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ABSTRACT 

Simulation model is usually developed as a one-time use 
analytical model by a system analyst (usually from external 
firm) rather than for a routine and interactive use by a shop 
floor engineer. This is because it usually takes longer time 
to generate a result from the simulation, and the simulation 
model of manufacturing system is usually too sophisticated 
and time-consuming to use as an interactive tool by the 
manufacturing/production engineer. A CAMS reduces this 
complication by encapsulating the ‘complicated-logic’ and 
automating the ‘tedious data-acquisition’ with a more user-
friendly interface like a spreadsheet or database input form. 
This paper describes how CAMS can automatically gener-
ate a simulation model; specifically, techniques and issues 
to structure the model to hide those tasks, so that it is a 
user-friendly interactive decision support with minimal 
amount of automation code. The paper concludes with a  
capacity analysis example from the real industry. 

1 INTRODUCTION 

Simulation is a powerful manufacturing systems analysis 
tool that can capture complicated interactions and uncer-
tainties in the system. However, 

Performance of a manufacturing system, specifically 
capacity and throughput, with high product mix is typically 
difficult to understand.  In other words, the performance of 
a manufacturing system, even in a specific area, is usually 
affected by system dynamics as bottlenecks move regularly 
in these systems [Goldratt and Cox 1992]. These dynamics 
could be the change in product mix, equipment breakdown 
and maintenance, worker schedules, or even process plans.  
A normal linear mathematical model can give only a rough 
performance estimate while ignoring many important fac-
tors that may effect the system performance. A simulation 
model is a sophisticated tool that can take into account 
many system dynamics. However, a simulation model is 
usually built for a one-time use by external consultant. This 
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is because production engineers usually spend most of their 
time prioritizing production on the shop floor using ad hoc 
solutions (observation).  

Furthermore, production engineers though posses ana-
lytical skill, they are lacking of either knowledge or interest 
in the programming task. This habit leaves the sophisticated 
analytical model, such as simulation model, as a last re-
source for them. The model usually receives attention only 
when the manufacturing system having excess-capacity (en-
gineers have free time) that rarely happens in the industry. 

The concept of CAMS model allows the simulation 
specialist to build a sophisticated model that can be easily 
reused by the plant engineers on a regular basis. The model 
hides the complicated logic and the tedious data acquisition 
task from the user. The complicated logic includes the detail 
that captures the interactions among human and machines as 
well as production decision logic. The tedious tasks include 
redefining experimental elements as well as animation ele-
ments. The model must be built such that the simulation 
logic is separated from the system information including 
manufacturing resource data, process plans, and deci-
sion/control parameters. Therefore, the production engineers 
can interactively change the system information including 
the production strategies, add or subtract resources, and 
change in product mix in the Master Production Schedule 
(MPS) without having to deal with the programming task. 
The separation of model logic from the system information 
benefits not only the user side but also the developer side, 
because it eliminates the automation code required to update 
the model logic when the system information changes. 

Due to the complexity in the manufacturing system 
and the nature of discrete event simulation, several issues 
arise when separating system information from the model 
arise when separating system information from the model 
logic. The techniques and associated issues from the author 
experience will be discussed in section 6 of this paper us-
ing example scenario described in section 3. Section 2 pro-
vides the reviews and comparisons of passed works. Sec-
tion 4 describes a typical CAMS system. Finally, section 7 
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summarizes the discussion and emphasizes the value of 
CAMS concept. 

2 LITERATURE REVIEW 

Son, Jones, and Wysk (1999) at the National Institute and 
Standard and Technology (NIST) have developed a meth-
odology for automatically generating simulation models 
for specific manufacturing scenarios. In this methodology, 
a neutral language for a specific scenario is developed to 
semantically describe simulation model. Simulation model 
is then generated by a model translator, which translates 
the neutral description into syntax of specific simulation 
packages. The purpose of the research is to reduce the 
simulation modeling time as well as to study the issues of 
transferring a simulation model between simulation pack-
ages using a neutral language. The generated model is usu-
ally an almost finished model if the model logic is simple 
or a partially finished (with all necessary experimental 
elements defined) when the model logic is sophisticated. 
This is because formally describing a sophisticated behav-
ior of a system is not different from writing a low-level 
program despite the third generation programming lan-
guage is available. Therefore, the automatic generation of 
simulation will not very well facilitate simulation for inter-
active use. In other words, it is not efficient to generate a 
new simulation model every time some system information 
changes.  The automatic simulation generation is rather a 
suitable front-end tool for creating a proprietary simulation 
model. The neutral language should serve as a back-end 
tool for archiving and transferring simulation model be-
tween software packages. 

