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ABSTRACT 

Various analytical and empirical methods assuming the ex-
istence of steady state and requiring homogenous proper-
ties of the product have been used with limited success in 
estimating freezing times in the food processing industry. 
Irrespective of the method adopted for estimating freezing 
time requirements, a critical process issue that needs to be 
considered is that of system control.  Simulation models 
suggest that a feed-forward control strategy, as discussed 
in this paper, can be used to control a freezing tunnel and 
obtain considerable energy savings while ensuring ‘appro-
priate’ freezing of all products.  The control strategy dis-
cussed in this paper, involves the continuous monitoring of 
product input and controlling either or both of the refriger-
ant flow and conveyor speed.   The primary objective of 
this paper is to demonstrate the use of simulation to predict 
process parameters for ‘intelligent control’ of freezing tun-
nels, and provide an estimate of potential energy savings. 

1 INTRODUCTION 

The estimation of freezing time requirements is critical in 
the operation and control of cryogenic systems.  Different 
thermodynamic models have been developed to describe 
the freezing process and provide methods to estimate the 
“dwell time” requirements for a product to be frozen. The 
two main thermodynamic models are the ‘heat conduction 
with temperature-dependent thermal properties model’ and 
the ‘unique phase-change front model’ (Valentas, Rotstein, 
and Singh 1997).  The latter model is based on the assump-
tion that all the latent heat is released at a unique tempera-
ture at a sharp phase-change front.  This front moves from 
the outside to the thermal center of the object being frozen.  
The model further assumes that the thermal properties in 
the regions before and after the front are constant but dif-
ferent.  Due to the above-mentioned assumptions, the 
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model incorporating temperature-dependent thermal prop-
erties is considered to be more realistic than the second ap-
proach. 
 Most methods used to estimate dwell time require-
ments assume that the heat transfer in the freezing process 
occurs primarily due to conduction and convection. 
Though in practice, heat transfer at the surface of the prod-
uct can occur by a combination of all or some of conduc-
tion, convection, radiation, and evaporation.  The most 
common approach is to model the heat transfer using New-
ton’s law of cooling at the surface and to define an “effec-
tive heat transfer coefficient” to account for the net effect 
of all the actual heat transfer mechanisms involved.    

The difficulties in modeling the heat transfer process 
for irregular shaped objects necessitate the incorporation of 
several assumptions in the methods used to estimate freez-
ing time.  These assumptions include the existence of a 
steady state, uniform properties and / or shape approxima-
tions such as the object being treated as an infinite cylin-
der, sphere, or as a set of infinite parallel plates.  The is-
sues to be considered while selecting a freezing time 
estimation method, various analytical, approximate nu-
merical and empirical methods used, the assumptions asso-
ciated with each of the methods, and their fields of applica-
tions have been discussed extensively in existing literature 
(ASHRAE 1981,  Hung and Thomson 1983, Cleland and 
Earle 1984, Pham 1985, Salvadori and Macheroni 1991, 
Hossain, Cleland and Cleland 1992).  A review of existing 
freezing time techniques has been provided in Wysk, 
Prabhu, and Ramakrishnan (2000). 

Traditionally, the operating parameters of a freezing 
tunnel are maintained at levels appropriate to freeze the 
maximum expected thermal load, resulting in over-freezing 
of some of the products.  Since, the maximum thermal load 
cannot be predicted accurately for a process involving 
‘random’ input, such as that in meat processing, there ex-
ists a possibility of ‘under-freezing’ some of the products. 
This approach results in the wastage of refrigerant and/or 
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under-freezing of some of the products.  A similar problem 
does not exist for operations such bottling, since the ther-
mal load is deterministic (Wysk, Prabhu and Ramakrishnan 
2000).   

