
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

GPSS TURNS 40: SELECTED PERSPECTIVES

Thomas J. Schriber (Moderator)

Computer and Information Systems

The University of Michigan
Ann Arbor, MI 48104-1234, U.S.A.

 Peter Lorenz

Institute for Simulation and Graphics
Otto von Guericke University of Magdeburg, PSF 4120

Magdeburg, Sachsen-Anhalt 39102 ,GERMANY

Springer Cox

Minuteman Software
P.O. Box 131

Holly Springs, NC 27540, U.S.A.

 Julian Reitman

University of Connecticut - Stamford
One University Place

Stamford, CT 06901-2315, U.S.A.

James O. Henriksen

Wolverine Software Corporation
2111 Eisenhower Avenue, Suite 404
Alexandria, VA 22314-4679, U.S.A.

 Ingolf Ståhl

Department of Managerial Economics, Box 6501
Stockholm School of Economics

Stockholm, SE - 113 83, SWEDEN

ABSTRACT

GPSS (General Purpose Simulation System) is celebrating
its 40th birthday this year. We recognize this notable birth-
day by assembling a panel of discussants consisting of
some of the folks who have contributed significantly to
GPSS and its use over the years. The panelists are Springer
Cox (GPSS/PC and GPSS World), Jim Henriksen
(GPSS/H and Proof Animation), Peter Lorenz (promoter of
GPSS in Europe and on the Web), Julian Reitman (princi-
pal in early interactive use and accommodation for large-
scale simulations), and Ingolf Ståhl (micro-GPSS for Win-
dows and on the Web), with Tom Schriber (author of the
“Red Book”) as moderator. Each panelist has contributed
written perspectives describing aspects of his involvement
with GPSS. A Geoffrey Gordon memoriam is included in
the paper. (Geoffrey Gordon, who conceived and evolved
the idea for GPSS and brought about its IBM implementa-
tions, died in 1989.)

1 INTRODUCTION

This introductory section provides a brief glimpse into the
character of GPSS and the underlying synergies, motiva-
tions and objectives for bringing GPSS into existence. This
glimpse takes the form of direct quotes from material writ-
ten by Geoffrey Gordon, the developer of the original
565
GPSS, and panelist Jim Henriksen. More details on the de-
velopment of GPSS can be found in the Geoffrey Gordon
memoriam further on in this paper.

Some twenty years after IBM released GPSS, and nine
years after GPSS was ranked in the tenth position among
what were then judged to be the world’s thirteen most im-
portant programming languages (Sammet 1972), Geoffrey
Gordon wrote a paper entitled “The Development of the
General Purpose Simulation System (GPSS).” The four
following paragraphs are taken from the first part of the
paper (Gordon 1981):

“The General Purpose Simulation System (GPSS) is a
programming system designed for the simulation of dis-
crete systems. These are systems that can be modeled as a
series of state changes that occur instantaneously, usually
over a period of time. Complexities in their analysis arise
because there are many elements in the system, and there is
competition for limited system resources. The simulation
technique uses numerical computation methods to follow
the system elements through their changes of state, and
predicts properties of the system from measurements on
the model.

“GPSS came into existence rapidly, with virtually no
planning, and surprisingly little effort. It came rapidly be-
cause it filled an urgent need that left little time for explor-
ing alternatives. The lack of planning came from a happy
coincidence of a solution meeting its problem at the right

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

time. The economy of effort was based on a background of
experience in the type of application for which the lan-
guage was designed, both on the part of the designer and
the early users.

“Regarding my own background, I began simulating,
with analog computers, in the early 1950s when working
on guided missile studies at the Research Laboratories of
the General Electric Company in England. Analog simula-
tion is, of course, a different technique from digital simula-
tion. However, no one who has worked with analog simu-
lation can fail to have been impressed by the way an
analog computer gets its user involved with the problem
being solved. Putting together the elements of an analog
computer to study a system feels almost like building the
system itself, and it is extremely gratifying to get results
that can be immediately related to elements of the system.
There seem to be no intermediaries, no complicated proce-
dures to follow, and no experts to interpret results.

“In developing GPSS there was no conscious effort to
base the design on analog computers, but I feel sure the
block diagram notation and the emphasis on making the
simulation directly accessible to system analysts rather
than through programmers, that are characteristics of
GPSS, were unconsciously influenced by the analog com-
puter experience.”

And now, looking back over our collective shoulders
at these developments that took place forty years ago, what
do we see? Panelist Jim Henriksen sums it up very nicely
with these observations (taken from his written statement):
 “Gordon did one of the great packaging jobs of all
time. He devised a set of building blocks that could be put
together to build a flowchart that graphically depicted the
operation of a system. Under this modeling paradigm, the
flow of elements through a system was readily visible, be-
cause that was the focus of the whole approach.
 “Gordon came up with a good solution to an important
problem at a time when such a solution was desperately
needed. Over the years that have ensued, transaction flow
and variants thereof have become the dominant modeling
paradigm in discrete event simulation. GPSS’s transactions
may be called entities or items, and GPSS’s blocks may be
called nodes in other software, but conceptually, there’s a
great family resemblance.”
 Amen!

2 PANEL MEMBERS’ STATEMENTS

2.1 GPSS/PCtm: A Personal Journey (Springer Cox)

My involvement with GPSS centers on our software com-
pany, Minuteman Software, our first product, GPSS/PC,
and its successors. Throughout our involvement we have
devoted more of our efforts to the development of the
simulation environment than to the refinement of the GPSS
language. The story deals more with the personal com-
566
puter’s influence on discrete event simulation than with the
evolution of GPSS itself.
 After working at IBM and Xerox as a computer per-
formance analyst, in 1977 I began working in the Research
and Development group at Digital Equipment Corporation
for the purpose of simulating the performance of virtual
memory operating systems. Over the next few years I cre-
ated two simulation systems in Simula, the first major ob-
ject oriented language. In both, I acquired experience in
supporting a diverse customer base of simulation profes-
sionals. As a user of simulation myself in the analysis of
computer performance, I ran into the frustrations that eve-
ryone had to tackle. On mainframes and minis, simulations
were essentially done in a batch mode where you ran the
simulation off-line, received the report much later, and
only then could attempt to figure out what had happened.
 Mainframe style simulation had a lot of inefficiencies.
In batch mode you might be able to correct only a few er-
rors at a time with each resubmittal of the batch job. I per-
sonally found this arms-length approach inefficient and
frustrating, because it was extremely important to know
what was happening inside the simulation and that process-
ing was behaving as intended. Just as bad, it was nearly
impossible to convince anyone else what was going on.
Also, it was clear that users of mainframe-style simulation
(like me) were wasting a lot of precious time that could
have been better used in the design of the simulation and
analysis of results. I had developed a small user base
within DEC for my “SIMNET” program and had eventu-
ally devoted over half the Simula code to helping the user
get the specifications of the simulation into the computer.
 By 1978 I had a long list of features on my wish list.
On top of the list was the desire for an interactive simula-
tion environment that would protect me from my own mis-
takes. Ideally, I would be able to see what was going on
inside the simulations. I needed to interact with the simula-
tions in ways that could help me mold my intuition about
the target system. Visual games were starting to appear on
primitive microprocessor based systems, like “Asteroids”
and “Star Wars.” They clearly demonstrated how certain
dynamics of simulated systems could be visualized. The
next step, the application of interactivity and visualization
to a commercial simulation package, was a “no-brainer,” as
they say. The 8-bit personal computers available at the
time, like the Apple II, were interesting but had RAM of a
maximum of 64k bytes or so -- clearly a fatal restriction as
far as industrial simulations go. Even worse, it appeared
that most people thought that since a discrete event simula-
tion language could bring a mainframe to its knees if not
properly tuned, there would be no way such a language
could fit on a “toy” like a microprocessor.
 Then in late 1979, Visicalc happened. The sales of the
Apple II took off and IBM, by far the dominant computer
company, reacted. Feeling the need to close Apple’s win-
dow of opportunity as soon as possible (my opinion), they