Simulation model is usually used for studying the sys-
tem at the design time and is only reused for either as 
simulation-based control (Smith et. al 1994) or simulation-
based scheduling (Harmonosky 1995). There are a number 
of researches that discuss about using simulation model to 
understand the system characteristics when the system is in 
operation. These researches usually focus only on capacity 
as relating to the number of resources and layouts associ-
ated with the material handling. In fact, several other fac-
tors effect the capacity, such as process plan and rules gov-
erning operational decisions (e.g., what should and can be 
put in the same batch). These factors are rather very impor-
tant in a large manufacturing system where uncertainties 
and high product mix are normal. Off-line interactive 
simulation is an effective tool to study these kinds of pa-
rameters, where system is not fully automated and real-
time control does not exist. 

Object-oriented simulation has emerged as a prevalent 
topic in academic research yet slight commercial imple-
mentations present (Narayanan et al. 1998). Researchers in 
this area believe that object-oriented program requires ro-
bust abstractions which takes time to develop. Thus, it is 
not appropriate to a small simulation project. Until user-
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friendly interface for object-oriented simulation is avail-
able, this object paradigm will not be prevalent in this par-
ticular industry. The object-oriented simulation is attractive 
in its mechanism such as inheritance, polymorphism, en-
capsulation, and more importantly the code reuse of com-
ponent-based simulation entities. Object-oriented simula-
tion still requires intensive coding; thus, providing 
apparent benefits (the code reuse) to the developer side 
more than to the end user side. 

3 AN EXAMPLE SYSTEM 

3.1 Introduction to the Example  
Manufacturing System 

In this section an example case study from an Alcoa Inc. 
manufacturing system is described for using in the subse-
quent discussions. Due to the legal related reason, Nittany 
Manufacturing (NM) will be used as a facsimile of the real 
system. In addition, in order to disguise the project of the 
company, the associated products will remain anonymous. 

Nittany Manufacturing (NM) produces products that 
need to go through a batch furnace annealing process after 
several upstream processing. The products although have 
similar shape, they vary by different mechanic of material 
specifications imposed by different customer needs. Dif-
ferent recipes (or process plans) are generally required to 
achieve different mechanical properties, which create a 
high product mix nature in this manufacturing system. 
However, the products requiring similar recipes can be 
mixed into the same batch while maintaining the required 
specification and increasing resource utilization. In other 
words, changing in the MPS can significantly effect the 
system performance especially the resource utilization (in 
this case the utilization is based on resource specifications 
such as weight or volume capacity rather than the time). 
There are rules governing with what product specification 
can be combined into the same batch and what process 
plan should be followed after the combination. Other con-
straints such as machine types and capacities are also im-
posed on the batching process.  

Figure 1 illustrates the situation. The furnace capabili-
ties, the combination rules, and the production schedule are 
given. The production schedule is product A, B, D, and C. 
Suppose that furnace 1 and 2 are available, and the opera-
tor have got ten units of product A and B on the same 
batch using combination rule #1 for the furnace 1. Subse-
quently, product D arrives and the furnace operator put all 
the ten units into furnace 2 since product D can not com-
bine with the first batch according to the combination rule 
#1. The operator, without knowing that product C is about 
to arrive, puts the first batch into furnace 1 and begins the 
process without waiting any longer. When product C ar-
rives, it finds no furnace available because product C can 
not combine with product D, which already occupies fur-
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nace 2.  This example shows that more flexible combina-
tion rules and larger number of combination rules are bet-
ter and that the MPS can have significant effect to the sys-
tem performance. Had product C scheduled before product 
D, no units would have had to wait. 

