
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

COMPUTER-AIDED MANUFACTURING SIMULATION (CAMS) GENERATION
FOR INTERACTIVE ANALYSIS--CONCEPTS, TECHNIQUES, AND ISSUES

Boonserm Kulvatunyou
Richard A. Wysk

Department of Industrial and Manufacturing Engineering

Pennsylvania State University
310 Leonhard Bldg. University Park, PA 16802, U.S.A

ABSTRACT

Simulation model is usually developed as a one-time use
analytical model by a system analyst (usually from external
firm) rather than for a routine and interactive use by a shop
floor engineer. This is because it usually takes longer time
to generate a result from the simulation, and the simulation
model of manufacturing system is usually too sophisticated
and time-consuming to use as an interactive tool by the
manufacturing/production engineer. A CAMS reduces this
complication by encapsulating the ‘complicated-logic’ and
automating the ‘tedious data-acquisition’ with a more user-
friendly interface like a spreadsheet or database input form.
This paper describes how CAMS can automatically gener-
ate a simulation model; specifically, techniques and issues
to structure the model to hide those tasks, so that it is a
user-friendly interactive decision support with minimal
amount of automation code. The paper concludes with a
capacity analysis example from the real industry.

1 INTRODUCTION

Simulation is a powerful manufacturing systems analysis
tool that can capture complicated interactions and uncer-
tainties in the system. However,

Performance of a manufacturing system, specifically
capacity and throughput, with high product mix is typically
difficult to understand. In other words, the performance of
a manufacturing system, even in a specific area, is usually
affected by system dynamics as bottlenecks move regularly
in these systems [Goldratt and Cox 1992]. These dynamics
could be the change in product mix, equipment breakdown
and maintenance, worker schedules, or even process plans.
A normal linear mathematical model can give only a rough
performance estimate while ignoring many important fac-
tors that may effect the system performance. A simulation
model is a sophisticated tool that can take into account
many system dynamics. However, a simulation model is
usually built for a one-time use by external consultant. This

968
is because production engineers usually spend most of their
time prioritizing production on the shop floor using ad hoc
solutions (observation).

Furthermore, production engineers though posses ana-
lytical skill, they are lacking of either knowledge or interest
in the programming task. This habit leaves the sophisticated
analytical model, such as simulation model, as a last re-
source for them. The model usually receives attention only
when the manufacturing system having excess-capacity (en-
gineers have free time) that rarely happens in the industry.

The concept of CAMS model allows the simulation
specialist to build a sophisticated model that can be easily
reused by the plant engineers on a regular basis. The model
hides the complicated logic and the tedious data acquisition
task from the user. The complicated logic includes the detail
that captures the interactions among human and machines as
well as production decision logic. The tedious tasks include
redefining experimental elements as well as animation ele-
ments. The model must be built such that the simulation
logic is separated from the system information including
manufacturing resource data, process plans, and deci-
sion/control parameters. Therefore, the production engineers
can interactively change the system information including
the production strategies, add or subtract resources, and
change in product mix in the Master Production Schedule
(MPS) without having to deal with the programming task.
The separation of model logic from the system information
benefits not only the user side but also the developer side,
because it eliminates the automation code required to update
the model logic when the system information changes.

Due to the complexity in the manufacturing system
and the nature of discrete event simulation, several issues
arise when separating system information from the model
arise when separating system information from the model
logic. The techniques and associated issues from the author
experience will be discussed in section 6 of this paper us-
ing example scenario described in section 3. Section 2 pro-
vides the reviews and comparisons of passed works. Sec-
tion 4 describes a typical CAMS system. Finally, section 7

Kulvatunyou and Wysk

summarizes the discussion and emphasizes the value of
CAMS concept.

2 LITERATURE REVIEW

Son, Jones, and Wysk (1999) at the National Institute and
Standard and Technology (NIST) have developed a meth-
odology for automatically generating simulation models
for specific manufacturing scenarios. In this methodology,
a neutral language for a specific scenario is developed to
semantically describe simulation model. Simulation model
is then generated by a model translator, which translates
the neutral description into syntax of specific simulation
packages. The purpose of the research is to reduce the
simulation modeling time as well as to study the issues of
transferring a simulation model between simulation pack-
ages using a neutral language. The generated model is usu-
ally an almost finished model if the model logic is simple
or a partially finished (with all necessary experimental
elements defined) when the model logic is sophisticated.
This is because formally describing a sophisticated behav-
ior of a system is not different from writing a low-level
program despite the third generation programming lan-
guage is available. Therefore, the automatic generation of
simulation will not very well facilitate simulation for inter-
active use. In other words, it is not efficient to generate a
new simulation model every time some system information
changes. The automatic simulation generation is rather a
suitable front-end tool for creating a proprietary simulation
model. The neutral language should serve as a back-end
tool for archiving and transferring simulation model be-
tween software packages.