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

commissioned a “quick and dirty” PC project. They
wanted it within a year. That meant they would have to by-
pass IBM’s normal product development procedure and
use off-the-shelf hardware and software. They started ship-
ping the IBM PC in 1981. It was an instant hit, selling over
10,000 units a month.
 The IBM PC had one single characteristic that to me
was a “go” signal: it had a 20-bit memory address bus. As
far as I was concerned, the resulting 1MB address space
solved the memory problem for a commercial simulation
package. But what about simulation speed on a microproces-
sor? We needed to develop a prototype to verify feasibility.
 An initial specification of the product had to come
first. It was to be first-and-foremost an interactive simula-
tion environment designed to take advantage of the un-
shared resources of a personal computer. Then, only sec-
ondarily, we had to choose a language. We wanted to
implement a high level, visualizeable language with a large
user base that we could sell into. The user interface had to
be at a high enough level that users would be spared rou-
tine details and would be quick to develop simulations, but
the language had to be complete in the sense that nearly
anything could be simulated. The choice was easy. GPSS
had a history of over 20 years with thousand of users, and
several excellent textbooks.
 By April of 1982 I had determined that the 6502 proc-
essor on an Atari 800 could run simple GPSS simulations at
over 300 block entries per second. That’s extremely slow by
today’s standards but back then it meant that many main-
frame simulations could be run overnight on a personal
computer. Also, by this time it was clear that the installed
base of IBM PCs would eventually reach into the millions.
There was no more time to waste; I began Minuteman Soft-
ware and development on an IBM PC. I could not find a
well-supported C compiler in early 1982, so I began to de-
velop the user interface in compiled BASIC. However, since
performance was an important issue, I coded the simulation
paths in Intel 8088 Assembler Language.
 Compatibility with existing GPSS Products was not
strictly possible, but the closer GPSS/PC could be posi-
tioned to common GPSS experience, the better. I chose
IBM’s GPSS V as the standard. The language specification
was based on IBM’s GPSS V manual (IBM 1977). Tom
Schriber’s “Red Book” (Schriber 1974) and the GPSS V
Book by Bobillier, Kahan, and Probst (Bobillier 1976)
proved to be very helpful. I consulted the then-latest
GPSS/H manual (Wolverine 1978) and one of Geoffrey
Gordon’s books (Gordon 1975) as well.
 Without an existing product or customer base, I was
able to engineer the product specifically for an unshared
microprocessor with an online video monitor. Even in the
4.77-Megahertz Intel 8088 microprocessor there was an
eternity of computer cycles between keystrokes that could
be used for the user’s benefit. In GPSS/PC I introduced a
feature called Keystroke Error Prevention. By keeping an
567
internal finite state machine representation of the GPSS
grammar, each keystroke state transition could be tested
for correctness, and rejected if in error. The net result was
that in GPSS/PC it is impossible for the user to make a
syntax error. Other features were directed at controlling
and visualizing running simulations.
 GPSS/PC followed GPSS V in using an integer clock.
Although software emulation of real arithmetic was avail-
able, even those IBM PCs with a Floating-Point Processor
(Intel 8087) ran slower with floating point calculations
than with integer calculations. The implementation of a
(nearly) unlimited precision integer clock would be fast
and would solve several other problems as well. First, the
32 bit pseudo random number generators required a 64-bit
product that was not supported by the hardware. Also, even
with floating point arithmetic it was possible for the clock
to grind to a halt because of loss of significance, and for
overflows to invalidate report statistics and even the clock
itself. The unlimited precision clock in GPSS/PC solved all
these problems. The user needed only to declare a finer,
less granular, time unit in order to increase overall preci-
sion. At the time I thought this to be such an improvement
that I almost named the product “Precision GPSS” instead
of GPSS/PC!
 It took until 1984 to bring GPSS/PC to market (Min-
uteman 1984). Testing, documentation, and packaging all
took time. On top of the list of new features was visualize-
ability. This design objective was one of the strongest rea-
sons to get a simulation package onto the PC. GPSS/PC
had windows on the major GPSS entity types built on a
character graphics mode of the IBM PC. Within each win-
dow, up to 4 Microwindows could be opened which con-
tained the values of the pre-defined internal state variables
(Standard Numerical Attributes). All data on the screen
were kept current with the changing state of running simu-
lations. In the Tables Window one could observe the con-
vergence of frequency distributions. In the Blocks window
one could manipulate stop conditions and step commands
from the keyboard, by using a mouse, or even a light pen.
The user could set and remove stops by merely touching
the appropriate block icon on the screen. As the simulation
ran, the blocks changed appearance (highlighted or red)
when congestion points appeared.
 The product that we brought to market was a lot, but
not all, of what I wanted. The report formatter was a sepa-
rate program to save memory, and was unwieldy. The
loading of a saved model into memory was slow because
of the Keystroke Error Prevention, although since the Edit-
Compile-Load-Run cycle was avoided, this was not so se-
rious. The intent was that the user would only have to load
once to set up the environment. Later modifications were
to be done interactively with no need to reload. This was
not much to pay for total protection from syntax errors.
 In Version 2 of GPSS/PC, I replaced the compiled
BASIC code with Lattice C. Alice (Cox) then joined the