2 PROBLEM STATEMENT AND  
RESEARCH OBJECTIVE 

Cryogenic freezing tunnels can be operated in a variety of 
modes. Typically, the industry practice is to employ a 
“bang-bang” control system where the cryogen flow in the 
system is increased or decreased based on some pre-
defined threshold temperature values in a pre-defined loca-
tion on the tunnel.  Instances where the control system 
regulates the cryogen flow based on the temperature moni-
tored at only one location in a multi-zone tunnel have been 
seen.  Such control systems either result in under-freezing 
of the product, necessitating their “re-working” and hence 
an increased cycle time, or in the wastage of cryogen and a 
reduction in quality due to over-freezing of the products.  
A evaluation of alternative control strategies is therefore 
necessary. 

An ‘intelligent process control’ strategy involves the 
continuous monitoring of product input and the controlling 
of either or both of the two primary control parameters - 
conveyor speed in the tunnel and the refrigerant flow.  For 
each of the control options, issues such as system’s respon-
siveness, the time taken by the atmosphere in the tunnel to 
return to steady state after and the potential energy and cost 
savings need to be studied.  A key decision in implement-
ing ‘intelligent process control’ is the selection of the con-
trolled parameter and the range of control.  It is necessary 
to obtain a preliminary understanding of the system’s be-
havior under static control before performing a detailed 
analysis.  Static control refers to the scenario where the op-
erational parameters are not altered for a particular ‘run’ 
despite the presence of any thermal load variations.  Com-
puter simulation provides an efficient and effective way to 
achieve the required preliminary information. 

The use of simulation to provide an estimate of the en-
ergy savings in the tunnel freezing process using ‘intelli-
gent control’ and help identify potential control strategies 
has been discussed in this paper.  Different scenarios each 
involving different intelligently controlled variable(s) iden-
tified earlier, were considered.  In this simulation model, 
the stochastic nature of the process (discussed in later sec-
tions) was represented using only two random numbers - 
the thermal mass of the object and the inter-arrival rate.  
The effect of the variation in thermal mass on the perform-
ance of the freezing tunnel was also analyzed.  This analy-
sis will enable to identify a potential methodology to esti-
mate the operational parameters for effectively controlling 
the tunnel-freezing process and estimate the potential sav-
ings of using ‘intelligent control’.  Information from this 
analysis can be used to determine how a more ‘detailed’ 
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model can be obtained to improve the control strategy se-
lection process. 

3 SYSTEM OVERVIEW 

A schematic representation of the tunnel freezing operation 
viewed as a single process is shown in Figure 1.  The entire 
process can be considered to be made up of three distinct 
‘components’: the conveyor system providing the input to 
the freezer (the products that need to be frozen), the freez-
ing tunnel, and the conveyor system to transport the frozen 
products to packaging and/or storage or the next process.  
The process is considered to be “in control”, if no stacking 
of the food product is noticed in any of the conveyor seg-
ments.  The treatment of the freezing process as a stochas-
tic process and the assumptions made in the creating the 
simulation model has been discussed in this section.  

 
 
 

 Figure 1:  Tunnel Freezing Process 

3.1 Stochastic Elements in a Typical  
Tunnel Freezing Process 

The stochastic nature of the freezing process can be seen in 
the nature of product input, product to be frozen, and the 
issues related to production.  The main issues that are re-
lated to the product input are the size and shape of the 
product to be frozen, the distribution of the mass, incoming 
temperature, and the chemical composition of the product.  
Depending on the portion of the product (for example 
chicken pieces – whole chicken, thigh, breast, etc.) being 
frozen, the variation seen in the mass of the individual 
pieces could be significant.  The approximation of the 
shape of the product being frozen is a key factor for esti-
mating freezing times.  The thermal mass of the products 
(mass of each piece * specific heat capacity * change in 
temperature) determines if any of the controllable operat-
ing variables need to be changed when the product enters 
the freezing tunnel.   
 In order to obtain a good estimate on the variations in 
thermal loads of the freezer, it is necessary to characterize 
each of the three constituent random variables that consti-
tute the thermal mass – mass, incoming temperature, and 
the chemical composition of the product.  Any variation in 
the incoming temperature of the products also needs to be 
captured.  Even though, the sensible heat may not account 
for a significant portion of the heat to be removed com-
pared to the latent heat of water removed while freezing, 
the effect of varying incoming temperature needs to be 
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considered while designing an automatic control system 
for the freezing process.  It is also necessary to know the 
products’ chemical composition - volume or mass fraction 
of water content, fat, protein, carbohydrates, fiber, and ash, 
to estimate the thermal properties of the pieces.  Other sto-
chastic elements in a freezing process include factors re-
lated to the process such as the spacing between products 
while entering the freezer and the freezing tunnel charac-
teristics, both of which need to be considered while devis-
ing control strategies. 
 The freezer (cryogenic) capacity of the tunnel, the 
temperature setting in each of the tunnel zones, and the 
length of each zone needs to be known. Based on this in-
formation, the number of individual pieces that will be in 
the freezing tunnel at any given point of time can be esti-
mated.  This is required to keep track of the ‘most con-
straining’ product (the one with the maximum thermal 
mass among the ‘entities’ currently inside the freezer) and 
determine when the conveyor speed needs to be changed.  
Factors such as the type of packaging used, the presence of 
air in packages, the number of packages introduced to the 
tunnel simultaneously (similar to the number of boards in a 
panel in printed circuit board assembly) also need to be 
considered.   