Simulation model is usually used for studying the sys-
tem at the design time and is only reused for either as
simulation-based control (Smith et. al 1994) or simulation-
based scheduling (Harmonosky 1995). There are a number
of researches that discuss about using simulation model to
understand the system characteristics when the system is in
operation. These researches usually focus only on capacity
as relating to the number of resources and layouts associ-
ated with the material handling. In fact, several other fac-
tors effect the capacity, such as process plan and rules gov-
erning operational decisions (e.g., what should and can be
put in the same batch). These factors are rather very impor-
tant in a large manufacturing system where uncertainties
and high product mix are normal. Off-line interactive
simulation is an effective tool to study these kinds of pa-
rameters, where system is not fully automated and real-
time control does not exist.

Object-oriented simulation has emerged as a prevalent
topic in academic research yet slight commercial imple-
mentations present (Narayanan et al. 1998). Researchers in
this area believe that object-oriented program requires ro-
bust abstractions which takes time to develop. Thus, it is
not appropriate to a small simulation project. Until user-
969
friendly interface for object-oriented simulation is avail-
able, this object paradigm will not be prevalent in this par-
ticular industry. The object-oriented simulation is attractive
in its mechanism such as inheritance, polymorphism, en-
capsulation, and more importantly the code reuse of com-
ponent-based simulation entities. Object-oriented simula-
tion still requires intensive coding; thus, providing
apparent benefits (the code reuse) to the developer side
more than to the end user side.

3 AN EXAMPLE SYSTEM

3.1 Introduction to the Example
Manufacturing System

In this section an example case study from an Alcoa Inc.
manufacturing system is described for using in the subse-
quent discussions. Due to the legal related reason, Nittany
Manufacturing (NM) will be used as a facsimile of the real
system. In addition, in order to disguise the project of the
company, the associated products will remain anonymous.

Nittany Manufacturing (NM) produces products that
need to go through a batch furnace annealing process after
several upstream processing. The products although have
similar shape, they vary by different mechanic of material
specifications imposed by different customer needs. Dif-
ferent recipes (or process plans) are generally required to
achieve different mechanical properties, which create a
high product mix nature in this manufacturing system.
However, the products requiring similar recipes can be
mixed into the same batch while maintaining the required
specification and increasing resource utilization. In other
words, changing in the MPS can significantly effect the
system performance especially the resource utilization (in
this case the utilization is based on resource specifications
such as weight or volume capacity rather than the time).
There are rules governing with what product specification
can be combined into the same batch and what process
plan should be followed after the combination. Other con-
straints such as machine types and capacities are also im-
posed on the batching process.

Figure 1 illustrates the situation. The furnace capabili-
ties, the combination rules, and the production schedule are
given. The production schedule is product A, B, D, and C.
Suppose that furnace 1 and 2 are available, and the opera-
tor have got ten units of product A and B on the same
batch using combination rule #1 for the furnace 1. Subse-
quently, product D arrives and the furnace operator put all
the ten units into furnace 2 since product D can not com-
bine with the first batch according to the combination rule
#1. The operator, without knowing that product C is about
to arrive, puts the first batch into furnace 1 and begins the
process without waiting any longer. When product C ar-
rives, it finds no furnace available because product C can
not combine with product D, which already occupies fur-

Kulvatunyou and Wysk

nace 2. This example shows that more flexible combina-
tion rules and larger number of combination rules are bet-
ter and that the MPS can have significant effect to the sys-
tem performance. Had product C scheduled before product
D, no units would have had to wait.

Figure 1: Example Furnace Specifications and Combina-
tion Rules

3.2 Problem Statement

Resource capacity becomes an important issue when cus-
tomer demand surges. Because decision-making tool, time,
and collaborative knowledge to analyze this complex
manufacturing system are limited, the manufacturing engi-
neer only use rule of thumbs from experience-based obser-
vations to correct capacity issues. NM has been facing the
late delivery when demand is high, immense inventory ex-
pense to stock the product when demand is low, and the
profitability dilemma of losing business or investing a
large capital to purchase additional resources. In fact, all of
these happen while excess capacity still exists even when
demand surges. This is evidently shown on the low re-
source utilization in the historical statistics.

NM’s production engineers have been using a simple
linear mathematical model where production capacity is a
function of production rate multiply by time. The engineers
use this model to govern their business decision such as
forecasting capacity shortage, generating MPS, and esti-
mating delivery date.