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

company and proceeded to develop our Tutorial Manual
for inclusion in the new release and to guide a repackaging
of the product. The new GPSS/PC Tutorial took novice us-
ers into GPSS/PC simulation keystroke by keystroke. It
also included the exploration of a set of very enlightening
simulation applications that were developed by Professor
Gerard F. Cummings of the University of Dublin (Min-
uteman 1986).
 As our customer base increased, we attempted to re-
spond to suggestions and requests. The GPSS/PC Animator
appeared in 1988 (Minuteman 1988). It was a trace based
post-processor implemented in a language called Autolisp.
Using it, GPSS/PC simulations could be animated in a 2
1/2 D space created in AutoCAD. The Autoflix package,
also from Autodesk, could then be used to create movies of
the simulations.
 By the late 1980s the IBM-compatible PC industry
was shifting to Graphic User Interfaces akin to what had
been available since 1984 on the Apple Macintosh. As
competition intensified in the PC simulation software busi-
ness, Minuteman Software began work on the new operat-
ing system developed and sanctioned by both Microsoft
and IBM, OS/2. Our new product was named GPSS
Worldtm (Minuteman 1994) and required rewriting
GPSS/PC in C++. It had many new features, but was most
notably a distributed simulation system based on cli-
ent/server architecture. Users could run simulations on a
remote multitasked LAN server, but visualize and control
them on their own PC’s. Unfortunately for us, Microsoft
then decided that Windows, not OS/2, would be the main-
stream PC operating system. In response, IBM spent bil-
lions of dollars in an unsuccessful attempt to regain control
of the industry.
 After the failure of OS/2, we turned our attention to
porting GPSS World to Microsoft’s Windows operating
system. During this process the user interface was rewrit-
ten and based on Microsoft’s Document/View Architec-
ture. The result was an object oriented user interface with
inherited properties. Some of the technologies developed
for OS/2 GPSS World such as address translation and
multitasking were directly applicable in the new Windows-
based product. Even the embedded programming language
PLUS, which had been developed to beef up GPSS’s pow-
ers of calculation, was extended and given the ability to
control programmable experiments. The CONDUCT
Command was then added to the lexicon of GPSS Com-
mands in GPSS World for Windows, which was then
launched in the summer of 2000 (Minuteman 2000).
 Since then, development of new features has contin-
ued. In April 2001, we introduced the new Automatic Ex-
periment Generators in GPSS World. In addition to a Mul-
tiway ANOVA routine to help analyze user-designed
experiments, a Screening Experiment Generator and an
Optimizing Experiment Generator have been integrated
into the package. An Optimizing Experiment wanders over
568
the experimental response surface utilizing a segmented
steepest ascent search of up to 5 factors. The PLUS Ex-
periment to perform the search is automatically created
from dialog windows.
 All of these features are supported by the Student Ver-
sion. Unlike the Student Version of GPSS/PC, the Student
Version of GPSS World runs just as fast as the Commer-
cial Version--thousands of times faster on today’s PCs than
did the original GPSS/PC in 1984. Both Student Versions
can be downloaded free of charge from our World Wide
Web site: minutemansoftware.com.
 Please pardon these commercial plugs, but don’t over-
look the fact that they demonstrate that GPSS is alive-and-
well into the new millennium and is still under active de-
velopment after 40 extremely productive years of service
to humankind.

2.2 The Staying Power of GPSS
(James O. Henriksen)

Let me say at the outset that it’s a privilege to participate in
this 40th birthday celebration for GPSS. In the vicious
arena (!) of computer software, only a handful of languages
of any kind have achieved GPSS’s 40-year longevity. Why
has GPSS survived so long? In the paragraphs that follow,
I’ll give my take on the contributing factors.
 To start, we must consider how simulation was done
before the release of Geoffrey Gordon’s General Purpose
System Simulator in October, 1961. Prior to that time, vir-
tually all discrete event simulation was done using an
event-based paradigm. Most simulation software included
a central control routine that was variously referred to as a
“timing routine,” “simulation executive,” “control pro-
gram,” etc. One described a system as a collection of
events, and one wrote a “chunk” of code for each event.
(Typically, this took the form of an event routine.) In dis-
crete event simulation, time is viewed as a sequence of in-
stants. The control routine was responsible for calling all
events eligible to execute at any given instant and then
progress to the next instant in simulated time. The next in-
stant was the smallest future time in an event calendar for
events scheduled to take place in the simulated future.
 The event-based approach had one big advantage and
one big disadvantage. The advantage was that it required
no specialized language or operating system support.
Event-based simulations could be implemented in proce-
dural languages of even modest capability. Fortran was
commonly used. The disadvantage of the event-based ap-
proach was that describing a system as a collection of
events obscured any sense of process flow. For example, in
a simple queuing model, for elements flowing through the
system, one would describe events for arrival, start-of-
service, end-of-service, and departure. In complex systems,
the number of events grew to a point that following the be-

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

havior of an element flowing through the system became
very difficult.
 In the early 1960s, alternative approaches were avail-
able. The most obvious choice was some form of process
interaction. Unfortunately, process interaction was under-
stood only by an elite group of individuals and was beyond
the reach of ordinary programmers. “Multi-threaded appli-
cations” were talked about in computer science classes, but
rarely used in the broader community.
 This was the primordial soup out of which the Gordon
Simulator arose. Gordon’s transaction flow world-view
was a cleverly disguised form of process interaction that
put the process interaction approach within the grasp of or-
dinary users. One of Gordon’s objectives was to provide a
tool that could, in fact, be used by non-programmers. It’s
interesting to note that forty years later, the debate as to
whether simulation requires programming skills still rages
on. Gordon did one of the great packaging jobs of all time.
He devised a set of building blocks that could be put to-
gether to build a flowchart that graphically depicted the
operation of a system. Under this modeling paradigm, the
flow of elements through a system was readily visible, be-
cause that was the focus of the whole approach.
 Gordon came up with a good solution to an important
problem at a time when such a solution was desperately
needed. Over the years that have ensued, transaction flow
and variants thereof have become the dominant modeling
paradigm in discrete event simulation. GPSS’s transactions
may be called entities or items, and GPSS’s blocks may be
called nodes in other software, but conceptually, there’s a
great family resemblance.
 A number of other factors contributed to the longevity
of GPSS. First and foremost was the emergence of a group
of enthusiastic users who achieved success solving real-
world problems. Among others, Julian Reitman’s group at
Norden had great success. Julian is fond of telling the fol-
lowing story. There once was a meeting at which a simula-
tion project was discussed. After hearing the problem de-
scription, Julian said “We’ll have Dick Baxter write a
GPSS model.” One of the meeting’s other participants said
“It can’t be done in GPSS.” Dick Baxter was not at the
meeting, and no one bothered to tell him that the problem
was impossible to solve in GPSS. Several weeks later, at a
second meeting, Dick presented the results of a successful
GPSS simulation.
 Another significant contribution was the availability of
textbooks describing GPSS. Although both Gordon (1968,
1975) and Reitman (1971) published books about GPSS,
Tom Schriber’s 1974 “Red Book” (so called because of its
bright red cover) and its 1991 successor (Schriber 1991)
became two of the best selling simulation textbooks of all
time. In no small measure due to these books, GPSS was
widely adopted in college courses in simulation.
 Geoffrey Gordon’s involvement with GPSS ended in
the early 1970s. IBM (for whom Gordon worked) ended its
569
support of GPSS in 1975, when GPSS was only fourteen
years old. From that point forward, GPSS development and
support was carried out by a small number of small, inde-
pendent organizations. Saying these organizations were
small is an understatement. The typical number of devel-
opers was one. For example, Springer Cox, Dave Martin,
and Jim Henriksen each built commercially offered im-
plementations of GPSS as 1-man efforts. By focusing on a
single product line and offering capabilities that were at-
tractive to users, the small firms were able to prosper.
 Although GPSS has contributed greatly to the progress
of the simulation community, in some respects it has begun
to show its age. In order to discuss these respects, we must
very carefully distinguish between those that are inherent
conceptual properties of GPSS and those that are properties
of its implementation. Conceptually, GPSS is very general.
The fundamental building blocks of GPSS (generate, ter-
minate, advance, seize, release, enter, leave, queue, and
depart) have been incorporated in many variations in many
simulation tools. It’s hard to imagine any shockingly new
queuing concepts that will arise in the near future that can’t
be modeled using GPSS’s 40-year old concepts. The one
disadvantage of GPSS’s transaction flow world view (in
my humble opinion) is that it overemphasizes the “active
object, passive server” approach to modeling. In many sys-
tems, one must use an “active server” approach. While this
can be done in GPSS, it’s not the first approach that would
occur to a beginning user. Notwithstanding the efforts of
Tom Schriber, myself, and many others, the propensity for
misuse still exists and is an inherent architectural property
of the transaction world view.
 The implementation of GPSS is really showing its age.
In the original GPSS and for the most part, in all succeed-
ing implementations, components of a model are structured
as arrays, and individual components are accessed by
specifying an index into an array. Faulty indexing is the
number one source of computational errors in GPSS mod-
els. For small models, the use of integer indices is usual a
manageable burden, although users must master knowl-
edge of a basic set of quirks, or risk disaster. In very large
models, the use of integer indices into arrays can become
totally unwieldy. Large-scale logistics models often exhibit
this property. In such models, data management is often a
bigger problem than simulation, per se. Just keeping track
of where everything is and what state it’s in are major
chores.
 Wolverine’s SLX (Wolverine 1996) has adopted much
of the GPSS framework; however, SLX differs from GPSS
in three respects. First, SLX implements GPSS constructs
in a C-like, modern language framework. Thus, one can
have arrays of servers, dynamically allocated servers, sets
of servers, etc. Second, SLX is extensible, while GPSS is
not. In SLX, one can devise building blocks of one’s own
choice that operate at the same level as GPSS’s built-in,
hard-wired blocks. Third, SLX exposes the underpinnings

