
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

OPEN SOURCE SIMULATION MODELING LANGUAGE (SML)

Richard A. Kilgore

SML Consortium and ThreadTec, Inc.
P. O. Box 7

Chesterfield, MO 63006, U.S.A.

ABSTRACT

The Simulation Modeling Language (SML™) is an open
source, web-based, multi-language simulation development
project guided by a consortium of industrial, academic and
government simulation consultants, practitioners and
developers. The vision of an open source simulation
software initiative is to leverage the unique communication
and distribution opportunities created by the internet to
open the development of simulation software to a
worldwide community of talented software developers,
researchers and modelers. For the simulation community,
the open source movement represents an opportunity to
improve the quality of common core simulation functions,
improve the potential for creating reusable modeling
components from those core functions, and improve the
ability to merge those components using XML, HLA and
other simulation community standards. This paper
describes the SML software, the goals of the SML
organization and relates the origins, philosophy and
procedures of the open source movement to the objectives
and needs of the simulation community.

1 INTRODUCTION

Is there a need for an open source simulation language?
There is only one way to find out.

On June 1, 2001, the Simulation Modeling Language
(SML) initiative began with the goal of answering this
question. The SML software is available at no cost and
should be available for download in Java, C++, C# and
VB.Net versions by the final publication of this paper. The
SML software is licensed for unrestricted use for teaching,
research or commercial modeling. If you don’t like
something, you can extend or change SML any way you
like as long as you agree to upload and share your
extension or change with the SML community. The final
SML site was not determined at the time this paper was
submitted so please check threadtec.com, sml.info or
sml.sourceforge.net for current SML versions and
download information.

607
While that information might be a sufficient
introduction for many people, those that continue to read
this paper are encouraged to visit the SML web site or
attend the conference session for the most current status of
the SML project before forming a first impression based on
this paper. Unlike proprietary simulation software, even if
that first impression is not positive, then you have every
opportunity to voice your opinion or even roll up your
programming sleeves to get involved and show the world
how to do it better.

The open source movement is a revolutionary
perspective on how software should be created (Pavlicek
2000). While the movement is most often associated with
the development of the Linux operating system and related
software projects (Linux 2001), there are open-source
initiatives throughout the software industry and new
projects are constantly emerging. Some projects are
immediately successful while others start slowly. One
popular repository of open source software (Open Source
Development Network 2001), lists over 23,000 open-

Astronomy/Physics 16
Software Engineering/Testing 14
Computer-Aided Design/Graphics 12
Games/Entertainment/Training.................. 12
Chemistry/Molecular 9
Math/Continuous/Equations................... 6
Network/Computer Systems Simulation 6
Biology/Geneology.................................... 5
Electrical engineering 5
Discrete-Event/Process Simulation 4
Petri Nets/Agent-based............................ 2
Robotics ... 2
Air traffic/Vehicle control 2
Financial ... 2
Simulation Experimentation................... 1
Random Numbers /Monte Carlo 1
Database ... 1

Figure 1: Categories of Open Source Simulation
Software Projects at freshmeat.net (July, 2001)

Kilgore

source projects. As shown in Figure 1, there are presently
100 open source projects with a simulation theme
including four discrete-event simulation projects (Nutaro
2001; Realiant Systems 2001; Fisher 2001; Varga 2001)
and one supporting distributed batch mode simulations
(Belding 2001). So what will distinguish SML? In the
world of open source, truth is cited as the most valuable of
all virtues, so the truthful answer is that SML or any
similar open source project will only be as good as the
people that get involved in its design and implementation
(PITAC 2000).

As stated earlier, this paper and the corresponding
conference session serve primarily as an announcement of
the SML project and an invitation to participate in the
project. Section 2 is an introduction to the open-source
software development process as it relates to simulation
software. Section 3 describes open source licensing and a
proposed modification to distinguish open source
simulation and proprietary modeling. Section 4 briefly
defines the initial SML objectives and presents results from
the first phase of the SML/Java demonstration prototype.

2 OPEN MIND, OPEN SOURCE

Every revolution seems to have a manifesto and the
declaration of programming independence of the open
source movement seems to be The Cathedral and the
Bazaar (Raymond 1999). The paper contrasts the
traditional software development cathedral in which a
small group of cloistered developers design, code and
608
deliver a finished product with the bazaar in which there is
concurrent and chaotic interaction between users and
developers. In the open source bazaar, the user
community becomes the de facto owner of the software
and all are invited to participate. Although there may be
user feedback in the cathedral design process, only those
inside the developing organization or group actually get to
participate in the coding process. The organizational
structure in the bazaar of open source development is more
democratic in the sense that the only qualifications for
participation are an understanding of the problem and the
skill and perseverance to pursue a solution through testing
and implementation. The Internet facilitates open source
development by providing the mechanism for economic
and timely communication and distribution of new source
code and documentation.