The furnace operators use simple rule of thumbs to set
up batch based on the workpiece that they see in the WIP
area. In addition to that, furnace operators prioritize tasks
based on the worksheet given by the area manager. These
rules of thumb are; for example, immediately put hot metal
that comes from certain production lines into the furnace,
do not wait for more products getting into the batch for so
long to start the furnace, and start the process right away if
high priority task presents. The priority worksheet is usu-
ally only run by the closest promising date. When the ‘ap-
parent’ capacity seems very tight, the manufacturing sys-
tem engineer then steps down to the floor to prioritizing
how things are moved, squeezing the furnace space, post-
poning ‘unnecessary’ activities (such as schedule furnace
maintenance, changing thermocouple, etc).

These activities seem to go on throughout the year be-
cause there is no single analytical tool where engineers can

Furnace capability by product type
 Furnace 1: A, B
 Furnace 2: A, C, D
Processing time by product type
 A: 10 hours
 B: 12 hours
 C: 13 hours
 D: 14 hours

Combination rule
 1. A, B, C run as C
 2. A, D run as D
Production schedule
 A - 10 units
 B - 10 units
 D - 10 units
 C - 10 units
970
share their different aspects of common task (optimizing
the throughput). The production engineer plans on the
master production schedule without knowing any equip-
ment or personal breakdowns (system status). The manu-
facturing system engineer simply uses experience-based
judgement, e.g., “I have it done this way last time and it
was better so that should do it again this time.” When the
scenario looks the same (capacity shortage), but the input
maybe different. The process engineer tries to improve the
process plans and annealing recipes without knowing the
actual effect to the manufacturing system. Sales and other
engineers are not updated and are still using the same old
numbers for crunching the production plan.

Regarding to the problems described above, NM’s in-
dustrial engineering team has made a recommendation in a
regular plant meeting that a sophisticated decision support
tool is in need to solve these ongoing problems. This tool
must be capable of capturing the interaction of the factors
that effect actual capacity in the batch furnace area. The
tool should also help in making sound analytical judgement
governing planning and execution of production in the
batch furnace area. Furthermore, it should enable the in-
formation and task integration of effecting engineering de-
partments. That is acquiring data from the common pool of
data such as an MRP or ERP system.

NM’s management agrees on the proposal and has
amended an additional use of the tool in the ongoing effort
to reengineer NM’s production system to minimize inven-
tory cost and increase agility (the ability to cost-effectively
respond with smaller lot sizes of customer orders). One
methodology considered in NM’s production system is the
flowpath redesign, which is gearing toward minimizing
material handling cost and time. As an interactive tool, the
suite should allow engineer to analyze the effects of some
of these NM production system implementations.

3.3 Simulation Model Specification

In the next plant meeting, the engineers have agreed as the
first step that the tool should capture the actual operations
performed by the operators from setting up a batch until
unloading it from the furnace. The tool will allow the user
to parametrically modify those operations and heuristically
analyze the effect on the system performances. Examples
of parameterized operations in the described system are the
maximum period the operator should wait for more prod-
ucts that can be put into the same batch and the minimum
furnace capacity that the batch should fill up before start-
ing the annealing process. In addition, the tool should al-
low the user to interactively changes system definition so
that extensive ‘what-if’ analysis can be done and the simu-
lation result can be easily validated. These system defini-
tions include the number of resources (both human and
machine), master production schedule (input mix and
product arrival process), and process plan. It happens in a

Kulvatunyou and Wysk

particular manufacturing system that the raw material is
always more than enough; therefore, the material require-
ment planning is excluded from the consideration.

At the end of the meeting, the engineers conclude that
simulation model is an appropriate tool since it is known as
an effective tool to capture the complex interaction in the
manufacturing system. In order for the simulation to facili-
tate the desired “what-if” analysis, the system definitions
and interested parameters should be separated from the
model logic and stored in a user-friendly database system.
That is the computer-aided manufacturing simulation gen-
eration is desired.

4 THE STRUCTURE OF CAMS

The purpose of CAMS is to allow the user to interactively
conduct analysis by modifying the system definitions, mas-
ter production schedule (MPS) and interested decision pa-
rameters. In addition to facilitating the analysis, the CAMS
hides the programmatic complexity from the user and pre-
sents only spreadsheet like user-interfaces for the user to
define input data and analyze the result.

Figure 2 illustrates the generic structure of CAMS. The
most important difference of CAMS from the automatically
generated simulation (Son, Jones, and Wysk 1999) is that
CAMS does not generate the model logic. As mentioned
earlier in the literature review section that the automatically
generated simulation model is usually incomplete because
formally and completely describing model logic, using high-
level language is not simpler than syntactically describing
with the low-level language. Hence, CAMS skips that at-
tempt as illustrating in Figure 2 that there is no connection
between the automation code and the model logic as well as
the one way action from the model logic to the experimental
and animation elements. This structure results in a signifi-
cant reduction in the amount of automation code and a
modular architecture, which allows the software to be
quickly developed and updated. CAMS model however al-
lows the model logic to be parametrically modified through
the experimental element definitions.

