaction. For a transaction
of request/reply type, the response time starts at the mo-
ment the request arrives at a client process queue, and it is
recorded when processing of the reply is complete at the
same client process.

504

Figure 2: /WSC node traffic model

3.3 Network

The network node is viewed as a single server queue as
shown in Figure 3, where transactions (requests and replies)
wait upon their arrival if the network is busy, and receive
service on a FIFO basis. Service in the network node is
simply the transmission of the message. Transmission time
depends on the message size. Naturally, larger messages
take longer to transmit. The transmission rate of a network
is its bandwith capacity. In an existing system, the band-
width capacity can be obtained using observed data for net-
work utilization and the throughput. In new systems where
data is lacking, the projected bandwidth capacity can be ob-
tained using the published value for network capacity and
the anticipated message transfer efficiency (proportion of
time the network will be available for message transmis-
sion).

Figure 3: Network node traffic model

3.4 Server Node

A Tuxedo server node is viewed as a pool of highly inter-
dependent resources of finite capacity, i.e. CPUs, memory,
or disks, as shown in Figure 4. There are possibly a num-
ber of CPUs executing server processes providing services
for transactions, work station handlers getting hold of en-
tering transactions, bulletin board used to decide to which
server process to send the entering transactions, bridge
process that manages the communication between server

CPU

Transactions
(Requests&Replies)

Client Process
Group K

Client Process
Group 1

Service Time =
Message Size/BWC

Requests and
Replies

Altiok, Xiong, and Gunduc

nodes in the cluster, and a number of other processes in or-
der to process Tuxedo transactions.

Figure 4: Traffic model of a Tuxedo server node

At the higher level, one can visualize the server node

environment as a pool of server/client processes with the
associated queues of request/reply messages awaiting to be
served. However, a server/client process is not a real re-
source. The real resource is the underlying processor, i.e.
the CPU which executes the instructions. So, at the physi-
cal level, there is a processor with a queue of runnable
server/client processes awaiting to be processed as de-
picted in Figure 4.
 Service time of a given transaction is not static as it
depends on

• the associated server’s locality of reference char-

acteristics,
• hit ratios,
• speeds and sizes of the underlying CPU cache and

RAM,
• speed of the underlying disk subsystem,
• current load on the CPU.

The delay time of a transaction at a server process queue is
only partly due to its actual processing time. As indicated
in Figure 4, this delay also includes the following delays
(Hennesy and Patterson 1996):

• The queue delay incurred by the request/reply as

it waits in the queue for the server/client process
• The dispatch time incurred while the server/client

process is waiting for the CPU

Server Processes

WSHs

CPU

Disk

DB requests
from other nodes
505
• The processing time of the server/client process in-
cluding time spent in resources e.g. disk, RM, etc.

• The contention delay for the processor with the un-
derlying operating system as it handles interrupts
and other system activities, i.e. context switches,
preemption by higher priority processes, IPC

• File I/O is probably the most important delay fac-
tor in majority of the commercial application en-
vironments.

Many of the production Tuxedo systems are database

intensive, that is, the service requests make heavy use of
databases during processing. Databases usually reside on
one or more disk devices and are typically managed by a
database manager (a set of cooperating processes responsi-
ble for efficient access to data, its consistency and its re-
covery, among other things). Database managers in turn
interact with the file system component of the underlying
operating system layer for basic file I/O operations (e.g.,
open, close, read and write.) After all, a database is a mere
set of files residing on a group of disks. Due to slow disk
speed relative to the system’s RAM, most operating sys-
tems today provide a buffer cache component that func-
tions much like the CPU cache. The purpose is to keep the
most recently used disk data in memory with the anticipa-
tion that it will be retrieved again, while in cache. They are
most effective when files are accessed randomly. A given
service request typically generates a sequence of file I/O
operations which in turn result (with a buffer cache-hit
probability) in a sequence of disk I/O operations against
the files in a database. The following factors should be
taken into account in predicting the time involved in a
typical file I/O operation:

• disk rotational time,
• average disk access time (average seek time + av-

erage rotational latency),
• number of disk read operations required,
• number of disk write operations required,
• average buffer cache hit ratio,
• file system service time,
• file organization on disk,
• in case of write, whether it is write-through or

cached,

Next, we present a brief overview of the CP_Tool.

4 CP_Tool

CP_Tool is a simulation model built over Arena/Siman
simulation software as a template specific for Tuxedo ap-
plication environment. Arena is a simulation modeling
tool based on Siman simulation language. It abstracts basic
Siman language constructs as basic building blocks for

Altiok, Xiong, and Gunduc

simulation modeling of real applications. These basic
building blocks are called modules and relevant modules
are put together to create templates tailored for specific ap-
plications. It offers an object-oriented approach for build-
ing simulation models. Modules are essentially the objects
of the real application being modeled, and they have logic
associated with them. The basic objects which move
through the system (from one module to another) are called
entities that correspond to transactions being issued by cli-
ents. The logic of a module defines the steps of operation
an arrival entity is subjected to.