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

of transaction flow and offers lower levels of description of
parallelism than does GPSS.
 Frequently I’m asked “Since you sell SLX, and SLX
builds on GPSS/H (Wolverine 1978), why do you still sell
GPSS/H?” The answer, in crass terms, is “People still want
to buy it.” In less crass terms, not every user needs the full-
blown power of SLX. The prospective customer who needs
to develop a straightforward queuing model, and who
learned GPSS in school, is likely to be comfortable with
GPSS/H and reluctant to move into “new territory.”
 Of the 40-year lifetime of GPSS, I have personally
been involved with implementation of GPSS for 33 years.
It’s been quite a ride. Happy birthday, GPSS!

2.3 Perspectives from Germany
(Peter Lorenz)

GPSS has been a formidable force in discrete-event
simulation for 40 years. Let’s look at some of the probable
reasons for the longevity of GPSS, and speculate briefly on
prospects for its continued longevity. My thoughts are
stated in the series of points that follow.

2.3.1 Learning from Experience

GPSS was initially created in response to early experience
in the formulation of simulation models (Gordon 1981).
And in its evolution over time, GPSS has continued to re-
flect extensions of these experiences, combined with in-
sights gained in practical applications. The GPSS entity
classes and their associated methods are not just pie-in-the-
sky inventions of a creative spirit. The most important en-
tity class (transactions) and the other entity classes (e.g.,
facilities, storages, and logic switches) and their methods
(blocks) are mappings into a simulation language of ele-
ments that appear in the real world of queuing networks
and in other discrete systems. The fact that GPSS lends it-
self so readily and so well to the representation of discrete
system reality, and did so early in the history of computing
and simulation, speaks volumes for its longevity.

2.3.2 Gaining Friends Overseas

GPSS and its derivatives established themselves firmly in
Germany (both East and West Germany) and more broadly
in Europe (both Eastern Europe and Western Europe), and
this helped increase the extent of its vigorous use and de-
velopment. How did GPSS make its way to Europe? I be-
lieve it happened first through the printed word, followed
closely by use of the corresponding software and then de-
velopment of similar software patterned after GPSS, but
often with enhancements. The earliest printed word to
reach Europe probably took the form of the first GPSS
User Manuals and associated documentation available in
IBM computing installations in Western Europe, starting in
570
the early to mid-1960s. (GPSS was released by IBM in Oc-
tober of 1961.) The practicality of GPSS-based simulation
was the focus of the 1967 “Conference on the Applications
of GPSS”; and the practicality of simulation in broader
terms (not limited to GPSS) was then further demonstrated
and documented at the annual successor conferences (now
known as the Winter Simulation Conferences). Then came
Julian Reitman’s book, Computer Simulation Applications
(Reitman 1971), which further legitimatised the practical-
ity of simulation and stimulated the study and use of simu-
lation in general and of GPSS in particular.
 In Eastern Europe (including what was then East Ger-
many), IBM-compatible computers were built beginning in
the early 1970s. IBM’s GPSS/360 and its successor, GPSS
V, could be and were run on these machines. Special soft-
ware for “mathematical methods” was also developed for
these machines, and included SIMDIS, a discrete-event
simulation language developed commercially as VOPS
SIMDIS in Dresden in 1972-73, enhanced as PS SIMDIS
in 1974, as SIMDIS-2 in 1982, and then further enhanced
as SIMDIS-3 at the Otto von Guericke University of Mag-
deburg in 1987 (Preuss 1987). SIMDIS was patterned after
the description of GPSS V in IBM’s GPSS V Users Man-
ual, but SIMDIS was more than just a re-implementation of
GPSS V. SIMDIS extended the capabilities of GPSS V by
inclusion of a database interface, for example, and by in-
troduction of new blocks like MSELECT and MCOUNT
(to carry out selection and counting operations within the
rows and columns of matrices). In addition, SIMDIS-3 had
interactive features.
 The study and use of SIMDIS in particular and simula-
tion in general was also stimulated in Germany and else-
where through a German-language textbook (Frank and
Lorenz 1979). SIMDIS saw considerable use during the
1970s and 1980s in East Germany and in the (then) Rus-
sian federation (including the Baltic states of Estonia, Lat-
via, and Lithuania) and in such (then) Soviet-bloc countries
as Bulgaria, Czechoslovakia (now the Czech Republic and
Slovakia), Hungary, Poland and Romania.
 Why did the manufacturers of computing systems se-
lect GPSS as their language model, and not one of the al-
ternative languages of that era (e.g., GASP, SIMSCRIPT,
Simula)? There is a simple answer. GPSS had been identi-
fied in the early 1970s as one of the most important lan-
guages in the history of programming languages. In fact,
GPSS was put into the tenth position in a list of the world’s
thirteen most important programming languages (Sammet
1972). This distinction was achieved during a period when
hundreds of new languages and systems were being created
annually in European and American universities. (The vast
majority of these have long since fallen by the wayside.)
 Also contributing to the spread of GPSS in Europe and
elsewhere was Tom Schriber’s “Red Book” (Schriber
1974). Many copies of that book (which went through
about 40 printings in 20 years) found their way to Europe

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

and around the world. The Red Book also directly im-
pacted the use of GPSS and its variants in the Russian fed-
eration and the Soviet-bloc countries in its Russian-
language translation, the “Red Red Book” (Schriber 1980),
of which 10,000 copies were printed.
 That GPSS gained many adherents in Europe and
elsewhere beyond the United States has been one of the
factors contributing to its longevity.