With the database integration, the simulation output
can be written back to the database. This output can be

Figure 2: Generic Structure of Semi-automatically Gen-
erated Simulation

U se r i n terf ace
(e . g. , s p re ads hee t,
da ta b a se fo rm)

E nd u s e r i n pu t s

E nd u s e r o u tp u ts
A ut o m a t i on A P I
o f t h e s im ul a t i on
s of tw are

Si m ul atio n m o del

M o d e l l og i c

M o d e l
ex p er i m en ta l

e l em e nt s

an i m a t io n
e l em e nt

Sim u la tio n
So f tw are

R es o ur c es a n d
D ec i si o n

P ar am et e rs
D a t aba se

S i m u l a ti o n ou t pu t s

u pd a t es

u pd a t es

u se s

d r i ves

In fo rm a t i on f lo w

A ct io n

N ot a t i on

M a st e r P ro du c t io n
S ch ed u le an d/ o r

M R P /E R P S y st e m

S i m u l a ti o n O u t pu t
D a t aba se
971
then customarily formatted and presented to the user to fit
their specific analysis perspectives. Although output pres-
entation feature is available within some simulation pack-
ages (such as ARENA), performing presentation task in the
database software is much more flexible and vivid.

5 CAMS MODEL EXAMPLE

Figure 3 illustrates the components of CAMS model that
was created for the NM’s batch annealing area. The user in-
terface and data storage was implemented in the Microsoft
Access. The simulation model was developed in the
ARENA simulation modeling software. The Visual Basic
for Application (VBA) was used to code the automation that
links Microsoft Access and the ARENA. Although ARENA
provides several apparent advantages toward an interactive
simulation analysis tool such as the VBA linkage to other
office suites and the availability of aggregate type elements,
other software suits were not evaluated. Therefore, no incli-
nation should be implied. The advantages however may not
be available in every simulation package or maybe available
in different forms. The rest of this section will provide an
insightful detail of the interesting points in the Input window
and the Simulation model window that are illustrated in Fig-
ure 3. This detail will reference the discussion of techniques
and issues in the next section.

At the top of the input window (Figure 3), the process
recipes and batch combination rules maybe adjusted by
process engineer who works on the recipe simplification so
that more combinations are possible. More combination

Figure 3: Nittany Manufacturing’s Computer-aided
Manufacturing Simulation System Description

Input Window

Process plan info.
- Recipe
- Combination

Furnace
Specifications

Master Production
Schedule (MPS)

Operators

Replications

Queue

Set load Prm

Simulation
Parameters

Output Window

Inventory
Summary

Furnace
Utilization
Summary

Load
Distribution

Throughput
Summary

Operator
Statistic

Simulation Model

Update Model

Read product input

Set Load Logic
Constrained by:
- Furnace capability
- Furnace capacity
- Process recipe
- Process combination
- etc..

Simulate processing time
based on:
- Practice information
- Furnace capability
- Lot practices in the load

Warm up

Loading Furnace

Set load Operator

unload

Kulvatunyou and Wysk

possibilities mean more types of products can be combined
into a single batch to fill up the furnace. However, the
products combined into the same batch may go through
unnecessary processing steps. This can be seen from the
example of combination rule #1 in Figure 1. Products A, B,
and C can be combined using that rule and processed as C,
yet product A and B, which normally would require only
10 and 12 hours of processing time, would be processed
for 13 hours. Process engineers need this simulation tool
to justify the possible adverse effect of the changes they
are trying to make to the system performance.

The furnace specifications in the input window stores

information such as furnace capability (e.g., the type of
product the furnace can process), furnace capacity (e.g.,
how big of a batch the furnace can handle), and how long it
takes to process a particular batch (e.g., heating rate). The
user can also define operator schedules and simulation pa-
rameters. It should be noted that the MRP/ERP integration
is excluded from the model since it is beyond the scope of
this paper and the company does not have it available at
this time. The simulation parameters includes the experi-
mental definitions (e.g, terminating condition, queue rules)
and control logic parameters. In this particular problem, the
interested control logic parameters are the set load parame-
ters, which may either control the minimum batch size or
maximum waiting time.

The simulation model for this example is subdivided
into six submodels (Figure 4) as follows:

1) Define recipes and furnaces --read the system

definition and the MPS then re-generate the model
accordingly

2) Generate product input --create product entities
according to the MPS

3) Setload control --initialize the set up batch activity
4) Setload --find products to fill the batches

Figure 4: High-level Simulation Models
972
5) Build load --put together selected products into a
batch

6) Thermal treatment --process and unload the batch
and store statistics

Only the 2) Generate product input, 3) Setload Con-

trol, and 4) Setload submodels are delineated here as they
provide good examples for the techniques and issues de-
scribed in the next section.

