
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

AN OBJECT-ORIENTED PARADIGM FOR SIMULATING
POSTAL DISTRIBUTION CENTERS

K. Preston White, Jr.
Brian Barney
Scott Keller

Robert Schwieters
Jacqueline Villasenor

Department of Systems Engineering

University of Virginia
P. O. Box 400747

Charlottesville, VA 22904-4747, U.S.A

William S. Terry
Richard G. Fairbrother

Richard D. Saxton

Distribution Technologies
Lockheed Martin Systems Integration--Owego

1801 State Route 17C
Owego, NY 13827-3998, U.S.A.

ABSTRACT

Discrete-event simulation is an established tool for the de-
sign and management of large-scale mail sortation and dis-
tribution systems. Because the design of distribution facili-
ties integrates many of the same or functionally similar
components, adopting an object-oriented approach to simu-
lation promises significant economies. Instead of coding
and verifying models de novo for each facility, component
subsystem, or individual process, object orientation allows
engineers to reuse validated code stored in an objects library.
In this paper, we illustrate how the procedural language
AutoMod--a leading commercial simulation package
widely accepted in the industry--can be adapted for use
within a hierarchical, object-oriented paradigm. A principal
contribution is the design of a configuration management
plan, which defines a structured process to control and ac-
count for the development and maintenance of procedural
code and graphics stored in the objects library.

1 INTRODUCTION

Large postal distribution centers process tens of thousands of
letters and packages daily. These facilities receive containers
of inbound mail from various locations. Mail is automati-
cally inducted into the system and separated into individual
pieces spaced along a conveyor segment. Addresses are opti-
cally scanned and identified and pieces are then sorted and
binned according to outbound destination. The scale of these
systems is impressive, with a typical postal distribution facil-
ity comprising several miles of conveyors.

Because of the large number and high cost of compo-
nent hardware and software systems, modern distribution
facilities are capital intensive. It is prudent, therefore, that
100
plant managers achieve a high level of flexibility and pro-
ductivity in their lines. Simulation modeling and analysis
help in gaining a better understanding of the dynamic be-
havior of a system, as pieces of mail flow through from re-
ceiving to shipping. This understanding is useful in pre-
dicting system performance during the design phase of a
project, as well as in aiding subsequent operations man-
agement. Simulation allows designers to organize machine
layouts virtually (Meyer 1987), improving throughput and
cycle times by determining the most efficient arrangement
of large systems of interacting people and machines .

Developing simulation code anew for each new facil-
ity is both expensive and time-consuming, however, for the
very reasons that make simulation the preferred method for
analysis. Models of distribution systems are large and
complex and generally contain thousands of lines of code.
In order for engineers to improve the efficiency and effec-
tiveness of simulation projects, it is desirable to adopt ob-
ject-oriented approach to model development.

Object-oriented programming resides in the idea of
designing and implementing reusable classes of code
stored in a software library. This library allows simulation
engineers to adapt the work of others within their own
simulations, facilitating rapid model development and
validation. This approach saves time and money and re-
duces the likelihood of faulty codes.

In this paper we report on a feasibility study for devel-
oping distribution-center software library using the Auto-
Mod simulation language. The study was undertaken by
an undergraduate project team at the University of Vir-
ginia, supported by professionals at Lockheed Martin Dis-
tribution Technologies (LMDT). The main goals for this
project were (1) to assess the feasibility of producing ob-
ject-oriented modules of simulation process logic and
7

White, Jr., Barney, Keller, Schwieters, Villasenor, Terry, Fairbrother, and Saxton

graphical representations using AutoMod and (2) to de-
velop a configuration management plan to handle the mul-
tiple source and cell files required for this realization. If
feasible, the simulation object library will be created and
used by LMDT simulation engineers when preparing fu-
ture distribution system simulations (Meyer et al. 2001).

2 BACKGOUND

Object-oriented libraries are standard in fields that generate
large and complex computer codes. Lockheed Martin, al-
ready familiar with object-oriented programming in various
business units, seeks to capitalize on this approach in its dis-
tribution technologies business. Specializing in the integra-
tion of large-scale distribution systems, LMDT is the largest
supplier of postal automation systems to the United States
Postal System and the second largest supplier of material
handling equipment worldwide. LMDT designs and manu-
facturers a large percentage of the machinery it uses in its
systems integration projects, including a portfolio of prod-
ucts for address recognition, material sorting, and material
handling for postal and commercial customers.