3.2 Modeling Heat Transfer and  
Estimating Freezing Time 

Since the freezing front moves towards the thermal center 
of the object and because of the temperature-dependent 
thermal properties, the mathematical modeling of the freez-
ing process for irregular-shaped objects is difficult.  The 
two main approaches for modeling heat transfer in freezing 
were mentioned at the outset.  In practice, however, the 
freezing of a food object would involve a combination of 
all or some of the heat transfer modes such as conduction, 
convection, radiation, and evaporation.  The most common 
modeling approach is to use Newton’s law of cooling at the 
surface and to define an effective heat transfer coefficient 
to account for the net effect of all the actual mechanisms.   

3.3 Assumptions in System Modeling  
and Simulation Analysis  

This section outlines the assumptions made in the design of 
the simulation model and their implications in the analysis. 
The initial finite difference freezing model created within 
the computer simulation does not treat the individual com-
ponents (identified earlier) that make up the thermal mass 
separately.  Since the sums and products of random vari-
ables are random variables, the thermal mass of a food ob-
ject – product of the mass, specific thermal capacity and 
the temperature range it is subjected to, is estimated by a 
single thermal mass random variable.   It is also assumed 
that the thermal mass represented by the random number 
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accounts for both the sensible heat as well as the latent heat 
of fusion for the water content in the food object.  ‘Product 
entities’ in the simulation model have their ‘thermal mass’ 
generated from a single random stream.  In practice, this 
could be considered that all the food objects represented by 
the entities in the simulation model belong to one batch, 
i.e., chicken pieces only, beef patties only, etc.  The varia-
tion among the individual pieces in each of the batches is 
‘accounted’ for in the random stream.  In this model, the 
thermal loads were assumed to be normally distributed.  
The mean and the standard deviation of the normal distri-
butions were two of the variables used in the experimental 
design for the simulation, discussed in a later section. 

The two random variables considered in this initial 
model are the thermal mass of the food object, discussed 
above, and the Time Between Arrival (TBA) of the pieces.  
In the initial model, the TBA was assumed to be constant.  
This assumption is based on the observation that very often 
the input to the freezer is provided by an upstream “steam 
cooker” or a “pattie maker” which typically provides a 
constant stream of output.   
 The thermal properties of the object have not been ex-
plicitly considered since the only variable associated with 
the individual pieces is its thermal mass.  The model as-
sumes that conditions necessary for steady state heat trans-
fer exist in the tunnel.  The freezing time requirement is 
estimated based on the ‘thermal mass’ for each individual 
piece, assuming constant conditions in the freezing tunnel.  
Moreover, the model assumes that the effect of any heat 
exchange between the tunnel’s refrigerant system and its 
ambience is negligible.  One of the main advantages of us-
ing simulation models in this context is its inherent flexi-
bility to incorporate and test different dwell-time estimat-
ing techniques and its subsequent use as a tool for process 
control. 