5.1 Generate Product Input Submodel

The resource and product specifications are read from the
database into the simulation memory in the first submodel
(this submodel is not illustrated here). The specifications
specify resource capability, product sizes, and recipe re-
quirements. The second submodel (Figure 5) generates en-
tities representing the product according to the MPS and
the arrival process. It is assumed in the initial release of the
tool that the user specifies the MPS by indicating the daily
mix of product inputs for a week and that the products
scheduled to produce in a day arrive at the beginning of
that day (i.e., every 24 hours).
 The first block of this submodel creates a dummy entity
every 24 hours. The entity repeatedly goes through two
nested WHILE loops to trigger the DUPLICATE block.
Each pass through the DUPLICATE block, the dummy en-
tity creates a number of product entities equal to the number
products coming from an upstream location requiring a par-
ticular recipe (these numbers are once again user inputs).
The number of times entity repeating the duplication equals
to the amount of product inputs for that day. The generated
product entities are stored in the logical queue, named Wait-
ingForSetloadQ, which is a logical place where products are
waiting to be selected and loaded into the batches. In this
submodel the dummy entity is a control entity which is only
created to trigger the product entity creations

5.2 Setload Control Submodel

The Setload control submodel initiates a set load activity
when the furnace is empty. This submodel has the number
of control entities equals to the number of furnaces in the
system. Each entity looks over the furnace availability.
When the furnace is available, the control entity triggers
the VBA block 3 to search for the product entity in the
WaitForSetLoadQ (Figure 6) that is applicable to the fur-
nace capability. Heuristics are used in the search logic to
choose the type of product when there are more than one
type found that requires the same recipe and is applicable
to the same furnace. The heuristics used maybe ‘selecting
the product type where the maximum number of product
entities is found’. The product entity found is sent to the
next submodel, Setload submodel, to find more product en-
tity for the batch.

Kulvatunyou and Wysk

Create
24*60

Assign While
Inv

Assign
Inv <= P(PrmNumOfInvLoc,1) PracIndex

While
For each practi ce

Duplicate Delay

DailyNumOfLotsByPrac(inv, PracIndex) <> -1

First practiceFor each Inv LocationFirst Inv location

Create lots
 for the practice

Yields to
duplicated entities

Assign
0.000001 PracIndex

EndWhile
Next practice

Assign EndWhile
DailyLotNum
Inv
PracIndex

Reset DailyLotNum(Inv)
for next day and resume
First practice of Next Inv location

Assign
Weight and LotID

DailyLotNum
AttrLotID
AttrWeight
AttrWeight
AttrWeight

Store
Store in Inv

Assign
Increment inventory
statistic Queue

WaitingForSetLoadQ

Dispose

Create lot dummy

DailyNumOfLotsByPrac(inv,PracIndex)

InvLocSet(Inv) NumOfLotsinInv

Figure 5: ARENA Blocks Showing Generate Product Input Submodel

Generate Daily Incoming Lots
Read in daily Incoming lots from HL, CM and store in BAStorage;
Generate daily incoming lots for SPC, BS, and G and store in
SPC_Storage, BS_Storage, and G_Storage

Note: The practice associated with entity
can be look up using VBA variable stEntityPrac
using AttrLotID as reference index to the array
5.3 Setload Submodel

Setload submodel (Figure 7) uses the active product entity
to find the next product entity to put into the same batch. If
the active product entity can find the next product entity,
the active product entity is put into the bucket of the asso-
ciated furnace (logical queue of each furnace, imagine the
operator noting down on the paper each workpiece he
found that can be put in the same batch). The next product
entity then becomes an active entity and finds another
product entity repeatedly until the furnace is filled or other
control strategies are matched (e.g., max waiting time).
There are also some heuristics associated with the search
for the next product entity such as fill the batch with prod-
ucts which require the same recipe before products which
are in the same combination rule. This is in effect because
when products are combined, the furnace usually must fol-
low the recipe of the one having longest processing time.

6 MODELING TECHNIQUES AND ISSUES

Parameterizing and modularizing the model logic require
some special techniques. The techniques and issues dis-
cussing here rely on the ARENA’s entity-driven and event-
based simulation engine (Note that some simulation pack-
ages may be resource-driven and process-based, where re-
sources are polling for entity).

6.1 Using Aggregate Types of Elements

Aggregate type elements are very important features to modu-
larize the simulation logic from the model definition (simula-
tion elements). The aggregate element can be a placeholder of
any type of element and thus the model logic can refer to the
individual element by just using the indices. There are two
aggregate types in ARENA, which are SET’ and ARRAY.
The set can contain most of the experimental elements such as
973
resources, storage areas, queue, etc. On the other hand the ar-
ray can contain only primitive type variables.