Let’s begin by discussing SML and simulation as it
relates to a few modifications of Raymond’s principles for
open source development summarized below in Figure 2.

1. Every good work of simulation software starts by
scratching a modeler's personal itch.

Everyone who builds simulation models defines what
simulation software should do based on what that
modeler has done. The more models you have done and
the more simulation software you have used, the greater
the personal itch becomes to improve simulation software
to solve those modeling challenges you have experienced.
SML is designed to make it easier for every modeler to
scratch their own “personal” itch as it develops during
their career by providing a modular design, source code
1. Every good work of software starts by scratching a developer's personal itch.
2. Good programmers know what to write. Great ones know what to rewrite (and reuse).
3. Plan to throw one away; you will, anyhow.
4. If you have the right attitude, interesting problems will find you.
5. When you lose interest in a program, your last duty to it is to hand it off to a competent successor.
6. Treating your users as co-developers is your least-hassle route to rapid code improvement and effective debugging.
7. Release early. Release often. And listen to your customers.
8. Given a large enough beta-tester and co-developer base, almost every problem will be characterized quickly and the

fix obvious to someone.
9. Smart data structures and dumb code works a lot better than the other way around.
10. If you treat your beta-testers as if they're your most valuable resource, they will respond by becoming your most

valuable resource.
11. The next best thing to having good ideas is recognizing good ideas from your users. Sometimes the latter is better.
12. Often, the most striking and innovative solutions come from realizing that your concept of the problem was wrong.
13. Perfection in design is achieved not when there is nothing more to add, but rather when there is nothing more to take

away.
14. Any tool should be useful in the expected way, but a truly great tool lends itself to uses you never expected.
15. When writing gateway software of any kind, take pains to disturb the data stream as little as possible -- and *never*

throw away information unless the recipient forces you to!
16. When your language is nowhere near Turing-complete, syntactic sugar can be your friend.
17. A security system is only as secure as its secret. Beware of pseudo-secrets.
18. One can test, debug and improve in bazaar style, but it would be very hard to originate a project in bazaar mode.

Figure 2: Open Source Guidelines from The Cathedral and the Bazaar

Kilgore

access and licensing permission to change the tool as
needed when needed.

2. Good simulation programmers know what to write.
Great ones know what to rewrite (and make it easier for
modelers to reuse).

Scratching the personal itch may be sufficient
motivation for an individual modeler to get involved in
community-based, open source development. But
scratching the simulation industry-wide itch for reusability
is the global benefit that SML and open source simulation
can provide. Consider all of the simulation code thrown
away during the last 30 years. Consider all of the
simulation code that is never seen by anyone other than the
modeler. An open source initiative likes SML provides an
opportunity for modelers to learn from the past and learn
from each other and invest in reusable code.

7. Release models early. Release models often. And
listen to your modeling customers.

Although we all make errors, it is particularly difficult
for programmers and modelers to expose their errors in
public. But it may be a much more productive experience
for the modeler and much more educational experience for
the modeling community to see the process that other
modelers use to develop simulation code and not simply
the final results. As mentioned earlier, good code and
609
good models require rewrite and exposing the errors and
ideas earlier on may make the rewriting experience more
productive than hiding these problems for fear of public
ridicule. Simulation programmers all have different
perspectives, different experiences and different customers,
so SML will be successful only if it creates an environment
where open discussion is encouraged. The best way to
encourage discussion is to encourage listening and
consideration of all incoming suggestions regardless of the
qualifications of the source of the suggestions or the
quality of the partially completed solution.

18. One can test, debug and improve a simulation
language in bazaar style, but it would be very hard to
originate a simulation language project in bazaar mode.

It is much easier to encourage discussion if you have a
running prototype to discuss so the SML project site was
developed with working code as shown in Figure 3. The
initial SML prototype was a Java-based, discrete-event,
process-oriented class library based on an entity-thread
data structure. But ideally, the same SML specification
will support C++, C#, VB.Net and any other
implementations where a supporting community of
developers emerges. All SML decisions cannot be made in
committee, and inevitable disagreements on what is “best”
are to be expected. But with a sound fundamental core

Figure 3: SML/Java Open Source Repository at http://sourceforge.net/projects/opensml/

Kilgore

library of extendible functions, SML participants will be
unlimited in their ability to build alternative
implementations. For example, if you don’t like the queue
object, you have access to the source code to develop your
own variation of the queue object or the ability to extend
the queue object to add additional properties and methods.
All that is required from a licensing perspective is that the
modification or extension is published for all other SML
participants to share.