Figure 1: Example Furnace Specifications and Combina-
tion Rules 

3.2 Problem Statement 

Resource capacity becomes an important issue when cus-
tomer demand surges. Because decision-making tool, time, 
and collaborative knowledge to analyze this complex 
manufacturing system are limited, the manufacturing engi-
neer only use rule of thumbs from experience-based obser-
vations to correct capacity issues. NM has been facing the 
late delivery when demand is high, immense inventory ex-
pense to stock the product when demand is low, and the 
profitability dilemma of losing business or investing a 
large capital to purchase additional resources. In fact, all of 
these happen while excess capacity still exists even when 
demand surges. This is evidently shown on the low re-
source utilization in the historical statistics. 

NM’s production engineers have been using a simple 
linear mathematical model where production capacity is a 
function of production rate multiply by time. The engineers 
use this model to govern their business decision such as 
forecasting capacity shortage, generating MPS, and esti-
mating delivery date.  

The furnace operators use simple rule of thumbs to set 
up batch based on the workpiece that they see in the WIP 
area. In addition to that, furnace operators prioritize tasks 
based on the worksheet given by the area manager. These 
rules of thumb are; for example, immediately put hot metal 
that comes from certain production lines into the furnace, 
do not wait for more products getting into the batch for so 
long to start the furnace, and start the process right away if 
high priority task presents. The priority worksheet is usu-
ally only run by the closest promising date.  When the ‘ap-
parent’ capacity seems very tight, the manufacturing sys-
tem engineer then steps down to the floor to prioritizing 
how things are moved, squeezing the furnace space, post-
poning ‘unnecessary’ activities (such as schedule furnace 
maintenance, changing thermocouple, etc). 

These activities seem to go on throughout the year be-
cause there is no single analytical tool where engineers can 

Furnace capability by product type
    Furnace 1: A, B
    Furnace 2: A, C, D
Processing time by product type
    A: 10 hours
    B: 12 hours
    C: 13 hours
    D: 14 hours

Combination rule
    1. A, B, C run as C
    2. A, D run as D
Production schedule
    A - 10 units
    B - 10 units
    D - 10 units
    C - 10 units
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share their different aspects of common task (optimizing 
the throughput). The production engineer plans on the 
master production schedule without knowing any equip-
ment or personal breakdowns (system status). The manu-
facturing system engineer simply uses experience-based 
judgement, e.g., “I have it done this way last time and it 
was better so that should do it again this time.” When the 
scenario looks the same (capacity shortage), but the input 
maybe different. The process engineer tries to improve the 
process plans and annealing recipes without knowing the 
actual effect to the manufacturing system. Sales and other 
engineers are not updated and are still using the same old 
numbers for crunching the production plan. 

Regarding to the problems described above, NM’s in-
dustrial engineering team has made a recommendation in a 
regular plant meeting that a sophisticated decision support 
tool is in need to solve these ongoing problems. This tool 
must be capable of capturing the interaction of the factors 
that effect actual capacity in the batch furnace area. The 
tool should also help in making sound analytical judgement 
governing planning and execution of production in the 
batch furnace area. Furthermore, it should enable the in-
formation and task integration of effecting engineering de-
partments. That is acquiring data from the common pool of 
data such as an MRP or ERP system.  

NM’s management agrees on the proposal and has 
amended an additional use of the tool in the ongoing effort 
to reengineer NM’s production system to minimize inven-
tory cost and increase agility (the ability to cost-effectively 
respond with smaller lot sizes of customer orders). One 
methodology considered in NM’s production system is the 
flowpath redesign, which is gearing toward minimizing 
material handling cost and time. As an interactive tool, the 
suite should allow engineer to analyze the effects of some 
of these NM production system implementations. 

3.3 Simulation Model Specification 

In the next plant meeting, the engineers have agreed as the 
first step that the tool should capture the actual operations 
performed by the operators from setting up a batch until 
unloading it from the furnace. The tool will allow the user 
to parametrically modify those operations and heuristically 
analyze the effect on the system performances. Examples 
of parameterized operations in the described system are the 
maximum period the operator should wait for more prod-
ucts that can be put into the same batch and the minimum 
furnace capacity that the batch should fill up before start-
ing the annealing process. In addition, the tool should al-
low the user to interactively changes system definition so 
that extensive ‘what-if’ analysis can be done and the simu-
lation result can be easily validated. These system defini-
tions include the number of resources (both human and 
machine), master production schedule (input mix and 
product arrival process), and process plan. It happens in a 



Kulvatunyou and Wysk 

 
particular manufacturing system that the raw material is 
always more than enough; therefore, the material require-
ment planning is excluded from the consideration.  

