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ABSTRACT 

Modelling human interaction and decision-making within a 
simulation presents a particular challenge.  This paper de-
scribes a methodology that is being developed known as 
‘knowledge based improvement’.  The purpose of this 
methodology is to elicit decision-making strategies via a 
simulation model and to represent them using artificial in-
telligence techniques.  Further to this, having identified an 
individual’s decision-making strategy, the methodology 
aims to look for improvements in decision-making.  The 
methodology is being tested on unplanned maintenance 
operations at a Ford engine assembly plant. 

1 INTRODUCTION 

Most operations systems include significant elements of 
human decision-making and interaction.  A manufacturing 
plant may involve any number of manual processes, and 
human decision-making may affect many aspects of the 
plant’s operation such as scheduling of production and 
maintenance operations.  The situation is normally more 
exaggerated in service operations where service personnel 
interact with customers. 

Modelling these elements of an operations system pre-
sents a number of challenges.  Most simulation tools do not 
provide a full set of functions that would be useful for 
modelling human behaviour.  A more fundamental chal-
lenge is determining the behaviour of the human actors 
within the operations system.  Further to this, the purpose 
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of the simulation exercise may be to establish if the human 
decision-making process could be improved.  This requires 
a methodology for determining, modelling and looking for 
improvements in human interaction. 

The purpose of this paper is to outline a methodology 
that is being developed to help model and improve human 
decision-making.  The methodology, known as ‘knowledge 
based improvement’, is based on the use of visual interac-
tive simulation (VIS) with artificial intelligence (AI) ap-
proaches, particularly neural networks and expert systems.  
The viability of the concept is being established by model-
ling an actual engine assembly facility at a Ford plant in 
Wales.  Following a brief review of previous work on 
modelling human decision-makers, the background to the 
Ford case study is described.  The stages in the knowledge 
based improvement methodology are then outlined, before 
progress to date on its implementation is described. 

2 SIMULATING THE HUMAN  
DECISION-MAKER 

The typical approach to representing human decision mak-
ing in simulation models is to try to elicit the decision rules 
from the decision maker.  In some cases this amounts to 
little more than a guess on behalf of the modeller.  Follow-
ing this, the rules are included in the model using the con-
structs of the simulation language or simulator.  This nor-
mally requires the use of a series of ‘if’, ‘then’, ‘else’ 
statements, which can result in an excessive amount of 
code that is difficult to interpret. 
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One approach to overcoming these problems might be 
to use AI to represent the human decision maker, and link 
it with a simulation model.  Indeed, some have already at-
tempted to do this (Flitman and Hurrion, 1987; O’Keefe, 
1989; Williams, 1996; Lyu and Gunasekaran, 1997, Robin-
son et al., 1998).  This could be implemented in two ways: 
 

• elicit the decision rules from the expert and repre-
sent them within an expert system 

• use the simulation model to prompt the expert to 
make decisions, building up a set of examples 
from which an AI system could learn 

 
These correspond to the two fundamental approaches 

to knowledge acquisition: elicitation by human knowledge 
engineer and machine learning from examples, respec-
tively.  The first approach would employ the constructs of 
an expert system and so make it easier to accurately repre-
sent the decision process than using simulation language 
constructs.  It should also be easier to interpret and easier 
to change since expert systems are specifically designed to 
facilitate this.  In this way the approach should aid model 
development and improvement to decision-making.  What 
it does not provide, however, is a simple means for knowl-
edge elicitation.  This remains a well-known problem in AI 
generally (Waterman, 1986).  It is in the second approach 
where the link to a simulation model could provide signifi-
cant advantages.  Most work on machine induction (e.g. 
Hart (1987)) treats the set of examples as somehow 
“given”, and devotes little or no discussion to the process 
of obtaining the examples.  By getting the simulation 
model to present the human decision maker with realistic 
conditions and asking for a decision, a set of examples 
could be obtained at an accelerated speed (assuming the 
model runs faster than real-time!).  In this way the ap-
proach acts as an aid to obtaining input data, that is, the 
process by which a human decision-maker works. 