2.3.3 Extension and Renewal

GPSS, the Grand Dame of simulation languages, has been
the subject of extension and renewal on multiple occasions.
Some of the key players in this regard are sitting with us as
members of the panel. Seminal extensions into the arena of
interactivity and incorporation of features facilitating the
use of GPSS to model large-scale systems – that was done
via Norden GPSS (in the 1960s time frame) under the
leadership of Julian Reitman. Making GPSS fast and reli-
able and giving it its own control language – that was done
via GPSS/H (with initial appearance in 1977) by Jim Hen-
riksen. Providing GPSS to PC users and giving them new
interactive interfaces and graphical output – that was done
by Springer Cox via GPSS/PC (with initial appearance in
1984); Cox then went on to build a Windows-based GPSS
World as well (with an OS/2 version in 1994 and a Win-
dows version in 2000). Building a simplified and free ver-
sion suitable for education – that was done by Ingolf Ståhl,
in the form of micro-GPSS, with an initial international
appearance in 1990 (Ståhl 1990), and of WebGPSS
(webgpss.hk-r.se), first appearing in 1999 (Herper and
Ståhl 1999). Players like Reitman, Henriksen, Cox and
Ståhl have contributed substantially to the major enhance-
ments of GPSS over the years that have supported its lon-
gevity!

2.3.4 Portability and Machine Independence

In the mid-1970s the idea of portability and machine inde-
pendence became popular for software. The goals of portabil-
ity and independence could be approached in the case of
GPSS by using Fortran as a basic language for GPSS imple-
mentations. Such implementations were done in West Ger-
many by Niemeyer (1972) and Schmidt (1979), and in East
Germany by Lohse and Knocke (1989). These implementa-
tions freed “GPSS” from specific hardware to a considerable
extent and made it available to a larger body of users.
 Portability with total input and output fidelity has even
been achieved for GPSS in terms of the complete corre-
spondence of GPSS/H input files and output results,
whether the GPSS/H models are run on mainframes, So-
laris systems or DOS PCs. It was a real surprise for me to
compare some 100 kilobytes of GPSS/H output from a PC-
based simulation and a Unix-based simulation: the outputs
571
were exactly identical – there was not one scintilla (or
byte) of difference!

2.3.5 Ease of Model Enhancement

A common approach in developing a simulation applica-
tion is to start with a simplified model and then add more
and more detail over time. The specifications for a system
and the model of the system often grow and evolve during
the development of the application. GPSS lends itself
nicely to this evolution.
 Starting with simple examples and extending the ex-
amples step by step is also an approach commonly taken
when teaching simulation. Again, GPSS supports this
process admirably.
 Is ease of model enhancement one reason for the posi-
tion GPSS occupies in the teaching of simulation and for
its survival in the applications of simulation?

2.3.6 Simple and Flexible I/O Files and Interfaces

GPSS input and output files are ASCII files. This promotes
the ease of using these files as interfaces between other
software and GPSS, and/or vice versa. An example is
given below in terms of Proof Animation. Additional ex-
amples of such commercial interfacing in the case of
GPSS/H can be found in Section 3 of Ståhl (2001). These
features of simple and flexible GPSS input and output
seem to be important for the continuing robustness of
GPSS, too.

2.3.7 GPSS and Animation

The handshake between GPSS and animation has a long
history. Reitman (1971, page 386) describes an early
GPSS-based airport model (developed by Reitman’s group
at Norden) “made to draw pictures” that “dynamically
change … as the simulation progresses.” This is thought to
be the first use of animation in a discrete-event simulation.
 GPSS/PC (Cox 1984), SIMFOR (Lohse and Knocke
1989) and SIMPC (Schulze 1988) provide examples for
combining GPSS with alpha-mosaic graphics. It is interest-
ing that the referenced developments took place at a time
when graphical displays were not yet standard computer
components.
 More recently, Proof Animation (Wolverine 1993) has
been a significant development for the world of animation
in general and for GPSS/H-based animations in particular.
Proof Animation provides a significant example of how a
GPSS/H output file can interface to other software. (Be-
cause ASCII files are the input to Proof Animation, any
simulation or even non-simulation software that can write
ASCII files can use Proof Animation to produce anima-
tions of the system being simulated.)

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

 Animation plays a key role when I introduce students
to simulation. My initial material makes use of Proof Ani-
mation as a simple simulation system with graphical out-
put. The effect is to get the students very excited about and
drawn into the study of simulation!
 Furthermore, the fact that Proof Animation uses vector
graphics is becoming of increasing importance at the Uni-
versity of Magdeburg. We hope to be able to create fast,
high quality animations for the Web by implementing con-
verters from Proof to alternative formats.
 Animation in simulation is viewed nowadays in most
quarters as a “must” part of commercial simulation. The
fact that GPSS accommodates itself nicely to animation is
another factor contributing to the longevity of GPSS.

2.3.8 Suitability for Teaching and Learning

As mentioned above, GPSS models can easily be extended.
That is not the only advantage for the use of GPSS in
teaching and learning. Other advantages include:

• the ability to avoid a “black box” approach when

teaching simulation software. It is straightforward
to bring students to an understanding of the inter-
nal logic and algorithms used by GPSS (Schriber
1991, and Schriber and Brunner 1998).

• the existence of many textbooks and the document
“Simulation and Animation” that can be found at:
http://www.isgsim1.cs.uni-magdeburg.de/~pelo/
s1e/sim1.shtml.

• the absence of complicated object-class structures
• the simple interface to Proof Animation, which is

easy to understand, learn and use.

Are these the reasons why, as of a survey taken in 1997
(Reinhard 1997), GPSS is the most frequently used lan-
guage in simulation courses offered in universities in Ger-
many, Austria, and the German-speaking part of Switzer-
land? (The survey shows that GPSS is used in 20 courses;
Simula in 16; etc. See the reference for details.)

2.3.9 The Future

Let me finish with a personal look at just one aspect of fu-
ture possibilities for GPSS. This aspect involves the poten-
tial for GPSS in terms of the World Wide Web.
 GPSS was established in 1996 as one of the first simu-
lators available in the Web (Lorenz et al., 1997). Simula-
tions can be performed on our Magdeburg Web pages and
animations can be viewed on our Web pages, too. Follow
the B2B Simulation Initiative at http://www.b2bsim.de/
and see what happens. Much of what you see is based on
GPSS, and some things you see are supported by Proof
Animation. (Note, however, that the B2B Simulation Ini-
572
tiative is open for all languages and systems; it is not lim-
ited to GPSS.)
 These developments point to the possibility that GPSS
might become one of the pioneers in establishing a Simula-
tion Service Provider (SSP).
 Based on these Web developments alone, I believe
that GPSS in its current forms is robust enough not only to
have survived the person who conceived it, Geoffrey
Gordon (Gordon 1981), but also to survive those among
his successors who are sitting here in this panel.

2.4 The First Ten Years of GPSS

(Julian Reitman)

There are two ways to review the history of GPSS, either
from a language viewpoint or from the viewpoint of user
accomplishments. My training as an engineer has biased
me toward the latter. Therefore, my view of GPSS history
starts with the breakthrough produced by GPSS I. Simula-
tion, for the first time, could be timely, useful and eco-
nomical. A new world of capability had emerged from
Geoff Gordon’s efforts. He provided the basic structure,
which allowed the enhancements that followed. Later ver-
sions overcame some of the initial limitations. Our model-
ing efforts succeeded to a greater degree than could have
been predicted. Details are provided below.