At the end of the meeting, the engineers conclude that 
simulation model is an appropriate tool since it is known as 
an effective tool to capture the complex interaction in the 
manufacturing system. In order for the simulation to facili-
tate the desired “what-if” analysis, the system definitions 
and interested parameters should be separated from the 
model logic and stored in a user-friendly database system. 
That is the computer-aided manufacturing simulation gen-
eration is desired. 

 
4 THE STRUCTURE OF CAMS 

The purpose of CAMS is to allow the user to interactively 
conduct analysis by modifying the system definitions, mas-
ter production schedule (MPS) and interested decision pa-
rameters. In addition to facilitating the analysis, the CAMS 
hides the programmatic complexity from the user and pre-
sents only spreadsheet like user-interfaces for the user to 
define input data and analyze the result. 

Figure 2 illustrates the generic structure of CAMS. The 
most important difference of CAMS from the automatically 
generated simulation (Son, Jones, and Wysk 1999) is that 
CAMS does not generate the model logic. As mentioned 
earlier in the literature review section that the automatically 
generated simulation model is usually incomplete because 
formally and completely describing model logic, using high-
level language is not simpler than syntactically describing 
with the low-level language. Hence, CAMS skips that at-
tempt as illustrating in Figure 2 that there is no connection 
between the automation code and the model logic as well as 
the one way action from the model logic to the experimental 
and animation elements. This structure results in a signifi-
cant reduction in the amount of automation code and a 
modular architecture, which allows the software to be 
quickly developed and updated. CAMS model however al-
lows the model logic to be parametrically modified through 
the experimental element definitions.  

With the database integration, the simulation output 
can be written back to the database. This output can be 

Figure 2: Generic Structure of Semi-automatically Gen-
erated Simulation 
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then customarily formatted and presented to the user to fit 
their specific analysis perspectives. Although output pres-
entation feature is available within some simulation pack-
ages (such as ARENA), performing presentation task in the 
database software is much more flexible and vivid. 

5 CAMS MODEL EXAMPLE 

Figure 3 illustrates the components of CAMS model that 
was created for the NM’s batch annealing area. The user in-
terface and data storage was implemented in the Microsoft 
Access. The simulation model was developed in the 
ARENA simulation modeling software. The Visual Basic 
for Application (VBA) was used to code the automation that 
links Microsoft Access and the ARENA. Although ARENA 
provides several apparent advantages toward an interactive 
simulation analysis tool such as the VBA linkage to other 
office suites and the availability of aggregate type elements, 
other software suits were not evaluated. Therefore, no incli-
nation should be implied. The advantages however may not 
be available in every simulation package or maybe available 
in different forms. The rest of this section will provide an 
insightful detail of the interesting points in the Input window 
and the Simulation model window that are illustrated in Fig-
ure 3. This detail will reference the discussion of techniques 
and issues in the next section. 

At the top of the input window (Figure 3), the process 
recipes and batch combination rules maybe adjusted by 
process engineer who works on the recipe simplification so 
that more combinations are possible. More combination 

Figure 3: Nittany Manufacturing’s Computer-aided
Manufacturing Simulation System Description 
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possibilities mean more types of products can be combined 
into a single batch to fill up the furnace. However, the 
products combined into the same batch may go through 
unnecessary processing steps. This can be seen from the 
example of combination rule #1 in Figure 1. Products A, B, 
and C can be combined using that rule and processed as C, 
yet product A and B, which normally would require only 
10 and 12 hours of processing time, would be processed 
for 13 hours.  Process engineers need this simulation tool 
to justify the possible adverse effect of the changes they 
are trying to make to the system performance.  

 

 
The furnace specifications in the input window stores 

information such as furnace capability (e.g., the type of 
product the furnace can process), furnace capacity (e.g., 
how big of a batch the furnace can handle), and how long it 
takes to process a particular batch (e.g., heating rate). The 
user can also define operator schedules and simulation pa-
rameters. It should be noted that the MRP/ERP integration 
is excluded from the model since it is beyond the scope of 
this paper and the company does not have it available at 
this time. The simulation parameters includes the experi-
mental definitions (e.g, terminating condition, queue rules) 
and control logic parameters. In this particular problem, the 
interested control logic parameters are the set load parame-
ters, which may either control the minimum batch size or 
maximum waiting time.  