When engineers from different areas of the company
simulate the operation of this equipment in distribution
lines, a great deal of code with similar functionality is re-
peatedly written for each new application. A virtual distri-
bution library will enable LMDT to store code as objects
and make the object library generally available over the
company’s local area network. In this way, engineers will
be able to reuse existing code within their simulations.

AutoMod is a well-known commercial software package
used extensively in the design of manufacturing and distribu-
tion systems. In order to create highly accurate models,
AutoMod does not explicitly limit the size, level of detail, or
complexity of the simulation being developed. In addition,
templates available in AutoMod are geared to facilitate the
representation and design of material handling systems, in-
cluding conveyor systems, operators, and automated vehicles.

Perhaps the most salient feature of AutoMod is it’s
true three-dimensional graphics. Using AutoMod, simula-
tion engineers can create lifelike animations to accompany
their code. Navigating these 3-D animations provides an
excellent medium to communicate design concepts to cli-
ents, in addition to supporting technical studies based on
detailed output analyses (Phillips 1998, Rohrer 1999).

AutoMod was chosen as the language for this study
because of the strong preference of LMDT’s principal
postal distribution customer, the United States Postal Ser-
vice. Because programming in AutoMod is largely proce-
dural, however, the degree to which AutoMod can be
adapted to for use within a hierarchical, object-oriented
paradigm is unclear. Lockheed Martin seeks to benefit
from superior graphical capabilities of AutoMod, while op-
timizing its coding using object-orientation.
100
3 EXPERIMENTING WITH
PROCESS LOGIC REUSE

Principles of code reuse can be applied to reduce the num-
ber of lines of new code generated for a simulation. Proc-
ess modularization and object-oriented programming are
the two main practices explored in this study.

In AutoMod, a complete model may comprise an
unlimited number of successively referenced process pro-
cedures that are coded in individual source files. However,
current practice at LMDT is to develop only two or three
source files for each simulation. With so few source files
representing the logic involved with an entire distribution
facility, implementing even minor changes means delving
through a great quantities of code and ultimately requires
an intimate knowledge with each aspect of the model. With
the current strategy, reuse of code is possible, but problem-
atic. Arrays and sub-functions are means to combat the re-
use problem, however these still require traversing multiple
levels of logic in order to initiate change.

We developed a simple model as a test case to experi-
ment with modularization in AutoMod. The individual
processes chosen for modularization and reuse were an arri-
val process, a routing delay (conveyor) process, and a ser-
vice process. These generic processes occur multiple times
throughout all distribution facilities and are accepted as the
most common building blocks for component level objects.

As shown in Figure 1, the model is a tandem queue
with routing delays to the servers. This object comprises
five process modules−−one arrive module, two conveyor
(routing delay) modules, and two service modules. Loads
(dynamic entities, such as letters or parcels) arrive at the
system, one at a time, every five seconds. Immediately
upon arrival, loads are inducted onto the first conveyor and
delayed while being transported to the first service module.

Die

Arrival process
object code

Service process
object code

Routing process
object code

Arrival
Module

Conveyor
Module 1

Conveyor
Module 2

Service
Module 1

Service
Module 2

Die

Arrival process
object code

Service process
object code

Routing process
object code

Arrival
Module

Conveyor
Module 1

Conveyor
Module 2

Service
Module 1

Service
Module 2

Die

Arrival process
object code

Service process
object code

Routing process
object code

Arrival
Module

Conveyor
Module 1

Conveyor
Module 2

Service
Module 1

Service
Module 2

Figure 1: Flow Chart of Process Modules in a Component
Level Object

8

White, Jr., Barney, Keller, Schwieters, Villasenor, Terry, Fairbrother, and Saxton

 At the first service module, loads wait in queue for a
resource with unit capacity and then are delayed by a ran-
dom processing time distributed exponentially with a mean
of 4 sec. After processing at the first service module, loads
are inducted onto a second conveyor segment and delayed
while being transported to the second service module. At
the second service module, loads wait in queue for a re-
source with unit capacity and then are delayed by a random
processing time distributed exponentially with a mean of 3
sec. After processing at the second service module, loads
are sent to die (depart from the system).