CP_Tool consists of 8 modules, namely Services,
Transaction, /WSC, Network, Server, Disk, RM Node, and
Simulate, as shown in Figure 5, along with their user
views. The module names clearly describe the association
between the module and the component each module is
modeling. These objects are connected to each other ac-
cording to the scenario being modeled and simulated using
Arena’s simulation engine to produce performance meas-
ures such as response times, CPU, server process and disk
utilizations and queue delays. These are essential meas-
ures to point out bottlenecks and reasons for long delays
and hold ups in the system.

Figure 5: CP_Tool template consisting of modules and
their user views

Below, we briefly review the dialog boxes of some of

the modules. Transaction module lets the user define
transactions (service requests) through their attributes.
Dialog boxes associated with the Transaction module are
given in Figure 6.

506

Figure 6: Dialog boxes associated with the Transaction
module

Client nodes have dialog boxes to describe client proc-

esses and the transactions originating from these client
processes. Client process properties include the server node
that it is associated with and the network node in between.
It also includes instance number to indicate the number
identical processes of this type (forming a client process
group) as shown in Figure 7.

Figure 7: Dialog boxes associated with the client node

 WSC Properties also includes attributes of the transac-
tions originating from the current WSC node.

Server node dialog box allows the user to define server
node properties, the attributes of the server processes, ser-
vices, workstation handlers and native clients, as shown in
Figure 8. It also allows the user to input disk IO operation
details. Server Node Properties include parameters such as
IPC message pool size, bulletin board lock hold time,

Altiok, Xiong, and Gunduc

memory-page size, per page memory copy time, CPU time
quantum and context switching time, among others.

Server processes and Services let the user to introduce
each server process and each service with service time and
tpforward() information. WS Handler Properties allows
the user to introduce workstation handlers and associated
service time information. Native Client Properties require
information that is quite similar to client node attributes.
NonRM Disk IO Operations and database RM Operations
provide further dialog boxes for the user to input detailed
information on file I/O and data base operations. For each
physical disk I/O operation, size (size of data to read or to
write), no of instances and target disk information is re-
quested from the user. Similar information is provided by
the user for each RM operation and the resulting physical
disk I/O operation.

Figure 8: Dialog box associated with the client nodeServer
node

CP_Tool provides the user with two approaches for
modeling server nodes. The Simple approach asks for the
elapsed time as the processing time. Elapsed time includes
all the time required to process a service request. It has the
CPU time, disk time and all the delays in the associated
queues. Clearly this simplifies the use of CP_Tool. The
Detailed approach asks for a more detailed input data on
CPU time I/O times, sizes and frequencies. The advantage
of the Detailed approach is that it provides disk informa-
tion whereas the Simple approach bundles all the CPU and
disk information into server process utilization.

Simulate is the module to declare the replication pa-
rameters such as run length, number of replications and the
warm-up period. Each module has a set of dialog boxes to
input values of the associated system attributes. Using
these modules, one can create a simulation model for any
given Tuxedo application topology. During a simulation
507
run, CP_Tool replicates the operation of the system, that is
creation of service requests, sending them to server nodes,
processing them, queueing of transactions and sending re-
plies back to clients. In this process, it collects observa-
tions on how long each transaction spends at each stage of
its response cycle and the entire response time. Observing
idle/busy periods of each resource in the system, CP_Tool
also produces resource statistics which are instrumental in
bottleneck analysis.

REFERENCES

Andrade, J., M. Carges, T. Dwyer, and S. Felts. 1996. The
Tuxedo System, Addison Wesley, MA,.

Cady, J. and B. Howarth. 1990. Computer System Per-
formance Management and Capacity Planning, Pren-
tice Hall, NJ.

Comer, D.E. 1997. Computer Networks and Internets,
Prentice Hall, NJ.

Hennesy, J. and D. Patterson. 1996. Computer Architec-
ture, A Quantitative Approach, MK Publishers, CA.

Menace, D. and V. Almeida. 1998. Web Performance,
Metrics, Models, and Methods, Prentice Hall, NJ.

Orfali, R. D. Harkey, and J. Edwards. 1996. The Essential
C/S Survival Guide, Wiley, NY.

AUTHOR BIOGRAPHIES

TAYFUR ALTIOK is a Professor of Industrial Engineer-
ing at Rutgers University. He received his Ph.D. from
NCSU in 1982. His research interests are in capacity plan-
ning and performance analysis of transaction processing
systems, manufacturing systems and bulk port operations,
queueing networks and simulation. He has co-authored the
recent book Simulation Modeling and Analysis using
Arena. His email address is <altiok@rci.rutgers.
edu>.

WEI XIONG is a Ph.D. student in the Department of In-
dustrial Engineering At Rutgers University. He graduated
from Tianjin University in China in BBB. His research
deals with performance analysis of middleware in distrib-
uted computing environments.

MESUT GUNDUC is a staff engineer at BEA Systems,
Inc. in Liberty Corner, NJ. He received his M.Sc. in Com-
puter Science from University College, London University
in 1980. His interests include performance analysis and
high availability in distributed computing environments.
His email address is <mgunduc@bea.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