3 SML LICENSING AND “COOPETITION”

The issue of what to share and how to share it is an
important issue for distinguishing between free SML
simulation code and proprietary modeling code. The
present plan for SML is to distribute simulation language
source code under a modified Lesser/Library General
Public License (Free Software Foundation, 2001) that ends
where the SML simulation language ends and the SML-
based simulation model starts. Normally, all extensions
and modifications of LGPL licensed software must be
distributed under the same LGPL license under which the
software was acquired. Obviously, this restriction cannot
be applied to software that uses the SML code to create a
specific model.

For example, the current SML code includes a linked
list queue object that holds an indexed list of SML entity
objects. The SML class includes a qadd() method that
adds an entity to the end of a queue. If an SML users
needs a function that ranks and re-sorts the list based on
one or more properties, the user is allowed under LGPL to
add the additional capability to the language. But the
LGPL required that the user share that improvement by
returning the revised code to the SML repository. Some
might take the position that the improvement is a
“modeling” function that cannot be shared because the
names and types of properties and ranking rules used for
the re-sort are proprietary to the modeling application.
Pproper SML sharing principles would require that the user
comply by depositing a generic or example version of the
method that does not contain proprietary property names or
ranking rules. Can you write a license that defines such
behavior? Can you enforce such a license? Open source
opponents and their business managers say no. Open
source proponents say maybe not, but the benefits of SML
will still outweigh the risks and costs from those who cheat
or otherwise abuse the mutual trust and honor that the open
source system requires.

The economic vision behind SML will be to allow
users to compete in a marketplace of models and modeling
components based on SML, but to cooperate in the
development of compatible, extendible SML objects and
methods which support those models. The resulting
“coopetition” among simulation companies and
610
professionals will be better for the long term viability and
profitability of the simulation industry than the current
system of incompatible products and lack of standards.

This business model is neither pure communism nor
pure capitalism. It is similar to the industrial cooperation
that allows automotive companies to standardize on lug
nuts but compete on car models and television
manufacturers to cooperate on broadcast format but
compete on receiver hardware. It is an imperfect and
delicate alliance amongst opponents that is viewed in
advance as wishful folly and viewed in retrospect as
insightful wisdom. Sometimes coopetition happens
because governments decree that change should occur, but
more often coopetition happens because influential and
powerful users decree that the change should occur.
Sometimes it happens long after it is initially proposed.
Sometimes it happens immediately. The final movement
toward simulation language coopetition may not be SML-
based and it may not be now. But it will eventually happen
because someone will someday expose the value of wasted
simulation software created to date and publish that figure
to allow influential users realize they have the economic
justification to demand something different.

4 SML – READABLE,
MODULAR, EXTENDIBLE

Open source development means that the SML community
or consortium will ultimately define what SML will be, not
the author of this paper or the initial authors of the
software. Ideally, SML will evolve based on the skills,
passion, requirements and resources of the participants and
their clients. So the following specification is simply one
small step down one trail of the multi-year, multi-language,
multi-application journey that open source initiatives like
SML propose. Consequently, a positive outcome of this
section will be a bold and passionate critique of everything
written from this point on by people who are also bold and
passionate enough to put their improvement out there for
additional critique.

The mission of SML is to produce reusable simulation
software at both the simulation source code and modeling
source code levels. Reusability requires at a minimum that
the code be readable, modular and extendible. Contrary
to most simulation products, SML will sacrifice
performance to achieve reusability.

Readability means that the target audience for the
code is the closer to the first-time reader with limited
programming background than to the experienced hacker.
Most simulation practitioners are not computer science
graduates and are capable, but not expert programmers.
The goal of SML readability is to encourage participation
by part time programmers interested in quickly finding and
modifying without extensive debugging and testing.

Kilgore

Modularity is related to readability in that a part time
developer can make a change to the source code or replace
an entire SML module without having to understand or
modify large amounts of SML source code.

Extendibility means that SML is designed to be easily
modified and repackaged for specific applications. As men-
tioned previously, simulation languages are usually biased
towards a particular target application based on the experi-
ences and anticipated needs of the modeler or developer.
But if properly designed, SML methods for manufacturing
system simulation and communication systems simulation
may appear unique at the modeling level, but extend
identical methods at the core simulation library level.