The simulation model for this example is subdivided 
into six submodels (Figure 4) as follows:  

 
1) Define recipes and furnaces --read the system 

definition and the MPS then re-generate the model 
accordingly 

2) Generate product input --create product entities 
according to the MPS 

3) Setload control --initialize the set up batch activity 
4) Setload --find products to fill the batches 

Figure 4: High-level Simulation Models 
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5) Build load --put together selected products into a 
batch 

6) Thermal treatment --process and unload the batch 
and store statistics 

 
Only the 2) Generate product input, 3) Setload Con-

trol, and 4) Setload submodels are delineated here as they 
provide good examples for the techniques and issues de-
scribed in the next section. 

5.1 Generate Product Input Submodel 

The resource and product specifications are read from the 
database into the simulation memory in the first submodel 
(this submodel is not illustrated here). The specifications 
specify resource capability, product sizes, and recipe re-
quirements. The second submodel (Figure 5) generates en-
tities representing the product according to the MPS and 
the arrival process. It is assumed in the initial release of the 
tool that the user specifies the MPS by indicating the daily 
mix of product inputs for a week and that the products 
scheduled to produce in a day arrive at the beginning of 
that day (i.e., every 24 hours). 
 The first block of this submodel creates a dummy entity 
every 24 hours. The entity repeatedly goes through two 
nested WHILE loops to trigger the DUPLICATE block. 
Each pass through the DUPLICATE block, the dummy en-
tity creates a number of product entities equal to the number 
products coming from an upstream location requiring a par-
ticular recipe (these numbers are once again user inputs). 
The number of times entity repeating the duplication equals 
to the amount of product inputs for that day. The generated 
product entities are stored in the logical queue, named Wait-
ingForSetloadQ, which is a logical place where products are 
waiting to be selected and loaded into the batches. In this 
submodel the dummy entity is a control entity which is only 
created to trigger the product entity creations 

5.2 Setload Control Submodel 

The Setload control submodel initiates a set load activity 
when the furnace is empty. This submodel has the number 
of control entities equals to the number of furnaces in the 
system. Each entity looks over the furnace availability. 
When the furnace is available, the control entity triggers 
the VBA block 3 to search for the product entity in the 
WaitForSetLoadQ (Figure 6) that is applicable to the fur-
nace capability. Heuristics are used in the search logic to 
choose the type of product when there are more than one 
type found that requires the same recipe and is applicable 
to the same furnace. The heuristics used maybe ‘selecting 
the product type where the maximum number of product 
entities is found’. The product entity found is sent to the 
next submodel, Setload submodel, to find more product en-
tity for the batch.  
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Figure 5: ARENA Blocks Showing Generate Product Input Submodel

Generate Daily Incoming Lots
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Generate daily incoming lots for SPC, BS, and G and store in
SPC_Storage, BS_Storage, and G_Storage

Note: The practice associated with entity
can be look up using VBA variable stEntityPrac
using AttrLotID as reference index to the array
5.3 Setload Submodel 

Setload submodel (Figure 7) uses the active product entity 
to find the next product entity to put into the same batch. If 
the active product entity can find the next product entity, 
the active product entity is put into the bucket of the asso-
ciated furnace (logical queue of each furnace, imagine the 
operator noting down on the paper each workpiece he 
found that can be put in the same batch).  The next product 
entity then becomes an active entity and finds another 
product entity repeatedly until the furnace is filled or other 
control strategies are matched (e.g., max waiting time). 
There are also some heuristics associated with the search 
for the next product entity such as fill the batch with prod-
ucts which require the same recipe before products which 
are in the same combination rule. This is in effect because 
when products are combined, the furnace usually must fol-
low the recipe of the one having longest processing time. 

6 MODELING TECHNIQUES AND ISSUES 

Parameterizing and modularizing the model logic require 
some special techniques. The techniques and issues dis-
cussing here rely on the ARENA’s entity-driven and event-
based simulation engine (Note that some simulation pack-
ages may be resource-driven and process-based, where re-
sources are polling for entity). 