An example use of the SET element is when resources,
queues, and storage areas are organized into sets. Adding
(or subtracting) resources will not require additional con-
trol logic modules to regulate the behavior of each of them.
By carefully design the control logic modules, the same
modules can handle the change using resizable member in-
dex. Furthermore, ARENA’s entity can seize a set of re-
sources according to specified conditions (e.g., cyclical,
min utilization); thus, the additional resources just need to
be added to the set and upper bound index is resized.

Array is a very common feature to all programming
languages. ARENA array feature has limited capability in
that the array size can not be changed during the simulation
run. The array dimension also can not be parameterized
(must be declared with a numerical literal).

6.2 Using Parameter and Variable Elements

Since most of the information used in the interactive CAMS
must be parameterized, most of the logical statements must be
based on the parameters and variables. Frequently, there is
some confusion between the usage of PARAMETER and
VARIABLE elements as they are programmatically identical
(having single reference throughout the simulation run), yet
having different usage. The parameter typically maintains its
value throughout the simulation run, while the variable is usu-
ally updated throughout the run. The values such as decision
criteria and number of resources are good examples of the pa-
rameter element usage, since they are system definition.
 ARENA’s VARIABLE and PARAMETER elements
have a limitation in that they can not hold string literal.
Consequently, any string information can not be directly
handled. The simulation programmer will need to either
index the string with numerical value or manipulate the
string using the VBA module, which may cause the model
to be cluttered and hard to follow and modify.

Kulvatunyou and Wysk

Figure 6: ARENA Blocks Showing Setload Control Submodel

Figure 7: ARENA Blocks Showing Setload Submodel

Assign Branch VBA

Count

Remove Queue

EndWhile

VBA

VBA Branch

Branch While Remove

0

0

Branch Count

Count CountDelay

waitingMoreLots

wait till next day

Num of Loads Released by TimereleaseByTime

waitingMoreLots

Num of Loads Waiting

Increment
curNumofProd
in the batch

Find a product in WaitForSetLoadQ that has
the same process requirement and send result
to FoundNextProd and FoundNextProdQRank

FoundNextLot?

AssignAttrFrncGoingTo of entity about to
‘remove’ from WaitForSetLoadQ. Assign frnc
process param in VBA WaitForNextLotSetLoadQSet(AttrFrncGoingTo)

Now we know all lots to be on the load so
release the those lots from the queue
WaitForNextLotSetLoadQSet(AttrFrncGoingTo)

Already exceeding
minPercentageFrncFill?

Once the combination is set,
it can't be changed.

Find combination
Update FrncBestCombSet()

Is it ok to wait till
next day without
violate max set load
hours criteria?

NQ(WaitForNextLotSetLoadQSet(AttrFrncGoingTo))>0

6

5
FoundNextLot?

CombindedCount

4

6.3 Conditional Wait and Logical Queue

Generally the conditional wait and logical queue are handy
in the simulation model that needs to capture control logic
of a manufacturing system having a number of interactions
between resources. It should be noted that a logical queue
may not represent a real queue in the manufacturing sys-
tem and is mainly used for decision making and controlling
purposes. In ARENA, a logical queue is called
DETACHED queue. The entities in this queue proceed
only when another entity issues a command to do so. An
example use of conditional wait is when two or more re-
sources must be available at the same time, until then the
waiting entity can proceed. In ARENA, this can be imple-
mented several ways. One way is having the entity wait
until the condition (number busy at the required resources
are zeros) becomes true. Other ways are having another en-
tity, which must know when all the required resources are
available (or all pre-conditions are met) sending a signal to
the waiting entity or sending a REMOVE command to the
waiting entity. In our example model, detached queues are
used in a few of places. One is where the entities are wait-
ing for setting up a batch at the end of the Generate product
input submodel (Figure 5). The other is where the entities
974
are waiting for the batch to be filled in the Setload sub-
model (Figure 7).

Care must be taken in using these conditional wait and
logical queue. In the conditional wait, the programmer
should be certain that the simulation software behave as he
or she expects, especially how the condition is evaluated.
The condition in the ARENA’s conditional queue (SCAN
or HOLD block) is only evaluated before every next dis-
crete time advance. Therefore, it is possible that the condi-
tion becomes false again by another entity before the wait-
ing entity see the condition when it is evaluated to be true.