The best method of achieving the combination of
readable, modular and extendible that SML desires is
through object-oriented development. Even though the
original SML prototype is Java-based, any object-oriented
language is a potential candidate for an SML community.
As shown in Figure 4, it would seem possible that a
common SML core specification will emerge for utility
functions (e.g. calendar, distribution generators, statistical
functions.) so that implementation of these functions can
be as similar as possible in all of the supported languages.
And, ideally, a common process-oriented language (e.g.
qadd, waituntil, qremove, seize, delay, release) will emerge
for each SML entity class definition. While it may not be
possible for identical implementations in each of the SML
language communities, the common object-oriented,
process-oriented modeling design patterns may be
sufficiently similar so that models and methods developed
in one base language can be easily migrated to the other
supported languages.

The entity-object-thread design pattern used in the
Java-based Silk simulation language is implemented in the
611
initial SML/Java prototype (Kilgore et al. 1998). In this
pattern, each simulation object defines its process-oriented
behavior description in a common process() method that is
started when the entity-thread is started. The entity-thread
is suspended during a time-based or status-based delay and
resumed when the delay is complete or a system status
delay allows the entity to proceed.

The SML/Java prototype demonstration code for a
single-server queuing system is shown in Figure 5. Color
is used in electronic versions of this paper to distinguish
Java keywords (blue), SML keywords (red), comments
(green) and user-defined identifiers (black). The example
code follows the SML readability objective and should be
fairly self-explanatory to those familiar with object-
oriented syntax of Java or C++. It is explained at the SML
web site and elsewhere in more detail (Kilgore 2001). One
unusual variable in the example code is the ri.t variable
representing that value of simulation time t for each
instance of run ri. Since SML/Java was written to

SML Simulation Core Specification

public class EntSmiley extends Entity {

 public static Tally talQueTime = new Tally("Time in Queue");
 public static Tally talSysTime = new Tally("Time in System");
 public static Queue queEntity = new Queue("Smiley Server Queue");
 public static Resource resServer = new Resource("Smiley Server");
 public static Exponential expArrival = new Exponential(10.0, 12345);
 public static Exponential expService = new Exponential(8.0, 23456);

 public void process(){
 create(expArrival.getValue());
 qadd(queEntity); // Add to queue
 waituntil(resServer.isIdle(this)); // Wait until resource is idle
 qremove(queEntity); // Remove from queue
 tally(ri.t - tQueueStart, talQueTime);// Record time in queue
 seize(resServer); // Set resource busy status to true
 delay(expService.getValue()); // Delay for service time
 release(resServer); // Set resource busy status to false
 tally(ri.t - tStart, talSysTime); // Record time in system
 dispose();
 }
}

Java C++ VB.Net C#

Common Process-Oriented Language

Java C++ VB.Net C#SML Language-Specific Library

Figure 4: SML Architecture
public class EntSmiley extends Entity {

 public static Tally talQueTime = new Tally("Time in Queue");
 public static Tally talSysTime = new Tally("Time in System");
 public static Queue queEntity = new Queue("Smiley Server Queue");
 public static Resource resServer = new Resource("Smiley Server");
 public static Exponential expArrival = new Exponential(10.0, 12345);
 public static Exponential expService = new Exponential(8.0, 23456);

 public void process(){
 create(expArrival.getValue());
 qadd(queEntity); // Add to queue
 waituntil(resServer.isIdle(this)); // Wait until resource is idle
 qremove(queEntity); // Remove from queue
 tally(ri.t - tQueueStart, talQueTime);// Record time in queue
 seize(resServer); // Set resource busy status to true
 delay(expService.getValue()); // Delay for service time
 release(resServer); // Set resource busy status to false
 tally(ri.t - tStart, talSysTime); // Record time in system
 dispose();
 }
}

Figure 5: SML/Java Single Server Model

Kilgore

facilitate distributed execution, the variable ri.t represents
simulation time for an instance of the run control class
which allows a separate simulation clock for each
replication on each processor.

Because SML is an open architecture and an open-
source development process, other design patterns may
emerge which are superior in general or superior for a
particular class of applications. In the Linux community
the rule that decides what is superior is “let the best code
win”. In the simulation community, this rule may need to
be modified to “let the best code for this application win”.
The hope is than even application-specific code be
developed in a style modular enough to extend rather than
replace an alternative implementation. Most important for
the simulation community is that there will be a common
forum and laboratory where these issues can be expressed,
debated and tested rather than a continuation of proprietary
simulation camps that don’t speak the same language.