6.1 Using Aggregate Types of Elements 

Aggregate type elements are very important features to modu-
larize the simulation logic from the model definition (simula-
tion elements). The aggregate element can be a placeholder of 
any type of element and thus the model logic can refer to the 
individual element by just using the indices.  There are two 
aggregate types in ARENA, which are SET’ and ARRAY. 
The set can contain most of the experimental elements such as 
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resources, storage areas, queue, etc. On the other hand the ar-
ray can contain only primitive type variables.  

An example use of the SET element is when resources, 
queues, and storage areas are organized into sets. Adding 
(or subtracting) resources will not require additional con-
trol logic modules to regulate the behavior of each of them. 
By carefully design the control logic modules, the same 
modules can handle the change using resizable member in-
dex. Furthermore, ARENA’s entity can seize a set of re-
sources according to specified conditions (e.g., cyclical, 
min utilization); thus, the additional resources just need to 
be added to the set and upper bound index is resized. 

Array is a very common feature to all programming 
languages. ARENA array feature has limited capability in 
that the array size can not be changed during the simulation 
run. The array dimension also can not be parameterized 
(must be declared with a numerical literal). 

6.2 Using Parameter and Variable Elements 

Since most of the information used in the interactive CAMS 
must be parameterized, most of the logical statements must be 
based on the parameters and variables. Frequently, there is 
some confusion between the usage of PARAMETER and 
VARIABLE elements as they are programmatically identical 
(having single reference throughout the simulation run), yet 
having different usage. The parameter typically maintains its 
value throughout the simulation run, while the variable is usu-
ally updated throughout the run. The values such as decision 
criteria and number of resources are good examples of the pa-
rameter element usage, since they are system definition. 
 ARENA’s VARIABLE and PARAMETER elements 
have a limitation in that they can not hold string literal. 
Consequently, any string information can not be directly 
handled. The simulation programmer will need to either 
index the string with numerical value or manipulate the 
string using the VBA module, which may cause the model 
to be cluttered and hard to follow and modify. 
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Figure 6: ARENA Blocks Showing Setload Control Submodel 

Figure 7: ARENA Blocks Showing Setload Submodel 
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6.3 Conditional Wait and Logical Queue 

Generally the conditional wait and logical queue are handy 
in the simulation model that needs to capture control logic 
of a manufacturing system having a number of interactions 
between resources. It should be noted that a logical queue 
may not represent a real queue in the manufacturing sys-
tem and is mainly used for decision making and controlling 
purposes. In ARENA, a logical queue is called 
DETACHED queue. The entities in this queue proceed 
only when another entity issues a command to do so. An 
example use of conditional wait is when two or more re-
sources must be available at the same time, until then the 
waiting entity can proceed. In ARENA, this can be imple-
mented several ways. One way is having the entity wait 
until the condition (number busy at the required resources 
are zeros) becomes true. Other ways are having another en-
tity, which must know when all the required resources are 
available (or all pre-conditions are met) sending a signal to 
the waiting entity or sending a REMOVE command to the 
waiting entity. In our example model, detached queues are 
used in a few of places. One is where the entities are wait-
ing for setting up a batch at the end of the Generate product 
input submodel (Figure 5). The other is where the entities 
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are waiting for the batch to be filled in the Setload sub-
model (Figure 7). 

Care must be taken in using these conditional wait and 
logical queue. In the conditional wait, the programmer 
should be certain that the simulation software behave as he 
or she expects, especially how the condition is evaluated. 
The condition in the ARENA’s conditional queue (SCAN 
or HOLD block) is only evaluated before every next dis-
crete time advance.  Therefore, it is possible that the condi-
tion becomes false again by another entity before the wait-
ing entity see the condition when it is evaluated to be true. 