My entry into simulation started when I joined the
Teleregister Corporation in 1955. I had entered the world
of real time systems. The approach to designing real time
systems was then in its infancy. Airline passenger seat res-
ervations relied on posting on a board the status of each
flight for the reservations telephone agent to scan visually.
The Teleregister system provided each agent, local and
remote, with a terminal that presented seat inventory status
in response to a specific interrogation. The critical systems
problem was the classic - what is the peak period traffic
that the communications/computer system must handle.
There was a long history of analysis of telephone systems
traffic, but we discovered to our dismay that real time air-
line reservations traffic was not like telephone traffic.
Agent’s peak period actions were not independent transac-
tions. The demand was hugely in excess of our predictions.
Finally, the suggestion arose to use the Rand Corporation’s
“Table of one Million Random Numbers” in the context of
discrete event simulation. A desk calculator and one week
of effort produced one simulation result and the knowledge
that manual simulation was impractical for commercial
use. Switching to an IBM 650 showed that computers were
difficult to program and needed more memory and that de-
bugging took unaffordable time.

In 1961 I joined the Norden Division of United Air-
craft, now United Technologies, to design a real time sys-
tem to provide nationwide aviation weather data. IBM and
others were visited to assess real time hardware. When
questioned about subsystem performance, IBM explained

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

that the subsystem operation had been simulated. Instead
of describing the simulation, IBM responded that it was
company proprietary. Then something changed at IBM and
there was an October 3, 1961 briefing on the “Gordon
Simulator” (which was soon to be re-named GPSS I).

In preparation for that meeting, I reviewed my simula-
tion experiences at Teleregister and prepared a list of what
a simulation system should be able to do, listing thirteen
capabilities. GPSS I handled all but one of these: it lacked
the ability to identify a transaction and place it on what be-
came in GPSS III a user chain controlled by LINK and
UNLINK blocks. After Geoffrey Gordon’s GPSS presenta-
tion at the Eastern Joint Computer Conference in Washing-
ton in December 1961 (Gordon 1961), training in GPSS
was provided by IBM in early 1962. The punched cards for
the GPSS system were installed at the United Aircraft Cor-
poration Research Center. In those simple days we got the
deck and documentation with no paper work, no fee, and
not even a proprietary statement.

Norden’s first use of GPSS I in 1962 was to determine
the frequency of interference on a communications line
when two terminals bid for line control at the same instant.
The experts were of two camps - “no problem” and “won’t
work.” Who was right? For the distribution of expected in-
terarrival times, mathematical approaches were not useful.
The surprise was the speed and ease of setting up the GPSS
blocks, building, running, and debugging the model. The
results were an indication of the value of simulation. In-
stead of “no problem” and “won’t work,” we got an unan-
ticipated result, somewhere in between. The lesson was
significant. We obtained unexpected results that forced us
to reexamine our basic approach and to get additional data.
Our insight had grown. Compared with previous simula-
tion experiences, only a remarkably small effort, about two
weeks, was needed to create the model, debug it, and de-
velop confidence in the results.

Next, Norden management supported an in-plant
course on company time to spread the use of simulation.
One early model, “Modeling as Applied to the Evaluation
of Alternative Systems” was presented at the 1964 IEEE
Systems Science Conference held at the University of
Pennsylvania.

An early experience with Sikorsky Aircraft showed a
different side of the value of simulation. The problem was
maintenance strategy for engine gearbox combinations for
a twin engine aircraft. Engines would be removed for peri-
odic maintenance or in the event of failure. Removal of the
engine and gearbox combination was faster. However, a
number of good gearboxes would have to be serviced. The
simulation model was expected to indicate the better alter-
native. The concerned engineers carefully reviewed the
model. As the model logic was checked out there was dis-
agreement among the engineers as to the maintenance pro-
cedure. The model had become the means to force the
groups to agree on a common system definition. Igor Si-
573
korsky was briefed on the simulation approach. Sikorsky
was already quite elderly at the time, but he was one who
quickly saw the potential for the simulation approach and
supported its use.

Norden management supported developing simulation
models for organizations outside United Aircraft. In time
the simulation group under my direction reached eleven
people. The first model for an outside organization, the
Coast Guard, analyzed the cost effectiveness of different
approaches to the maintenance of the SPN-39 Loran C Re-
ceiver. Then, for the United States Navy Applied Science
Laboratory, GPSS III was used in 1964-65 to model the
“Cost Effectiveness Trade-Off of a Microcircuit Shipboard
Display System.” The experience gained from these efforts
led to a significant Norden contribution, that of developing
the capability to model large, complex systems. The Navy
needed to compare different sets of equipment for a future
ship and predict logistic and maintenance performance.
IBM had introduced GPSS/360 in 1967 with the added fea-
ture of storing a data base in array form. Such a huge
model was beyond the capability of GPSS/360, which re-
quired all blocks and data arrays to be resident in memory.
Norden, with the cooperation of the IBM GPSS team, John
Bult and Bob Gould in particular, undertook the task of
adding to GPSS the ability to store both data arrays and
model segments on disk and bring them into the memory
partition as needed. It is noteworthy that back then, main-
frame memory available to the user might be “as much” as
256K or as little as 92K bytes in size. In practical terms,
models of unlimited size and complexity could run, even if
slowly.

The Navy prepared dataset card decks using 026 IBM
card punches while the System 360 used 029s. Sometimes
this led to problems. Each run took an hour using the full
memory of an IBM 360/50 computer. An input data error
could cause the model to loop, but there was no way to
check for such looping. We remedied this situation at Nor-
den by incorporation of an IBM 2250 display into GPSS.
Using this display, we could interrupt model execution and
display the model state. (This was the first interactive use
of GPSS.) If all was as expected, the run was continued. In
addition to finding punched card errors, the 2250 reduced
debugging time.

The “Conference on Applications of Simulation using
GPSS” in 1967 was a seminal event. Although there were
no printed proceedings, the large attendance, over 400, (in-
cluding seven presenters from the Norden group), spread a
sense of simulation’s possibilities. The Norden modifica-
tions to GPSS were presented by Hunter et al.: “The Use of
Disk Storage to Expand the Size Capabilities of GPSS.”
One operational Norden model was Baxter’s “Prediction of
a Naval Vessel’s Performance.” An extremely advanced
model for the period was Fenn’s evaluation of the per-
formance of a coordinated group of helicopters in anti-
submarine activity against a number of submarines attack-

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

ing a surface convoy, an “Antisubmarine Warfare Game.”
What is probably the longest-lasting model in terms of its
growth and usage for more than twenty years was first pre-
sented in Seidler’s “Simulation of Built-in Test Effective-
ness of Airborne Radar.”

The 1968 “Second Conference on Applications of
Simulation” included a digest of the papers. The Norden
group provided papers describing a very complex system
(Ingerman 1968) and the details of the use of the 2250 dis-
play system (Hunter and Reitman 1968).

In 1970 Norden made four versions of GPSS/Norden
available to outside users. Remote users throughout the
world were able to use GPSS/Norden via the computer
network of NCSS as well. In addition, the Norden simula-
tion group used the skills it had developed to produce a
version of GPSS for the CDC 6000.