The freezing time requirement for each entity is esti-
mated by the simulation model using the Plank’s equation. 
Plank developed an equation, based on the unique phase 
change model, for estimating freezing time for different 
geometrical shapes, and allowing for varying film coeffi-
cients.  The equation, derived for one-dimensional infinite 
slab geometry has been analytically extended for infinite 
cylinders, spheres and for finite parallelopiped geometries.  
Plank’s equation as used in the model can be expressed as 
follows: 
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Where: 
 
tf is the time required for freezing,  
R is the characteristic half thickness of the food object 
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h, kf are heat transfer coefficient and thermal conductivity 
(before freezing) respectively 
 
θif , θa  denote the freezing point and ambient temperatures. 

 
The initial model treats the entire freezing tunnel as a 

single segment of uniform temperature.  This would corre-
spond to the cryogen being fed into the tunnel through dif-
ferent locations in the tunnel so as to maintain a uniform 
temperature, rather than only from an end of the tunnel.  In 
a modified version of the model, the tunnel was modeled 
as one with four zones with preset temperatures with the 
heat transfer being a combination of conduction and forced 
convection.  Issues such as the impact of the heat generated 
by the fans in the tunnel, positioning of the freezer spray, 
the location and number of fans has not been considered at 
this stage.  However, the control strategy discussed in this 
paper is independent of the method used for estimating the 
dwell time requirements and the treatment of the tunnel – 
in terms of the number of zones and temperature distribu-
tion within each zone.   
 In a conservative control strategy, assuming normally 
distributed thermal loads, (thermal mass ~ Normal(µ, σ)), 
the thermal load corresponding to µ + 4σ will be typically 
used to set the conveyor speed.  This speed would corre-
spond to the lowest required conveyor speed, or the maxi-
mum required dwell time for an individual piece.  It is to 
be noted that this setting would allow for the system to 
freeze atleast 99.99% of the pieces.  However, a significant 
number of the pierces will be over-frozen.  It is also likely 
that a small number of the pieces (less than 0.001%), 
whose thermal mass is greater than µ + 4σ will not be ade-
quately frozen.   Thus, in a conservative approach to con-
trol the tunnel freezing process, it is assumed that the criti-
cal design parameter is the thermal load corresponding to µ 
+ 4σ and that the operating tonnage is fixed.  Moreover, 
the conveyor speed in the tunnel is fixed, and corresponds 
to the highest required dwell time defined by the thermal 
mass, µ + 4σ.  For the different scenarios considered in the 
simulation, the ‘optimum’ operating tonnage observed for 
each trial will be compared to the tonnage corresponding to 
µ + 4σ of that trial (conservative approach).   
 An initial simulation run where the operating parame-
ters were fixed according to the conservative approach 
yielded 0.0009% of products that were not frozen, as can 
be expected from the properties of the Normal distribution.  
Even though, the percentage of unfrozen ‘products’ may be 
negligible in most cases, the emphasis is on the over-
freezing of a significant portion of the ‘products’ – more 
energy than required was spent on freezing most of the 
products since the operational parameters were set for the 
maximum anticipated thermal load.  This inefficient usage 
of energy will be reduced by adopting the proposed control 
strategy. 
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In order to achieve process control of the tunnel freez-
ing process, any of the following three methods can be 
adopted – (i) Vary the conveyor speed (keeping the operat-
ing tonnage constant) so as to accommodate the dwell time 
requirement of the most constraining entity in the tunnel at 
any given point of time  (ii) Vary the refrigeration rate 
(keeping the conveyor speed at a set value) depending on 
the thermal load on the freezer at any given point of time 
and (iii) Vary the refrigeration rate and the conveyor speed 
simultaneously.   

4 ESTIMATION OF CONTROL PARAMETERS 
USING SIMULATION 

Estimates on the cost and energy savings using an ‘intelli-
gent control’ approach and the ‘optimum’ values for the 
operational parameters for the tunnel can be obtained using 
simulation models, keeping in mind the underlying as-
sumptions in heat transfer and freezing time estimation 
models used in the simulation model.   Moreover, the 
simulation model will help to obtain a preliminary under-
standing of the effect of variation of the thermal mass 
(modeled as a single random number) for a fixed mean 
thermal mass on the performance of the freezing tunnel.  
An experimental design can be used to find the lowest op-
erating capacity required for the freezing tunnel so as to 
maintain the required throughput, ensuring that the process 
is always ‘in-control’.  