The purpose of the experiment was to assess whether
or not source files could be called and recalled independ-
ently to create a component level object. To this end, the
logic for each type of process module (arrive, conveyor,
and service) was coded and stored in one of three separate
source files. The three source files were imported into a
single AutoMod model file. These files were then edited
within the AutoMod process system to define the re-
sources, queues, load attributes, and user-defined variables
used in the modules. The length of the routing delays was
established implicitly by adding the desired AutoMod con-
veyer system to the model.

4 MODULAR SOURCE FILES AND INDEXING

AutoMod code for the main module comprises two proce-
dures:

/*Initialize routing of loads between
 modules*/
begin P_initV arriving procedure
 set V_chooseproc(1)=P_arrival
 set V_chooseproc(2)=P_conveyor
 set V_chooseproc(3)=P_service
 set V_chooseproc(4)=P_conveyor
 set V_chooseproc(5)=P_service
 set V_chooseproc(6)=die
 send to die
end

/*Route loads*/
begin P_main arriving procedure
 set A_index=A_index+1
 send to V_chooseproc(A_index)
end

 At the beginning of a run, a single dummy load is cre-
ated and sent to the procedure P_initV. This procedure ini-
tializes an array of process pointers V_chooseproc, which
defines the sequential routing of loads through the five
process modules. The dummy load is then sent to die.

During the simulation, normal loads are sent to the
main procedure P_main after completing each process
module. In this main procedure, the module routing-
index—the load-attribute A_index--is incremented by one.
The load is then sent to the next process module defined by
the routing array.
100
AutoMod code for the arrival module comprises a
single procedure:

/*Initialize load indices*/
begin P_initA arriving procedure
 set A_index=0
 set A_servindex=0
 set A_staindex=0
 send to P_main
end

 Normal loads are created every 5 sec and sent to the
procedure P_initA. This procedure initializes three load-
attribute values, which are used as indices in various mod-
ules. Loads are then sent back to the main procedure.

AutoMod code for the conveyor module comprises a
single procedure:

/*Convey load between sequentially numbered
 stations*/
begin P_conveyor arriving procedure
 set A_staindex=A_staindex+1
 move into conv:sta_(A_staindex)
 set A_staindex=A_staindex+1
 travel to conv:sta_(A_staindex)
 send to P_main
end

 This reusable module transports a load between any
two sequentially numbered stations on the conveyor sys-
tem conv. The stations are indexed by the load attribute
A_staindex. Loads are then sent back to the main proce-
dure.

AutoMod code for the service model comprises one
procedure and one function:

/*Queue and process*/
begin P_service arriving procedure
 set A_servindex=A_servindex+1
 move into Q_service(A_servindex)
 get R_service(A_servindex)
 wait for F_servicetime(A_servindex)
 free R_service(A_servindex)
 send to P_main
end

/*Processing time*/
begin F_servicetime function
 if Arg1=1 then return e 4 sec
 else return e 3 sec
end

 This reusable module inserts the load into the appro-
priate queue Q_service, waiting for the corresponding re-
source R_service, both indexed by the load attribute
A_servindex. The processing delay is determined from the
function F_servicetime. Loads are then sent back to the
main procedure.

The code described in this section was tested, first by
including all of the modules in a single AutoMod source
file, then by including the modules each defined in a sepa-
rate source file. A trace of the simulations demonstrated
 9

White, Jr., Barney, Keller, Schwieters, Villasenor, Terry, Fairbrother, and Saxton

that processing of loads in both instances of was identical.
We conclude from the result that an appropriate scheme for
indexing model components does indeed permit a modu-
larization of reusable code segments that can be stored in
an library of hierarchical simulation objects.

5 GRAPHICAL REUSE

In addition to the procedural logic files, we constructed 3D
graphic files to examine their flexibility within the simula-
tion model. We used two utilities within the AutoMod
suite. The ACE utility allowed for the creation of three-
dimensional graphical renderings. We built two images
that were imported into our AutoMod simulation model as
a resource and a queue. The D-Trace utility allowed for the
visual enhancement of the conveyor belts, in terms of giv-
ing these additional features such as legs, rollers, curbs,
and shadows. The finished conveyor illustration was saved
as a file and imported into the model.

The two renderings in ACE satisfied our intention of
testing the reusability of graphic files. The scanner (or re-
source) image was only a duplicate of the queue graphic with
the addition of a few parts. In this way, we were able to suc-
cessfully reuse the queue object by adding the necessary
components to create an image of a scanner. This method
could assist in the creation of large-scale simulations based
on the ease of constructing images in a piece-wise fashion.