The conditional waiting that relies on signaling or a 
REMOVE command seems to guard against the above 
problem. However, another care must also be taken to 
which entity is proceeding first after the signaling or issu-
ing of the REMOVE command. In ARENA, the entity 
sending the signal or issuing the command continues its 
execution and the entity receiving the signal is only placed 
at the top of the event calendar. In our example model, we 
usually want the removed entity to proceed before the sig-
naling entity, which will set/reset the control or index vari-
ables. This is where we need to delay the signaling entity 
with an infinitesimal amount of time so that the simulation 
looks up the event calendar and the removed entity is 
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Figure 8: Generate Product Input Submodel that does not Use Control Entity
yielded. Moreover, care must be taken that the infinitesi-
mal delay does not effect the simulation result. This is 
sometimes very difficult to check at the design stage, but 
easy to detect when verifying the model. Generally, if the 
small delay is undisputed, slightly changing the delay pe-
riod (for example from 1E-6 to 1E-5) should not result in a 
noticeable difference in the system performances. The 
dummy entity in the Generate product input submodel uses 
this technique to yield to duplicated product entities and 
the setload control entity uses this technique to yield to the 
product entity removed from the WaitForSetLoadQ. 

6.4 Using Control Entity 

In order to modularize the control logic with respect to the 
model experimental elements such as the number of re-
sources, control entity is particularly useful (control entity 
is an entity, which may or may not represent a physical ob-
ject in the modeling system. An entity is a control entity 
when it is used to control other entities or elements in the 
model). Take the Generate product input and the Setload 
control submodels as examples. Without using the control 
entity the Generate product input submodel might look like 
the ARENA blocks shown in Figure 8. In order to make 
the submodel flexible to additional upstream locations, 
each of the five branches in the submodel handles the gen-
eration of product entities from each upstream location. 
Without using the control entity technique, a piece of 
automation code will be required to automatically add a 
similar branch of the ARENA blocks to the submodel for 
each additional upstream location.  

Similarly, haven’t the setload logic configured into 
two submodels (the Setload control and the Setload sub-
models) using control entities (each responsible for each 
resource), and the aggregate elements, the setload logic 
might be cluttering like the submodel shown in Figure 9. It 
should be noted that the product entity in the Setload sub-
model (Figure 7) itself functions like a control entity 
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searching for the next product entity. In Figure 9, each loop 
handles each resource, which may have different specifica-
tion. An additional loop will be needed for each additional 
resource. The loop may be much larger as each of them re-
quires a chunk of logic blocks to handle the algorithm for 
searching the product entity. The submodel is quickly clut-
tered only when a few resources are in the system. 

Care must also be taken when using control entity as 
the simulation speed and the result may be effected. For 
example, take a look at the block labeled ‘Wait until more 
products arrive’, which is a DELAY block, in the Setload 
control submodel (Figure 6). The control entity is delayed 
at that block when the first product entity for the new batch 
can not be found in the current day, given an available fur-
nace. In the example model, it was assumed that the prod-
ucts only arrive at the beginning of each day. Therefore, 
the control entity can be delayed for the elapse time be-
tween current time and the beginning of the next day to 
start the search for applicable product entity again. This de-
terministic time delay maintains an acceptable simulation 
speed. However, if the product entity arrival time is a ran-
dom number, the control entity needs to continuously 
search for an applicable product entity. On the other hand, 
if there is no holding block in the control loop (note that 
the entity encountering a holding block causes the simula-
tion to look up the event calendar for the next scheduled 
event. Entities are held when they encounter commands 
like delay, seize, and wait), the control entity will not stop 
its execution and other entities in the model can not pro-
ceed. The optimal delay time in this case is the elapse time 
between current time and the schedule arrival time of the 
next product entity. If this time periods are very short, the 
simulation need to stop to advance the clock more fre-
quently which will result in significant reduction in the 
simulation speed. Note that similar problem also applies to 
the Setload submodel when the active product entity does 
not find the next applicable product entity in the WaitFor-
SetLoadQ queue, it has to yield to other entities.  
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7 CONCLUSION 

The concept of the Computer-Aided Manufacturing Simu-
lation (CAMS) for interactive analysis has been intro-
duced. The concept relies on the parameterized and modu-
larized model logic that allow the end user to interactively 
modify the model and analyze the effect without having to 
deal with the complex logic. The CAMS tool should yield 
the following benefits to the organization. The shop engi-
neer can spend more time and attention to figuring out the 
manufacturing and production problems rather than pro-
gramming problems. The CAMS tool should help saving 
time and money from hiring a consultant every time some 
system definition changes or an analytical question arises. 
In addition, the modular architecture allows engineers from 
several departments to integrate their information into a 
common portal and consequently always obtaining an up to 
date analysis result. 