5 ANALYSIS USING SIMULATION MODELS 

In general, the strategy used for intelligent process control 
assumes that the operating tonnage of the freezer and / or 
the conveyor speed is ‘intelligently’ controlled depending 
on the most constraining entity’s (currently in the tunnel) 
dwell time requirement.  In the first phase the performance 
of the system under ‘intelligent control’ where the con-
veyor speed was ‘adaptively’ changed in accordance with 
the dwell time requirement, while keeping the operating 
tonnage of the freezer constant, was studied.  The objective 
was to identify the lowest feasible operating tonnage, 
which can be used along with ‘intelligent control’ of the 
conveyor speed to provide an “in-control” process.   In the 
second phase, the simulation model was used to compare 
the system’s performance when the freezer capacity is used 
as the intelligently controlled variable.   Theoretically, the 
total energy consumption in the two phases should be 
equivalent, assuming that there are no time delays involved 
in attaining the required temperatures whenever the refrig-
erant flow is altered.  In the third phase, the capacity of the 
tunnel was initially fixed at a level corresponding to the 
‘optimal’ tonnage level observed in the first phase.  How-
ever, the system had the flexibility to change the conveyor 
speed and the capacity depending on the dwell time re-
quirements of the entity entering the tunnel, the instantane-
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ous velocity of the conveyor, and the instantaneous capac-
ity of the tunnel.  If the dwell time requirement was found 
to be greater than a pre-specified value, the model was de-
signed with the flexibility to increase the capacity (ton-
nage) of the system, if the dwell time requirement ex-
ceeded a pre-specified value.   

6 PROCESS CONTROL BY VARYING 
CONVEYOR SPEED 

The simulation experiments were performed using 
AutoStat (with AutoMod 9.0) of Auto Simulations. The 
language permits user-written C language-like ‘functions’ 
and ‘procedures’ to implement the flow of an entity in the 
system through ‘processes’.  The specifics of the language 
and the code used for the model have not been discussed. 
 When an ‘entity’ (representing the product to be fro-
zen) is created by the simulation model, a value obtained 
from a random stream is assigned to an ‘attribute’ of that 
entity. The dwell time requirement is then calculated, 
based on the operating tonnage of the freezing tunnel (The 
required time (in seconds) is given by thermal mass (in 
Joules) / Operating Tonnage *3516.8).  This value is 
stored as another attribute. The current velocity of the con-
veyor is stored as a global variable.  The entity, before en-
tering the freezing tunnel checks the value of the global 
variable storing the value of the current speed of the con-
veyor.   
 If the required speed (length of freezer tunnel / re-
quired time), subject to velocityin_tunnel >= velocityinto_tunnel, 
for that entity is lower than that the current speed, the 
simulation model decelerates the conveyor to a speed cor-
responding to the required time of the current entity.  If the 
required speed is less than the current speed, no change is 
made and the entity continues to move into the freezing 
tunnel.  When an entity enters the freezing tunnel, the only 
change it can necessitate, is to decelerate the conveyor 
speed.  This is because if the entity is allowed to increase 
the speed, it may result in under-freezing one or some of 
the objects already in the tunnel.  A copy of each entity is 
maintained in an “order list” which essentially functions as 
a sorted array.  This copy of entities is utilized while de-
termining if the velocity needs to be changed when an en-
tity exits from the freezer.  Another attribute is used to 
keep track of the actual time interval for which the entity 
was in the freezer.  When an entity leaves the freezing tun-
nel, it checks if the time for which it was in the tunnel was 
equal to the required time (the former can never be less 
than the required time, since it will result in under-frozen 
objects).  If the two values are the same, it implies that the 
entity, which just exited from the tunnel, was the ‘con-
straining’ entity.   
 If that entity happens to be the constraining entity, the 
velocity of the conveyor can now be increased to a value 
corresponding to the next constraining entity from the ‘or-
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der list’ - a list is maintained in a way such that the entities 
are sorted in the descending order of the required dwell 
time.  Each time an entity exits the tunnel, its copy from 
the list is also deleted.  The required statistics are collected 
and the entity is ‘disposed’ after it travels a short section 
after the freezer. 
 The model input is in the form random stream for the 
thermal mass to be assigned to each of the entities.  The 
operating capacity of the tunnel (in Tons) and the TBA are 
the other design parameters.  The model collects statistics, 
which includes the throughput (to ensure that the process is 
“in-control”) to analyze the system’s performance, and the 
time spent by each entity in the system.  Even though the 
model was built using ‘generic’ logic, it is representative of 
the fundamental tasks that would be required to implement 
‘intelligent control’.  Any changes in the arrival patterns 
(TBA) can be easily implemented.  Moreover different 
freezing time estimation techniques can be incorporated in 
the model since the freezing time estimation is one of the 
several individual ‘modules’ in the control schema.  If the 
refrigerant flow needs to be intelligently controlled issues 
related to system responsiveness in terms of time-delay in 
attaining steady states will have to be considered.   