The conditional waiting that relies on signaling or a
REMOVE command seems to guard against the above
problem. However, another care must also be taken to
which entity is proceeding first after the signaling or issu-
ing of the REMOVE command. In ARENA, the entity
sending the signal or issuing the command continues its
execution and the entity receiving the signal is only placed
at the top of the event calendar. In our example model, we
usually want the removed entity to proceed before the sig-
naling entity, which will set/reset the control or index vari-
ables. This is where we need to delay the signaling entity
with an infinitesimal amount of time so that the simulation
looks up the event calendar and the removed entity is

Kulvatunyou and Wysk

Creat location 1
product

Batch location 1
proc asgm1

Asgn Proc
Index 1

Separate location
1 proc asgm 1

Asgn product
attribute 1

Stroe product
from location 1

Creat location 2
product

Creat location 3
product

Creat location 4
product

Creat location 5
product

Batch location 2
proc asgm1

Batch location 3
proc asgm1

Batch location 4
proc asgm1

Batch location 5
proc asgm1

Asgn Proc
 Index 2

Asgn Proc
 Index 3

Asgn Proc
 Index 4

Asgn Proc
 Index 5

Separate location
2 proc asgm 1

Separate location
3 proc asgm 1

Separate location
4 proc asgm 1

Separate location
5 proc asgm 1

Asgn product
attribute 2

Asgn product
attribute 3

Asgn product
attribute 4

Asgn product
attribute 5

Stroe product
from location 2

Stroe product
from location 3

Stroe product
from location 4

Stroe product
from location 5

0

0

Increase number
of product in
Inventory

Queue

Note: The practice associated with entity
can be looked up using VBA variable st Entity Prac
using Attr lot ID as reference Index to the array

Generate daily incoming products
from different upstream processes

WaitForSetLoadQ

0

0

0

0

Figure 8: Generate Product Input Submodel that does not Use Control Entity
yielded. Moreover, care must be taken that the infinitesi-
mal delay does not effect the simulation result. This is
sometimes very difficult to check at the design stage, but
easy to detect when verifying the model. Generally, if the
small delay is undisputed, slightly changing the delay pe-
riod (for example from 1E-6 to 1E-5) should not result in a
noticeable difference in the system performances. The
dummy entity in the Generate product input submodel uses
this technique to yield to duplicated product entities and
the setload control entity uses this technique to yield to the
product entity removed from the WaitForSetLoadQ.

6.4 Using Control Entity

In order to modularize the control logic with respect to the
model experimental elements such as the number of re-
sources, control entity is particularly useful (control entity
is an entity, which may or may not represent a physical ob-
ject in the modeling system. An entity is a control entity
when it is used to control other entities or elements in the
model). Take the Generate product input and the Setload
control submodels as examples. Without using the control
entity the Generate product input submodel might look like
the ARENA blocks shown in Figure 8. In order to make
the submodel flexible to additional upstream locations,
each of the five branches in the submodel handles the gen-
eration of product entities from each upstream location.
Without using the control entity technique, a piece of
automation code will be required to automatically add a
similar branch of the ARENA blocks to the submodel for
each additional upstream location.

Similarly, haven’t the setload logic configured into
two submodels (the Setload control and the Setload sub-
models) using control entities (each responsible for each
resource), and the aggregate elements, the setload logic
might be cluttering like the submodel shown in Figure 9. It
should be noted that the product entity in the Setload sub-
model (Figure 7) itself functions like a control entity
975
searching for the next product entity. In Figure 9, each loop
handles each resource, which may have different specifica-
tion. An additional loop will be needed for each additional
resource. The loop may be much larger as each of them re-
quires a chunk of logic blocks to handle the algorithm for
searching the product entity. The submodel is quickly clut-
tered only when a few resources are in the system.

Care must also be taken when using control entity as
the simulation speed and the result may be effected. For
example, take a look at the block labeled ‘Wait until more
products arrive’, which is a DELAY block, in the Setload
control submodel (Figure 6). The control entity is delayed
at that block when the first product entity for the new batch
can not be found in the current day, given an available fur-
nace. In the example model, it was assumed that the prod-
ucts only arrive at the beginning of each day. Therefore,
the control entity can be delayed for the elapse time be-
tween current time and the beginning of the next day to
start the search for applicable product entity again. This de-
terministic time delay maintains an acceptable simulation
speed. However, if the product entity arrival time is a ran-
dom number, the control entity needs to continuously
search for an applicable product entity. On the other hand,
if there is no holding block in the control loop (note that
the entity encountering a holding block causes the simula-
tion to look up the event calendar for the next scheduled
event. Entities are held when they encounter commands
like delay, seize, and wait), the control entity will not stop
its execution and other entities in the model can not pro-
ceed. The optimal delay time in this case is the elapse time
between current time and the schedule arrival time of the
next product entity. If this time periods are very short, the
simulation need to stop to advance the clock more fre-
quently which will result in significant reduction in the
simulation speed. Note that similar problem also applies to
the Setload submodel when the active product entity does
not find the next applicable product entity in the WaitFor-
SetLoadQ queue, it has to yield to other entities.