An example manufacturing system and associated 
CAMS model has been given. The techniques and issues 
that help making the model logic modular and parameter-
ized are described using the example model of a batch 
processing problem. Though the breadth of modeling tech-
nique is unlimited, similar issues will be arising. The chal-
lenge to the simulation programmer is to modularize the 
simulation model while maintaining the simulation speed 
and validity. The Nittany Manufacturing’s batch annealing 
analysis tool, as shown in this paper, is useful for giving 
the engineer a quick quantitative answer to whether what 
they do is better or worsen the system performance. In the 
future, an optimization tool can be plugged-in (ARENA 
4.0 now offers the OptQuest optimization software integra-
tion), the tool will be able to provide short-term heuristi-
cally optimal strategy. While the explanation in this paper 
is based on a single example, the concepts, techniques, and 
issues should apply to any type of application. 

REFERENCES 

Goldratt, E.M., Cox, J. (January 1992). The Goal: A Proc-
ess of Ongoing Improvement North River Press, In-
corporated.  

Figure 9: Cluttered Setload Submodel 

Create Seize Chunkof blocks Remove

Create Seize Chunk of blocks Remove

Seize furnance 
resource 1

Chunk of blocks
seraching for applicable
product entity

Remove product 
entityfound from 
the queue

Chunk of blocks 
seraching for applicable
 product entity

Seize furnance 
resource 2

Remove product 
entity found from 
the queue
976
Harmonoski, C.M. Simulation-based real-time scheduling 
review of recent developments. Proceedings of the 
1995 Winter Simulation Conference, 220-225. 

Narayanan, S., Bodner, D.A, Sreekanth, U., Govindaraj, T., 
McGinnis, L.F (1998). IIE Transactions 30, 795-810. 

Narayanan, S., Malu, Pallavi G., Ashili, Krishna P.B., Di 
Pasquale, John, Carrico, Todd M (Dec 1998). Web-
based interactive simulation architecture for airbase 
logistics systems analysis. International Journal of In-
dustrial Engineering : Theory Applications and Prac-
tice, 5 (4), 324-335. 

Smith, J. S., Wysk, R. A., Sturrok, D. T., Ramaswamy, S. 
E., Smith, G. D., and S. B. Joshi (1994). Discrete 
Event Simulation for Shop Floor Control. Proceedings 
of the 1994 Winter Simulation Conference,  962-969. 

Son, Y. J., Jones, A.T., Wysk, R.A. (2000), Automatic 
generation of simulation models from neutral libraries: 
An Example. Proceedings of the 2000 Winter Simula-
tion Conference. 

AUTHOR BIOGRAPHIES 

BOONSERM KULVATUNYOU is currently a Ph.D. can-
didate in the Harold and Inge Marcus Dept. of Industrial and 
Manufacturing Engineering at Pennsylvania state University. 
He received his MS from Columbia University and his BS 
from Chulalongkorn University, Bangkok, Thailand. He is a 
member of the Society of Manufacturing Engineers’ Student 
Chapter at Pennsylvania State University. His research inter-
ests include computer-integrated manufacturing system 
simulation, and information modeling. 

RICHARD A. WYSK currently holds the Leonhard Chair 
in Engineering at the Pennsylvania State University. Prior 
to his current position, he was director of the Institute for 
Manufacturing Systems and holder of the Royce Wisen-
baker Chair in Innovation at Texas A&M. he has also 
served on the faculty of Virginia Tech and worked in in-
dustry as a research analyst for Caterpillar Tractor Co. and 
as production control manager for General Electric. He re-
ceived his Ph.D. in industrial engineering from Purdue 
University in 1977 and his BS and MS in industrial engi-
neering and operations research from the University of 
Massachusetts (Amherst) in 1972 and 1973, respectively. 
He is a decorated Vietnam veteran and author of several 
textbooks. Honors recognizing his research include the In-
stitute of Industrial Engineers’ David F. Baker Distin-
guished Research Award and the Society of Manufacturing 
Engineers’ Outstanding Young Manufacturing Engineering 
Award. His research interests include computer-integrated 
manufacturing, computer-automated manufacturing, com-
puter-aided process planning, and concurrent engineering. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