3 CASE STUDY: FORD BRIDGEND  
ENGINE ASSEMBLY PLANT 

The Ford engine plant at Bridgend is one of the main pro-
duction facilities for the ‘Zetec’ petrol engine.  The plant 
consists of a number of transfer lines (Ladbrook, 1998) that 
feed the main engine assembly line.  In engine assembly, 
blocks are placed on a ‘platten’ and pass through a series 
of automated and manual processes.  For the purposes of 
this research, the maintenance operations on a self-
contained section of the engine assembly line are consid-
ered. 

Prior to this research one of the authors (Ladbrook) 
had already developed a simulation model of the complete 
engine assembly facility.  The model, developed in the 
WITNESS simulation software (Lanner Group, 2000), was 
used to identify bottlenecks and to determine viable operat-
914
ing alternatives.  The maintenance logic in the model as-
sumed that when a machine fault occurred, the decision 
would be to make an immediate repair.  Random sampling 
was used to determine the skill level of the engineer re-
quired to service the fault.  These assumptions were con-
sidered to be adequate for the purposes of the study that 
was performed. 

In the early stages of this research one of the authors 
(Alifantis) spent some time observing the production facil-
ity and in discussion with plant engineers.  This showed 
that reality is somewhat different from what is represented 
within the simulation.  Although the obvious action to take 
when a machine breaks down is to repair it immediately 
(RI) this may not always be the most appropriate action for 
a variety of reasons: 
 

• Inappropriate: If there is a long queue of parts 
downstream from the machine requiring repair, 
then immediate repair may not be the most appro-
priate action, and the maintenance engineers may 
be better deployed elsewhere.  

• Insufficient: Repairing a machine takes time.  
Meanwhile the rest of the production facility con-
tinues to process parts and to move them around.  
This means that during the repair of the machine 
queues may occur upstream, while downstream 
the process will be starved of parts.  Simply re-
pairing the machine may be insufficient to reach 
target throughput. 

• Impossible: Sometimes it may not be possible to 
repair the machine immediately since all the 
maintenance engineers are busy.  There is always 
the option to interrupt the repair of another ma-
chine and so to release one of the engineers, but 
this may not be the best course of action.  Further 
to this, on occasions spare parts required for the 
repair of the machine may not be available. 

 
From the above it is clear that apart from repairing 

immediately other policies should be considered when a 
machine breaks down. 

Stand-by (SB) can be considered as an alternative to 
repair immediately.  In this case an engineer processes the 
parts manually and pushes them to the next machine 
through the conveyor.  In general it is not possible to repair 
the machine at the same time as stand-by is being operated 
because of space restrictions.  The type of fault, the extent 
of queues and labour availability among other attributes are 
the key determinants of this decision.  
 Stop the line (SL) is another option, which might be 
considered as a complement or substitute to repair immedi-
ately.  In this case the maintenance supervisor (‘group 
leader’) should decide whether it is useful to stop the 
whole line or part of it.  This might be used, for instance, to 



Robinson, Alifantis, Hurrion, Edwards, Ladbrook, and Waller 
 

avoid a build up of work-in-progress in a section of the 
line. 
 Do nothing (DN) is an alternative decision that might be 
the desired course of action under certain circumstances, for 
instance, close to the end of a shift.  Obviously this decision 
must be revised eventually and the machine repaired later.  
 Beyond the above list of options, the group leader may 
want to revise the decision for a particular machine at a 
later point.  For example, the group leader might decide to 
stop the repair of a machine because he needs the labour to 
repair another machine that is down.  

Although it is possible to identify the types of deci-
sions the group leaders might make, it is another to deter-
mine how those decisions are taken.  In determining what 
course of action to take the group leaders rely upon their 
knowledge and experience (tacit knowledge).  Direct ques-
tioning of group leaders showed they are unable to directly 
express this knowledge.  Therefore, the methodology that 
underpins this research, first aims to elicit information on 
the group leaders’ decision-making strategies and then to 
look for ways to improve their decision-making.  This 
methodology is now described. 

4 METHODOLOGY: KNOWLEDGE  
BASED IMPROVEMENT  

The methodology outlined in this paper, known as knowl-
edge based improvement, consists of five key stages: 
 

• Understanding the decision-making process 
• Data collection 
• Determining the experts’ decision-making strate-

gies 
• Determining the consequences of the decision-

making strategies 
• Seeking improvements 

 
Each of these stages is now described. 