6.1 Experimental Design For Simulation 

The simulation runs were conducted for different values of 
TBA.  In this paper, the analysis is based on the runs with a 
TBA of  45 seconds for all the trials.  The objective of the 
experimental design was to analyze the system perform-
ance for different coefficient of variations for a fixed mean 
for the normally distributed thermal masses.  For each of 
the trials, the operating capacity was varied from that cor-
responding to thermal mass of µ + 4σ to that correspond-
ing to µ - σ. Steps of 0.5σ were considered in each sce-
nario.  Therefore, for each coefficient of variation, 11 runs 
were required.   The following table shows the different 
combinations that were analyzed using the simulation 
model.   
 The mean for the thermal loads was assumed as that 
corresponding to a load with a maximum dwell time of 90 
sec on a 10 Ton freezer.  It is likely that such a scenario 
may not be common in real-life situations.  For each of the 
nine coefficients of variation (standard deviation / mean), 
eleven scenarios were considered.  Each of the scenarios 
corresponded to a different operating capacity of the tun-
nel.  For each run, the objective was to find the minimum 
operating capacity (in the range of µ - σ and µ + 4σ) of the 
tunnel that would maintain the process in control for the 
given coefficient of variation.  
 
6.2 Discussion of Results 
 
The simulation results indicated that the minimum operat-
ing capacity for the distributions considered in the example 
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converged to that corresponding to µ + 2.5 σ.  This means 
that the system would be in control and would provide the 
same output when the freezer is operated at a capacity cor-
responding to µ + 2.5σ  using ‘intelligent control’ of the 
conveyor speed, as opposed to having a constant conveyor 
speed and operating the freezer at a higher capacity of the 
tonnage corresponding to µ + 4σ.   Depending on the stan-
dard deviation of the thermal mass, a minimum savings of 
10% on the operating tonnage was seen.     
 Table 1 summarizes the results from the simulation 
run.  The third column in the table provides the minimum 
operating capacity observed for each coefficient of varia-
tion for which the process was under control.  On analyz-
ing the results from all the simulation runs, it was observed 
that this value corresponded to the operating tonnage cor-
responding to the thermal load of µ + 2.5σ.   The total en-
ergy savings will be higher than that associated with the 
operating capacity if the efficiency of the cryogenic system 
(coefficient of performance) is also considered.  It has to 
be kept in mind that this result is not be applicable to all 
scenarios, but the methodology can be used to determine 
the minimum operating capacity of the freezing tunnel so 
as to obtain the required throughput, maintain the process 
in control, and at the same time provide fewer over-frozen 
and no under-frozen objects.   

 
Table 1:  Percentage Savings in Operating Capacity 
Using Intelligent Control 
Cof. Of 
Var. 

Conservative 
tonnage 

Min.  Capacity 
from Simulation  

Percentage Sav-
ings 

0.10 7.61 6.79 10.70 

0.15 8.69 7.47 14.04 

0.20 9.78 8.15 16.64 

0.25 10.86 8.83 18.73 

   0.30 11.95 9.51 20.43 

0.35 13.03 10.18 21.85 

0.40 14.12 10.86 23.05 

0.45 15.20 11.54 24.09 

0.50 16.29 12.22 24.98 

σ / µ. µ + 4σ. µ + 2.5 σ.  
 