The first ten years built confidence that complex sys-
tems could be successfully modeled. A community of
simulation users had emerged. The first ten years also
showed the difficulty in getting decision makers to accept
the potential for simulation. At Norden, development ef-
forts became more and more limited in scope because of
the dictates of management. GPSS/H then eventually ap-
peared, and the Norden simulation group switched to it.

2.5 The “Red Book” (Thomas J. Schriber)

Half way through my first year (1966-67) as an Assistant
Professor on the faculty at the University of Michigan, my
department chair invited me to develop an elective course
on discrete-event simulation for the MBA curriculum. Sur-
veying the language scene, it was easy to conclude that
GPSS might be the best choice of language for such a
course. Why? Because it had the merits of being sparse in
its syntax, and of letting the model builder think quite di-
rectly in terms of the elements of the system for which a
model was being built. (It would not be necessary for the
students to learn the syntax and semantics of a program-
ming language and deal with the coding of event routines
and the like, which would almost be guaranteed to lead to
low enrollments in the MBA environment, and perhaps
now in many other environments, too, in the point-and-
click, drag-and-drop world of today.)

And so, in the summer of 1967, I scrambled to start to
master the details of GPSS myself and fashioned a syllabus
for the first course offering, which then took place in the
fall of 1967.

The GPSS literature available was quite thin, so I be-
gan developing my own notes and examples, often only
one class ahead of the students. That was in the days when
it was typical to lecture at the blackboard. But that meant
you couldn’t cover much material in class. (It took too long
to draw block diagrams on the blackboard.) So I began to
write out lectures ahead of time on transparencies and used
a projector to move the material faster. The students
574
couldn’t write quickly enough to keep up with me, so after
each class copies were made of the transparencies to give
out at the next class. This was inefficient, but it worked as
a stopgap measure for the first two course offerings.

As an aside, Jim Henriksen was a student in Michi-
gan’s MBA program at the time, and took the second
(Winter 1968) offering of the simulation course. Jim sat
quietly in the back row and said nothing for the first sev-
eral weeks of the course. I thought, “Who is that guy back
there anyway?” One day Jim then charged onto my radar
screen with a penetrating question that gave me a lot of in-
sight into “that guy.” (As it turned out, Jim had a part time
job in those days, too, maintaining simulation software in
the University of Michigan system. So in our relationship,
Jim came to me hat in hand (sort of) as a student, and I got
in touch with him hat in hand (most definitely) when bugs
surfaced in GPSS/360. When we ran into bugs, Jim was the
guy who jumped into the GPSS/360 assembly language
code to find and fix the bugs. About 30 bugs were found
and fixed at Michigan in 1968-69!)

In the summer of 1968, just after Jim took the course, I
revised my lecture materials and contracted with a local
printer to have them printed in softbound form. The result-
ing “book” was put on consignment at a local bookstore for
use in the 1968-69 offerings of the course. Representatives
from several publishers saw the “book” and offered to pub-
lish it in a formalized version. After several more “prelimi-
nary printings” were tested at Michigan, the “Red Book”
hit the streets in 1974.

The “Red Book” seemed to fill a gap in the literature,
and took off. Later, when people asked why there wasn’t
yet a second edition of it, the answer was something like
“Why work on a second edition now? The first edition is
doing well, and there are so many other demands on one’s
scarce time.”

Eventually that 1968 student, Jim Henriksen, came out
(in 1977) with his own mainframe GPSS/H, and in due
course it migrated to the desktop. Here was a compelling
reason to write another GPSS book, this one on GPSS/H
(Schriber 1991). To keep the price down, the publisher set
a page limit of 400 pages. GPSS/H was far too rich to be
covered with abundant detailed examples in 400 pages, so
the 1991 book turned out to be only introductory in nature,
even though plans had been in place to include the com-
prehensive treatment that GPSS/H was being given in
courses at Michigan. Even today, when a copy of the “Red
Book” comes into view, I sometimes find my thoughts
moving in the direction of a “Son of Red Book”…

2.6 GPSS – 40 Years of Development
(Ingolf Ståhl)

The views of Ingolf Ståhl are included in his paper “GPSS
– 40 years of development,” which appears elsewhere in
these proceedings. See especially Section 6 of that paper.

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

3 GEOFFREY GORDON – IN MEMORIAM

Much of this material has been taken from Gordon (1981).
 Geoffrey Gordon was born in England May 17, 1924.
He began simulating with analog computers there in the
early 1950s, and with digital computers in 1954. Coming
to the United States in 1955, he continued digital simula-
tion at the Westinghouse Corporation. In late 1956 he
joined the Bell Telephone Laboratories, where he eventu-
ally began writing simulation programs for message
switching systems. It became apparent that the individual
items of equipment could be represented as simple server
units, with their own service discipline and capacity. The
system models were essentially networks of such units.

Gordon was then asked, in 1959, to work on a project
at Bell Labs to develop a tool for studying advanced
switching system designs. The project was based on se-
quence diagrams, which use graphs whose nodes corre-
spond to operations and whose directed paths of connected
nodes represent possible sequences of events. Gordon co-
wrote a Sequence Diagram Simulator and got it running by
the end of 1959.

In 1960 Gordon joined the Advanced Systems Devel-
opment Division of IBM. The division was heavily en-
gaged in the design of teleprocessing systems, and the po-
tential value of simulation in providing realistic models
was recognized. Gordon suggested developing a system
description language based on the Sequence Diagram
Simulator approach. Rapid progress was made, and he
soon began writing a program implementing a correspond-
ing block diagram language. He was the only programmer,
but worked closely with others who were involved in sys-
tem designs and were active in assessing the developing
program and suggesting improvements.

In addition to being able to describe many types of
systems, the block diagram language provided an excellent
means of communication. When Gordon talked with a sys-
tem analyst, the two could quickly agree on a block dia-
gram to describe the main elements of a system. By pro-
gressively refining the block diagram, the details of the
system description could be expanded. Things evolved to
the point that Gordon would produce a block diagram,
working with someone familiar with the system to be
simulated, and that person would then learn enough about
the program to run it and make changes and extensions.

Existence of the program became well known within
IBM. Gordon decided to document what had been pro-
duced to satisfy the growing internal demand for the pro-
gram. The result was a cleaned-up program with a user’s
manual, produced as an IBM confidential document dated
October 25, 1960. The program had never been given a
name; by default, it came to be known as the Gordon
Simulator.

At the beginning of 1961, a complete rewrite of the
program was begun by Gordon and two co-workers. The
575
program was brought to the attention of the Cross Industry
Marketing Group of IBM, which agreed to sponsor it as an
IBM product. The program’s confidential classification
was removed early in 1961. On October 6, 1961, the pro-
gram was made available outside of IBM for use on the
IBM 704, 709, and 7090 systems as GPSS I.

The original GPSS and its later versions went on to
become very widely used. And Geoffrey Gordon went on
to become well known, not only as the originator of GPSS
but also as the author of two textbooks on the topic of sys-
tem simulation (Gordon 1968; Gordon 1975), as well as for
his contributions to encyclopedias and handbooks on com-
puter science and operations research.