4.1 Stage 1: Understanding the  
Decision-Making Process 

The first step in determining the experts’ decision-making 
strategies is to identify the component parts of the deci-
sion-making process: decision variables, decision options, 
attribute variables and attribute levels.  For instance, in a 
simple maintenance scheduling problem where there are 2 
actions, that are not mutually exclusive, and 2 engineers 
who can be asked to act if they are available; as such, there 
are 4 decision variables.  The first 2 variables correspond 
to the actions and the other 2 to the engineers.  Each of 
them has 2 alternative decision options: the action can ei-
ther be taken (denoted 1) or not taken (denoted 0); the en-
gineer can either be asked to act (denoted 1) or not asked to 
act (denoted 0). Assume, for the simplicity of the example, 
915
that the decisions are determined taking into account an es-
timate of the repair time and the type of fault.  It is clear 
that there are two attribute variables in the decision-
making process. The first attribute can take the value of 
any real number that represents the estimated repair time, 
albeit that in practice it is likely to be rounded to at least 
the nearest whole number.  The second attribute (type of 
fault) can take values that represent the code of any par-
ticular fault.  The range of estimated repair times and num-
ber of fault codes define the attribute levels. 

Although interviews and discussion with the decision-
makers can reveal some information about the decision-
making process, usually the human expert cannot explicitly 
identify and list the decision-making components.  To do 
so the modeller should observe the human experts as they 
take decisions. In addition, in order to build a complete 
model of the decision-making process the modeller may 
need to make assumptions by considering other rational 
decision that can be taken by the decision-maker. 

A decision-making process can be represented as two 
row vectors.  The first vector corresponds to the decision, 
with each element representing a decision variable (d).  
The second vector corresponds to the attributes of the deci-
sion, with each element representing an attribute variable 
(a).  In the context of the simple maintenance scheduling 
example described above, the decision-making process can 
be represented as follows:  
 

( )ijji f AD =,  (1) 
 
Where: 
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The subscript i indicates the time at which the decision 

was taken and the subscript j indicates the human expert that 
took the decision.  The function f represents the decision-
making strategy of the individual expert, taking into account 
the attributes of the vector Ai.  The purpose of stages 1 to 3 
of the methodology is to determine the function f by apply-
ing AI techniques to a set of collected example decisions. 

4.2 Stage 2: Data Collection 

Having identified the decision components, the next step in 
determining the decision-making strategies is to collect ex-
amples of decisions from each expert.  Each example in the 
data set should include the value of each decision and at-
tribute variable.  The data set should have the form of two 
matrices: Dj and A.  Dj represents the decisions made by 
decision-maker j under specific attribute values (identified 
in A).  Each row of the matrix Dj corresponds to the row 
vector Di,j, that is, the decisions taken at time i.  Each col-
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umn in the matrix D corresponds to a decision variable.  
Each row of the matrix A includes the attribute values at a 
particular decision point (i).  Each column corresponds to 
an attribute variable.   

For the simple decision-making process outlined above, 
the data set to be used in determining the decision-making 
strategy of expert j should have the following form: 
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One method of collecting these data would be through 

observation of the experts at work.  This, however, would 
be extremely time consuming, particularly if the elapsed 
time between decision points is large.  It would also be dif-
ficult to record the full set of many attribute values at a 
specific moment in time, and because the values are likely 
to change continuously, inaccuracies would occur if there 
were any delay.  As a result, the methodology uses a VIS.  
The expert interacts with a visual simulation of the system 
in question.  The simulation model stops at a decision point 
and reports the values of the attribute variables.  The expert 
is then prompted to enter his/her decision to the model.  
The model records the value of each decision variable and 
attribute variable to a data file.  As a result a set of values 
for the matrices Dj and A are collected. 

The methodology suggests the use of VIS for a num-
ber of reasons.  First, it is less time consuming than obser-
vation, because the simulation runs much faster than real 
time.  Second, because the simulation stops at a decision 
point, it is possible to capture all attribute values at that 
moment in time.  A third benefit is that a simulation run 
can be replicated exactly, enabling the system state to be 
interrogated further at a later date, should this be required.  
For instance, it may become apparent that the decision-
maker takes into account attributes that have not previously 
been identified.  This also provides the benefit that differ-
ent decision-makers can be presented with the same series 
of attribute values. 