 The benefits of ‘intelligent control’ were not limited to 
the savings in the operating capacity of the tunnel.  From 
the simulation results it was evident that the number of 
over-frozen (the actual dwell time was greater than the re-
quired dwell time) pieces were significantly reduced. In the 
conservative approach, as mentioned in an earlier section, 
it is still likely that a piece could be under-frozen.  Even 
though this probability is very small when 4σ limits are 
used, it is non-zero.  For a very large batch size, this num-
ber may assume some importance.  In the approach dis-
cussed above, no pieces will be “under-frozen”, since the 
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speed varies to accommodate the dwell time requirement 
of all entities.  Therefore, an ‘intelligent control’ approach 
will provide fewer over-frozen compared to a conservative 
approach based on 4σ design and guarantees that there will 
be no under-frozen products  

7 INTELLIGENT CONTROL OF FREEZER 
CAPACITY (TONNAGE) 

A similar approach was used to test the behavior of the 
model when the intelligently controlled variable was cho-
sen to be the capacity of the freezing tunnel (in Tons of re-
frigeration) instead of the conveyor speed.   The logic used 
in the model is identical to that used in the first model ex-
cept that the variable of interest is the freezing tunnel’s ca-
pacity.  For this model, it was assumed that the capacity 
changes would be accomplished instantaneously.  More-
over, the capacity requirement was calculated based on the 
thermal mass and a pre-specified dwell time.   

As can be predicted, the total energy consumption in 
the two models were found to almost identical.  Any dif-
ferences in the total energy consumption seen in the two 
models can be explained by the presence of approximation 
errors and variations in the random stream.  If the instanta-
neous capacity of the freezing tunnel is plotted against the 
instantaneous time, the area under the curve, with appro-
priate transformation of energy units, can be shown to be 
identical to the time-line of instantaneous conveyor veloc-
ity.   The results did not provide any additional information 
than that obtained from the previous phase, except that for 
the model discussed in this report, and the assumptions in-
corporated therein, intelligently controlling the conveyor 
speed or the freezer’s capacity can be equally effective.  
The ‘optimum’ energy consumption for the thermal load 
distribution and TBA considered in the model corre-
sponded to that of operating the freezer at a tonnage 
equivalent to 2.5 standard deviations above the mean and 
intelligently controlling the conveyor velocity according to 
the dwell time requirements.  However, this strategy may 
not be a feasible one, since the model assumes that there 
are no time-delays in attaining the steady state conditions 
whenever the refrigerant flow is altered.   

8 PROCESS CONTROL BY VARYING CONVEYOR 
SPEED AND FREEZER TONNAGE 

In the third phase, the simulation model, was permitted to 
vary the conveyor speed and the tunnel capacity.  As men-
tioned earlier, the system had an additional ‘critical’ deci-
sion parameter - a threshold dwell time.  An entity whose 
dwell time surpassed this threshold will require an increase 
in the refrigerant flow (tonnage).  The operating capacity 
of the tunnel was initially fixed at a level corresponding to 
the ‘optimum’ level observed from the first phase, i.e., 
tonnage corresponding to a thermal mass of µ + 2.5σ for a 
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pre-specified dwell time requirement for the maximum 
thermal load. The threshold dwell time requirement re-
quired to trigger the changes in capacity of the tunnel was 
specified as the time required by a load equivalent to µ + 
2.5σ to be frozen in a freezer set at µ + 4σ.  In order to 
study the system’s performance when intelligently con-
trolled using two parameters and to identify the ‘optimum’ 
energy usage, the effect of four different initial settings for 
the operating tonnage of the tunnel were studied using 
simulation. During each simulation run, the time at which a 
change in capacity occurred and the resulting value of the 
capacity was written in a file to be used in determining the 
total energy consumption.    
 Based on the simulation runs, it was observed that for 
the TBA and thermal load distribution considered in the 
model, it was seen that the system was “in-control” at op-
erating levels corresponding to the thermal load of µ + 
2.0σ.  It was also observed that the total energy consumed 
in the simulation runs in phase 3 were “slightly” less than 
that seen in the first two phases.  It needs to be emphasized 
that the assumptions of zero time delays were incorporated 
in this analysis too, and that the relaxation of that assump-
tion may change the comparison of the control strategies.  
Table 2 summarizes the results from the simulation runs. 