Geoffrey Gordon finished his career with IBM as a
Consulting Systems Engineer and an IBM Fellow. After
retiring, he taught for several years at Kean University in
Union, New Jersey. Geoffrey Gordon died at age 65 in
Washington, New Jersey, on December 19, 1989.

ACKNOWLEDGMENTS

We thank Alice J. Cox (Minuteman Software), who fer-
reted out valuable information about Geoffrey Gordon, and
Robert Melworm (Kean University of New Jersey), who
gave Alice useful facts. And we thank Robert G. Sargent
(Syracuse University) who first pointed out that GPSS
would “turn 40” in 2001, suggested that this fortieth birth-
day should be celebrated, and provided insightful commen-
tary after reading drafts of this material.

REFERENCES

Note: To save space, some panelist references are listed
in Ståhl (2001). Please refer to Ståhl (2001) for them.

Gordon, G. 1981. The development of the general purpose

simulation system (GPSS). In History of Programming
Languages. New York: ACM.

Hunter, S. and J. Reitman 1968. GPSS/360-Norden, a par-
tial conversational GPSS. In Proceedings of the Sec-
ond Conference on Applications of Simulation. Pis-
cataway, New Jersey: IEEE.

IBM. 1977. General Purpose Simulation System V Users
Manual. White Plains, New York: IBM Corporation.

Ingerman, D. 1968 Simulation of a railed automated high-
way. In Proceedings of the Second Conference on Ap-
plications of Simulation. Piscataway, NJ: IEEE.

Lohse, K. and R. Knocke. 1989. SIMFOR–ein allgemeines
Simulationssystem für PC. In Wissenschaftliche Mit-
teilungen des VEB FER. Magdeburg: VEB FER

Lorenz, P., H. Dorwarth, K.-C. Ritter, and T. J. Schriber.
1997. Towards a web based simulation environment.
In Proceedings of the 1997 Winter Simulation Confer-
ence, ed. S. Andradottir, K. J. Healy, D. H. Withers,
and B. L. Nelson. Piscataway, NJ: IEEE.

Schriber, Lorenz, Cox, Reitman, Henriksen, and Ståhl

Minuteman Software. 1984. GPSS/PC Reference Manual.
Holly Springs NC: Minuteman Software.

Minuteman Software. 1986. GPSS/PC Tutorial Manual.
Holly Springs NC: Minuteman Software.

Minuteman Software. 1988. The GPSS/PC Animator Man-
ual. Holly Springs NC: Minuteman Software.

Minuteman Software. 1994. OS/2 GPSS World Reference
Manual. Holly Springs NC: Minuteman Software.

Minuteman Software. 2000. GPSS World Reference Man-
ual. Holly Springs NC: Minuteman Software.

Niemeyer, G. 1972. Die Simulation von Systemabläufen
mit Hilfe von FORTRAN: GPSS auf FORTAN-Basis.
Berlin-New York: Walter de Gruyter.

Reinhard, A. 1997. ASIM Umfrage: Simulation in der
Lehre. Responses to this survey and can be found at
<http://www.fps.maschinenbau.uni-
kassel.de/Forschung/Fabriksimulation
/Sim_i_d_lehre/sim_i_d_lehre.htm>.

Reitman, J. 1971. Computer Simulation Applications. New
York: Wiley Interscience.

Sammett, J. E. 1972. Programming languages: history and
future. Communications of the ACM, 15, 601-611.
New York: Association of Computing Machinery.

Schriber, T. J. 1980. Simulation Using GPSS (Russian lan-
guage edition; translated by Professor Michael
Feinberg). Moscow: Mashinostroyenie Press.

Schulze, T. 1988. SIMPC – an implementation of GPSS
for personal computers. In Systems analysis and simu-
lation, ed. A. Sydow. Berlin: Akademie-Verlag.

Ståhl, I. 1990. Introduction to Simulation with GPSS: On
the PC, Macintosh and VAX. Hemel Hempstead,
United Kingdom: Prentice Hall International.

Ståhl, I. 2001. GPSS – 40 years of development. In Pro-
ceedings of the 2001 Winter Simulation Conference,
ed B. A. Peters et al. Piscataway, New Jersey: IEEE.

Wolverine Software Corporation. 1978. GPSS/H Users
Manual, 1st Edition. Alexandria Virginia: Wolverine
Software Corporation. (Editor’s note: the 1978 refer-
ence is given for historical accuracy. The manual is
now in its third edition.)

Wolverine Software Corporation. 1993. Using Proof Ani-
mation. Alexandria, Virginia: Wolverine Software
Corporation.

Wolverine Software Corporation. 1996. SLX: An introduc-
tion for GPSS/H users. Alexandria, Virginia: Wolver-
ine Software Corporation.

AUTHOR BIOGRAPHIES

THOMAS J. SCHRIBER is a Professor in Computer and
Information Systems at The University of Michigan. He
has worked in the area of discrete event simulation since
1967, and has been active in the Winter Simulation Con-
ferences from 1968 forward. He received the
INFORMS/CS Distinguished Service Award in 1996.
576
PETER LORENZ is Professor Emeritus in the Institute for
Simulation and Graphics at the Otto von Guericke Univer-
sity of Magdeburg in the state of Sachsen-Anhalt, Germany.
He continues to teach discrete event simulation and anima-
tion there, and consults as well. His research interests in-
clude layout-based simulation-model generation, advanced
Web-supported teaching concepts, applications of simulation
and animation in mining, manufacturing, logistics and traf-
fic, and moving simulation and animation to the Web. In
2001 he founded the B2B Simulation Initiative.

SPRINGER COX received his degrees in physics and
computer science from Cornell and Syracuse University,
respectively. He worked in computer performance evalua-
tion and modeling for IBM, Xerox, and DEC. In 1982, he
founded Minuteman Software for the purpose of creating a
microprocessor based interactive simulation environment.
He has published over a dozen technical papers and has
spoken at technical conferences in North America and
Europe.

JULIAN REITMAN retired from a 26 year career in the
Norden Division of United Technologies in 1987. He
helped instigate IBM’s 1961 release of GPSS, and was in-
strumental in organizing the 1967 “Conference on the Ap-
plications of GPSS,” for which he was the Program Chair.
In 1968 he was General Chair of the successor “Confer-
ence on the Applications of Simulation.” His sustained
contributions to the area of simulation were recognized in
1998, when he received the first-ever INFORMS College
of Simulation’s Professional Lifetime Achievement
Award. In retirement, he pursues an avocation to document
the history of technology, developing and teaching a
course on that topic these past 14 years at the University of
Connecticut at Stamford.

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of the
first version of GPSS/H, of Proof Animation, and of SLX.
He is a frequent contributor to the literature on simulation
and has presented many papers at the Winter Simulation
Conference. Mr. Henriksen has served as the Business
Chair and General Chair of past Winter Simulation Con-
ferences. He has also served on the Board of Directors of
the conference as the ACM/SIGSIM representative.

INGOLF STÅHL is a Professor at the Stockholm School
of Economics in Stockholm, Sweden, in Computer-Based
Applications of Economic Theory. He has taught GPSS for
twenty-five years at universities in Sweden and the USA.
Based on this experience, he has led the development of
the micro-GPSS system.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