Of course the use of VIS as a data collection method is 
not free of problems.  Three specific difficulties arise.  
First, the model needs to contain and report all the key at-
tributes in the decision-making process.  This probably re-
quires a very detailed model which in itself could be time 
consuming to develop.  Accurate data, required to support 
such a detailed model, may not be available either.  A sec-
ond problem is the need to involve the human decision-
maker in entering decisions to the model.  A very large 
number of example decisions may be required to obtain a 
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full set of data, which in itself could be time consuming.  A 
third problem is whether the human decision-makers are 
likely to take realistic decisions in a simulated environ-
ment.  It is quite likely that they will take greater risks, as 
there are no real consequences to their decisions. 

Anticipating the second problem, the methodology sug-
gests the collection of a limited number of decision exam-
ples using the VIS.  This data set is not expected to be large 
enough to be able to determine the decision-making strategy 
of an expert.  It is believed, however, that it could be used to 
train a neural network model.  This in turn could be used to 
increase the example set Dj and A.  A feed forward neural 
network with 3 layers is believed to be computationally suf-
ficient for this purpose.  A separate neural network would, of 
course, need to be trained for each decision-maker. 

4.3 Stage 3: Determining the Experts’  
Decision-Making Strategies 

Having collected a series of examples using the VIS and 
the neural network model, the next step is to use the data in 
the matrices Dj and A to determine the decision-making 
strategies of the individual experts.  A decision-making 
strategy can be represented by the use of a decision tree; a 
separate decision tree being constructed for each decision-
maker.  Experts systems software is capable of construct-
ing a decision tree from a set of examples, such as those 
collected via the VIS and neural network.  One such 
method for constructing a decision tree is Quinlan’s ID3 
algorithm; see, for example, Mingers (1986).  The algo-
rithm prioritises the attributes according to the degree to 
which they match the data set with the correct decisions.  

Figure 1 shows an example of such a decision tree for 
the simple maintenance problem described above.  This as-
sumes that each attribute has only two levels L1 and L2. 

 

[d1 d2]=

d1

If  a1=L1 THEN

d2

If  a2=L1 THEN d1=…

If a2=L2 THEN d1=…

If a1=L2 THEN
If a2=L1 THEN d1=…

If a2=L2 THEN d1=…

If a1=L1 THEN
If a2=L1 THEN d2=…

If a2=L2 THEN d2=…

If a1=L2 THEN
If a2=L1 THEN d2=…

If a2=L2 THEN d2=…  
 

Figure 1: Decision Tree for Simple Maintenance 
Scheduling Example 
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4.4 Stage 4: Determining the Consequences  

of the Decision-Making Strategies 

Having determined the decision-making strategies, that is, 
a decision model fj for each expert j, the next step in the 
knowledge based improvement methodology is to assess 
and compare the performance of each expert.  The ultimate 
performance measure in most manufacturing facilities is 
the level of throughput. This means that each expert can be 
assessed on the basis of the throughput that is achieved in 
the simulation when the decision-making process is con-
trolled using his/her decision-making strategy.  To predict 
the throughput, conditional to each human expert, the VIS 
can be linked with the expert systems software (or, indeed, 
the neural network). 

The expert system is used in place of a decision-maker 
to interact with the simulation.  Each time the simulation 
reaches a decision point the simulation stops and the expert 
systems software is invoked.  The value of each decision 
attribute is passed from the simulation to the expert system 
software.  In turn, the expert system returns the values of 
the decision variables to the simulation before the simula-
tion run is continued.  For a description of how to link a 
simulation package with expert systems software see Rob-
inson et al (2001). 

When the simulation has reached the end of the run, 
the throughput of the production line provides an indicator 
of the performance of the expert whose decision tree was 
used during the run.  Running the simulation under each 
expert’s decision-making strategy for a number of replica-
tions to eliminate stochastic variability, enables the most 
efficient strategy to be found by comparing the output from 
each run. 

Of course having identified the most efficient expert 
does not mean that the most efficient strategy has been 
found since there is no guarantee that the best current strat-
egy is the optimal one.  Although the best strategy may not 
be optimal it can still be used to train less efficient deci-
sion-makers, providing improvements in overall perform-
ance.  