The output of a single replication of the SML single
server model using the SML demonstration applet is
shown in Figure 5. A debug window echoes the line by
line execution of the model. Other windows show the
statistical summaries for entity, queue and resource
statistics. In open-source projects, it is common practice to
always maintain various executable versions of the
software for new users evaluating the project and a
development version containing untested or un-debugged
improvements. All of the SML/Java builds are archived so
that developers with alternative ideas can return to a build
where their ideas can be most easily implemented.
612
5 SUMMARY

Simulation is not a large industry compared to other
industries where open source initiatives have been
successful. There are only a handful of individuals with
full time responsibilities writing simulation code. The
initial development of the simulation software industry was
supported primarily through academic projects that were
spun off into small commercial companies with a 5-15 year
life span. Proprietary simulation code has created a history
of wasteful rewrites and limited reusability of simulation
models.

The SML open source simulation project will evaluate a
potential evolution in the simulation software development
model. The goal of cooperating in simulation and
competing in modeling software will retain the economic
incentive necessary to support commercial simulation
companies. But the existence of common, powerful and
inexpensive object-oriented languages and an instantaneous,
internet-based worldwide communication means that
simulation software development need not be a product of
proprietary, closed-source, vendor-based licensing. Should
SML be as successful as other open source initiatives,
readers may find that the state of the SML organization and
SML products may be quite different by the time they read
this paper and the SML web-sites will contain the current
status of the project. More important than the near-term
popularity of the language will be the steady, long-term
progress toward libraries of easily extendible and easily
reusable simulation code.

Figure 6: SML/Java Demonstration Applet

Kilgore

REFERENCES

Belding, Theodore C. 2001. Drone. University of
Michigan Center for the Study of Complex Systems.
drone.sourceforge.net.

Collier, A. 2001. rgen. rgen.sourceforge.net.
CPN Group, University of Aarhus, Denmark. 2001.

Design/CPN, www.daimi,au.dk/designCPN
Fisher, J., K. Ahrens and D. Witaszek. 2001. ODEM.

odem.sourceforge.net.
Free Software Foundation, 2001.

www.opensource.org.
Kilgore, R. A. 2001. Open-Source SML and Silk for Java-

Based, Object-Oriented Simulation. In Proceedings of
the 2001 Winter Simulation Conference, ed., B. Peters,
J. Smith. Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Kilgore, R. A., Healy, K. J. and Kleindorfer, G. B. 1998.
The future of Java-based simulation. Proceedings of
the 1998 Winter Simulation Conference Proceedings,
ed. D. J. Medeiros, E. F. Watson, J. S. Carson, M. S.
Manivannan. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Linux, 2001. www.linux.org.
Nutaro, Jim. 2001 adevs,

www.ece.Arizona.edu/~nutaro.
Open Source Development Network, 2001.

www.osdn.org.
Pavlicek, Russell C. 2000. Embracing Insanity: Open

Source Software Development. Sams Publishing,
Indianapolis, IN.

Realiant Systems. 2001. FROGS.
www.carbonkernel.org.

Raymond, Eric 1999. The Cathedral & The Bazaar.
O’Reilly, Cambridge, MA.

PITAC, The Presidents Information Technology Advisory
Committee: Panel on Open Source Software for High
End Computing, 2000. Developing Open Source
Software to Advance High End Computing. National
Coordination Office for Computing, Information and
Communications, Arlington, VA.

Varga, Andras. 2001. OMNet++.
www.hit.bme.hu/phd/vargaa/omnet.

AUTHOR BIOGRAPHY

RICHARD A. KILGORE is a co-author of SML and the
Silk language and a consultant in the development of
industrial simulation and scheduling solutions. Dr. Kilgore
is a founding member of the open-source Simulation
Modeling Language (SML) Consortium. He has over 20
years of experience as a modeling consultant to Fortune
500 firms in a variety of industries with a variety of
simulation and scheduling tools. He received his B.B.A.
and M.B.A degrees from Ohio University and Ph.D. in
613
Management Science from the Pennsylvania State
University. Formerly, he was a capacity-planning analyst
with Ford Motor Co. and Vice-President of Products for
Systems Modeling Corp. His e-mail address is
<kilgore@threadtec.com>.

SML is a trademark of the SML Consortium.
Silk is a trademark of ThreadTec, Inc.
Java is a trademark of Sun Microsystems, Inc.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