Kulvatunyou and Wysk

7 CONCLUSION

The concept of the Computer-Aided Manufacturing Simu-
lation (CAMS) for interactive analysis has been intro-
duced. The concept relies on the parameterized and modu-
larized model logic that allow the end user to interactively
modify the model and analyze the effect without having to
deal with the complex logic. The CAMS tool should yield
the following benefits to the organization. The shop engi-
neer can spend more time and attention to figuring out the
manufacturing and production problems rather than pro-
gramming problems. The CAMS tool should help saving
time and money from hiring a consultant every time some
system definition changes or an analytical question arises.
In addition, the modular architecture allows engineers from
several departments to integrate their information into a
common portal and consequently always obtaining an up to
date analysis result.

An example manufacturing system and associated
CAMS model has been given. The techniques and issues
that help making the model logic modular and parameter-
ized are described using the example model of a batch
processing problem. Though the breadth of modeling tech-
nique is unlimited, similar issues will be arising. The chal-
lenge to the simulation programmer is to modularize the
simulation model while maintaining the simulation speed
and validity. The Nittany Manufacturing’s batch annealing
analysis tool, as shown in this paper, is useful for giving
the engineer a quick quantitative answer to whether what
they do is better or worsen the system performance. In the
future, an optimization tool can be plugged-in (ARENA
4.0 now offers the OptQuest optimization software integra-
tion), the tool will be able to provide short-term heuristi-
cally optimal strategy. While the explanation in this paper
is based on a single example, the concepts, techniques, and
issues should apply to any type of application.

REFERENCES

Goldratt, E.M., Cox, J. (January 1992). The Goal: A Proc-
ess of Ongoing Improvement North River Press, In-
corporated.

Figure 9: Cluttered Setload Submodel

Create Seize Chunkof blocks Remove

Create Seize Chunk of blocks Remove

Seize furnance
resource 1

Chunk of blocks
seraching for applicable
product entity

Remove product
entityfound from
the queue

Chunk of blocks
seraching for applicable
 product entity

Seize furnance
resource 2

Remove product
entity found from
the queue
976
Harmonoski, C.M. Simulation-based real-time scheduling
review of recent developments. Proceedings of the
1995 Winter Simulation Conference, 220-225.

Narayanan, S., Bodner, D.A, Sreekanth, U., Govindaraj, T.,
McGinnis, L.F (1998). IIE Transactions 30, 795-810.

Narayanan, S., Malu, Pallavi G., Ashili, Krishna P.B., Di
Pasquale, John, Carrico, Todd M (Dec 1998). Web-
based interactive simulation architecture for airbase
logistics systems analysis. International Journal of In-
dustrial Engineering : Theory Applications and Prac-
tice, 5 (4), 324-335.

Smith, J. S., Wysk, R. A., Sturrok, D. T., Ramaswamy, S.
E., Smith, G. D., and S. B. Joshi (1994). Discrete
Event Simulation for Shop Floor Control. Proceedings
of the 1994 Winter Simulation Conference, 962-969.

Son, Y. J., Jones, A.T., Wysk, R.A. (2000), Automatic
generation of simulation models from neutral libraries:
An Example. Proceedings of the 2000 Winter Simula-
tion Conference.

AUTHOR BIOGRAPHIES

BOONSERM KULVATUNYOU is currently a Ph.D. can-
didate in the Harold and Inge Marcus Dept. of Industrial and
Manufacturing Engineering at Pennsylvania state University.
He received his MS from Columbia University and his BS
from Chulalongkorn University, Bangkok, Thailand. He is a
member of the Society of Manufacturing Engineers’ Student
Chapter at Pennsylvania State University. His research inter-
ests include computer-integrated manufacturing system
simulation, and information modeling.

RICHARD A. WYSK currently holds the Leonhard Chair
in Engineering at the Pennsylvania State University. Prior
to his current position, he was director of the Institute for
Manufacturing Systems and holder of the Royce Wisen-
baker Chair in Innovation at Texas A&M. he has also
served on the faculty of Virginia Tech and worked in in-
dustry as a research analyst for Caterpillar Tractor Co. and
as production control manager for General Electric. He re-
ceived his Ph.D. in industrial engineering from Purdue
University in 1977 and his BS and MS in industrial engi-
neering and operations research from the University of
Massachusetts (Amherst) in 1972 and 1973, respectively.
He is a decorated Vietnam veteran and author of several
textbooks. Honors recognizing his research include the In-
stitute of Industrial Engineers’ David F. Baker Distin-
guished Research Award and the Society of Manufacturing
Engineers’ Outstanding Young Manufacturing Engineering
Award. His research interests include computer-integrated
manufacturing, computer-automated manufacturing, com-
puter-aided process planning, and concurrent engineering.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