4.5 Stage 5: Seeking Improvements 

The last stage in the methodology uses the decision-
making strategies of the most efficient experts as starting 
point to search for an improved strategy.  The search could 
be made informally by combining strategies and by making 
incremental changes.  Alternatively, heuristic search meth-
ods could be implemented, in order to seek for improve-
ments.  In each case, the alternative strategies can be tested 
by running them with the simulation model in order to de-
termine their effectiveness.  
917
5 IMPLEMENTING THE METHODOLOGY ON 
THE FORD ENGINE ASSEMBLY PLANT  

Having described the knowledge based improvement 
methodology, the progress in applying it to the Ford engine 
plant at Bridgend is discussed.  Although there is a simula-
tion model of the line, no study has been undertaken to 
evaluate the effectiveness of alternative maintenance 
strategies.   

As already stated, the methodology is being imple-
mented by considering a self-contained section of the pro-
duction facility.  In this section a team of 5 engineers (2 
skilled, 2 semi-skilled and 1 unskilled engineer) perform 
unplanned maintenance, among other tasks. One of the 
skilled engineers acts as group leader for that part of the 
line.  One of his duties is to decide what to do when a ma-
chine breaks down.  When a failure occurs a message is re-
ceived via a pager that is carried at all times.  The message 
reports the name of the equipment and a short description 
of the fault.  After an inspection of the machine the group 
leader decides what action is the most appropriate.  The 
main options available are the following: 

 
SB:  Stand-by  
RI:  Repair immediately 
SMLB: Stop the main line before the machine 
SMLA: Stop the main line after the machine  
SSB: Stop the section before the machine  
SSA: Stop the section after the machine 

 
Alternatively, the group leader may decide to do noth-

ing, which is equivalent to a null response to all these op-
tions. 

Having decided what course of action to take, the 
group leader should decide who must act. Available engi-
neers who can be asked to act if they are available are the 
following:  

 
L1:  Group leader 
L2:  Second skilled engineer (‘M/Elec’) 
L3:  Semiskilled engineer 1  (‘IMS1’) 
L4:  Semiskilled engineer 2 (‘IMS2’) 
L5:  Unskilled engineer. 

 
Given the above discussion the row vector Di,j in this 

particular decision-making process should include the fol-
lowing elements:  
 

SB, RI,  SMLB,SMLA, SSB, SSA, L1, L2, L3, L4, L5 
 
Each element of the above matrix represents a decision 

variable that can take the value 0 or 1. Zero means that the 
decision-maker is not taking the particular action or that 
the particular resource will not be asked to act.  On the 
contrary, 1 means that the decision-maker is taking the par-
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ticular action or he has decided to ask the particular engi-
neer to act.  So, for example, if the group leader (j=1) in his 
first decision decides to repair immediately, and he also 
decides that the person who should do this is the second 
skilled engineer, then the row vector D1,1 should be the 
following: 

 
[ ]0   0   0   1   0   0   0   0   0   1   01,1 =D  (4) 

 
Having identified the decision variables the next step 

was to find out which attributes are taken into account 
when making a decision.  According to discussion with the 
group leader, and observation of working practices, the fol-
lowing attributes are taken into account when making a de-
cision: 

 
M:    Machine number 
TF:    Type of fault 
NPP:  Number of parts produced this shift 
T:    Time 
ERT:  Estimated repair time 
ASP:   Availability of spare part (0 – available, 

1 – not available) 
NOMD:  Number of other machines down 
LA1…LA5: Labour availability engneer1…engineer5 

(0 – available, 1 –not available) 
MA1…MAk: Status of machines (0 – available, 1 – 

broken down) 
 
This means that the attribute vector Ai will have the follow-
ing elements: 
 

Ellement Type 
M Integer 
TF Integer 

NPP Integer 
T Real 

ERT Real 
ASP 0/1 

NOMD Integer 
LA1… LA5 0/1 
MA1…MAk 0/1 

 
For example, assuming that at the first decision point the 
system has the following attribute values: 
 

• Machine 1130 has broken down,  
• The fault type code is 300 
• The number of parts produced this shift is 549 
• The time is 13:23 
• The estimated repair time is 5 minutes  
• The required spare part is available 
• No other machines are down  
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• All engineers are available  
• All machines are available 
 