 
Table 2:  Comparison of Control Strategies 

COF. 
OF 
VAR 
 

  
 
 
(2) 

 
(3) 

 
 
 
(4) (5) 

0.10 7.61 10.70 10.98 13.60
0.15 8.69 14.04 14.14 16.45
0.20 9.78 16.64 16.7 19.44
0.25 10.86 18.73 18.68 22.44
0.30 11.95 20.43 20.33 23.83
0.35 13.03 21.85 21.78 24.93
0.40 14.12 23.05 23.13 25.35
0.45 15.20 24.09 23.95 26.89
0.50 16.29 24.98 24.93 27.76
σ / µ. TONS  

 
 Columns 3, 4 and 5 represent the energy savings when 
conveyor speed, refrigerant flow, and both variables, are 
used as the control parameters respectively.  Column 2 
represents the conservative tonnage estimate using 4-sigma 
limits 

9 CONCLUSIONS 

An initial approach to modeling the tunnel freezing proc-
ess, identifying the factors for ‘intelligent control’, and es-
timating operational parameters using simulation has been 
discussed in this paper.  The two variables considered for 
‘intelligent control’ are the conveyor speed and the operat-
ing tonnage of the freezer.  Computer simulation was used 
to test the performance of the system for different thermal 
894
load distributions and compare the results to those associ-
ated with the conservative approach.  The intelligently con-
trolled variables in each of the three scenarios were the 
conveyor speed, operating tonnage, and both operating 
tonnage and conveyor speed respectively.   

An experimental design considering different coeffi-
cients of variations for the normally distributed thermal 
masses were used for study the system’s performance us-
ing simulation.  For each coefficient of variation, the 
minimum required operating capacity such that the process 
is in control was determined.  For the scenario discussed in 
the paper, it was found that the minimum required operat-
ing tonnage corresponded to the thermal load 2.5 standard 
deviations more than the mean implying that a potential 
savings corresponding to the required capacity for 1.5 
standard deviations of the thermal load (µ + 2.5σ instead 
of µ + 4σ) could be achieved.  It was seen that higher the 
variation of the thermal loads, better the performance of 
‘intelligent control’ with respect to conservative approach 
of using 4σ limits.  Equivalent results were seen in the sec-
ond phase where the intelligently controlled variable was 
the operating tonnage instead of the conveyor speed.  The 
savings in energy consumption when both the control vari-
ables were intelligently controlled were seen to be higher 
than those seen in the first two phases.  However, the effort 
required to monitor and control two variables at the same 
time may offset the advantage.  Even though, it cannot be 
stated that the µ + 2.5σ limit for ‘intelligent control’ would 
hold for all situations, the simulation model has demon-
strated the potential benefits of using ‘intelligent control’.  
A “closed form” solution, if such a solution exists, for 
identifying the ‘optimum’ operating capacity of the tunnel 
was not developed.  Apart from the energy and cost sav-
ings, ‘intelligent control’ ensures that absolutely no object 
is under-frozen and that a significantly fewer number of 
objects are over-frozen.   

Though the analysis was performed on a single zone 
tunnel, it is felt that the approach will not be different for a 
multi-zone tunnel, since the same difference equations can 
be used recursively.  Any changes in the methods used for 
freezing time estimation will also not necessitate signifi-
cant changes in the operating logic of the simulation model 
with respect to its use as a tool for control.  By building a 
more detailed model incorporating the above factors and 
other heat transfer specifics such as the losses between the 
refrigerant system and its ambience, the efficiency of the 
refrigerant system, a more reliable estimate on the potential 
savings can be attained.   
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