The value of each element of the attribute vector A1 should 
be the following: 
 

[ ]   ...   0   0   0   0   0   0   0   0   0   0   0   5.0   13.23   549   300   11301 =A
(5) 
 

Having identified the components of the decision-
making process, the next step is to collect example deci-
sions from the decision-makers via the simulation model.  
As already stated, the original simulation model assumed 
that when a machine breaks down the decision is to repair 
it immediately.  As a result, the model required modifica-
tion to enable alternative decisions to be entered and im-
plemented within the simulation.  The new version of the 
simulation takes into account the decision-maker and stops 
when a decision point is reached, that is, when a machine 
breaks down.  A Visual Basic front end is invoked and in-
forms the user about the state of the system by reporting all 
the relevant attributes.  The front end is shown in Figure 2.  
The top part of the window provides information on the 
decision attributes, the lower part asks for input regarding 
the decisions that are to be taken.  The model user can also 
view the status of the model via the visual display of the 
production facility. 

 

 

Figure 2: Visual Basic Front End for the Ford Engine 
Assembly Model 

 
Once the user has made his/her decision, the simula-

tion run continues by pressing the proceed button.  The 
simulation model then continues to run with the decision 
implemented within the model.  For example, if the deci-
sion was to stop the line before the machine, the simulation 
continues but it does not process the parts which are in the 
part of the line before the broken machine. The simulation 
is capable of recording the attribute row vector Ai and the 
decision matrix Di,j in a data file as the model runs. 

To date the model has been used for initial data collec-
tion sessions.  In these ‘test sessions’ a number of prob-
lems were identified.  For instance, in the first data collec-
tion session the human expert found that the model does 
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not report extremely important attributes such as the esti-
mated repair time for each fault.  In the second session it 
was found that the breakdown scenarios reported were very 
similar (the estimated repair time for all of them was very 
short), so the decision by the human expert was the same at 
every decision point (repair immediately).  As a result of 
these findings, improvements have been made to the 
model: the estimated repair time is now reported, and the 
trace data on breakdowns has been adjusted to provide a 
wide range of scenarios.  The next step is to collect exam-
ple decisions from a number of experts before moving to 
the AI stage in the methodology. 

6 FINDINGS AND DISCUSSION 

Having almost completed the stage in the methodology that 
requires the use of a VIS for collecting example decisions, 
a number of strengths and weakness in the methodology 
have been identified. 

First of all it has been found that VIS is probably a 
unique way of obtaining data about decisions in a reason-
able time interval, since the simulation runs faster than real 
time.  In addition, VIS is a very efficient approach for data 
collection since it is an experimental environment where 
the modeller can control the values of the attributes that are 
generated and reported to the user of the model.  This 
means that the modeller can guarantee that a wide range of 
attribute value combinations can be created during a data 
collection exercise.  There is no such control in a real life 
data collection exercise. 

Although the approach is quite promising, some prob-
lems have been identified in its application.  First of all, it 
is difficult to isolate and understand the decision-making 
surrounding unplanned maintenance since the team per-
forms many other tasks as well.  Indeed, the team find it 
difficult to articulate how they make decisions concerning 
only this part of their work.  Another challenging point is 
the fact that the simulation model may not be capable of 
reporting all the attributes that the decision-maker takes 
into account.  In the above application, for example, the 
decision-maker takes into account the physical condition of 
the machine.  This attribute is all but impossible to simu-
late in a model of this nature. 

7 CONCLUSION 

The paper has explained the development of a methodol-
ogy that can be used to evaluate the effectiveness of deci-
sion-makers.  In addition it proposes a method to improve 
the current decision-making practices based on the experts’ 
extant knowledge.  The methodology described in the pa-
per includes an innovative data collection method based on 
the use of a VIS combined with a neural network algo-
rithm. 
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The methodology is being tested with unplanned 
maintenance operations in a Ford engine assembly line.  
Initial data on example decisions has been collected via a 
simulation model.  The next stage in the research is to col-
lect a full set of data for different maintenance supervisors.  
Following this, the use of AI for learning and improving 
current decision-making strategies is to be explored. 
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