The D-Trace utility allowed us to enhance the model
with regards to the conveyor belt system. We added 3D fea-
tures such as legs, rollers, and curbs to each conveyor belt to
produce a more pleasing image. However, the addition of
these aesthetic elements does not support reusability. Each
time a change is made to the conveyor belt layout in the
AutoMod model, the graphical enhancements have to be rec-
reated within D-Trace and again imported into the model.

Both the ACE and D-Trace utilities provide the Auto-
Mod software with great visual capability. The three-
dimensional potential of AutoMod is a driving force be-
hind its use. Clients can easily visualize the actual appear-
ance and functionality of their distribution systems. The
ACE application is supportive of a reusable methodology
whereas D-Trace hinders such a technique.

6 CONFIGURATION MANAGEMENT

With LMDT’s goal to minimize simulation development
time, the simulation object library will contain an extensive
set of processes and graphic renderings to support the de-
velopment of complete parcel sorting and distribution sys-
tems. A large library of continuously updated code can
create problems in guaranteeing reliability and repeatabil-
ity in final products. Without a structured plan to control
the development and storage of these simulation objects,
engineers developing simulations cannot trust the integrity
of the procedural files.
1010
To minimize the integrity problems that can arise in
maintaining a preprogrammed object library, a configuration
management (CM) plan provides a structured approach to
control the development and maintenance of the procedural
code and graphics stored in the library. The CM plan outlines
the responsibilities of the management team of the simulation
object library, the Configuration Control Board (CCB). It also
identifies the types of objects stored in the library and the
processes for controlling changes to these items.

The CCB plays a critical role in identifying, planning,
and controlling changes to the simulation objects of the
simulation object library. Its major responsibility is to re-
view all of the change and addition requests to the simula-
tion object library. The other responsibilities of the CCB
include evaluating the feasibility and technical adequacy of
proposed changes to the library and the CM plan, provid-
ing hardware and software engineering impact analyses,
reviewing the scheduling impacts of changes to the library
code, assigning status audits, reviewing problems with the
library and procedures, and providing feedback to users of
the library of simulation objects. Figure 2 depicts the re-
view process of the CCB.

 Simulation

Object
Change
Request

Submitted

Developer Offers
Recommendation

to CCB

Project Manager
Assigns Initial

Impact Assessment

CCB Reviews
Request and

Decides Action
Simulation Object
Change Request

Closed

Project Manager
Assigns Change

to Developer

Figure 2: The CCB Review Process

With a defined management review process, the iden-

tification of simulation objects and the enforcement of con-
figuration control procedures ensure the reliability of the
changes to objects in the simulation object library. The
identification of configuration items sets the foundation for
the control of simulation library code development.

The repository for the simulation object library stores
the four different object types needed to support the devel-
opment of simulations. The key configuration items of the
simulation object library are objects discussed in the feasi-
bility analysis (the source code files that contain procedural
code and the graphic renderings). The repository also
stores past simulations for reference and all of the configu-
ration management documentation.

White, Jr., Barney, Keller, Schwieters, Villasenor, Terry, Fairbrother, and Saxton

With the configuration items defined, the next task is
to introduce procedures for controlling the development
environment. Configuration control is the process of man-
aging the changes to configuration items in the simulation
object library. The implementation of changes to configu-
ration items approved by the CCB has four major steps in
its development cycle to help ensure the reliability of the
final simulation objects. To document each step of the
code development cycle, four promotion levels are used to
identify the status of a file: development, unit test, system
test, and simulation. Figure 3 illustrates the development
cycle and the promotion schedule.

Project Manger
Assigns Request

to Developer

Developer
Programs

Changes to
Source File

Promote to
Development

Promote to
Unit Test

Software
Tester

Performs Unit
Testing

Promote to
System

Test

Software
Tester

Performs
System Testing

Promote to
Simulation

Update for Use
in Simulations

Fail

Fail

Demote to
Development

Figure 3: Simulation Object Development Flow Chart

7 RESULTS

The goals for this project were (1) to assess the feasibility
of producing object-oriented modules of simulation proc-
ess logic and graphical representations using AutoMod and
(2) to develop a configuration management plan to handle
the multiple source and cell files required for this realiza-
tion. By means of the example presented in Section 4, we
demonstrated that modular source files can be written and
integrated into an AutoMod simulation. These source files
represent reusable processes that can be stored in an ob-
jects library and can be combined into a hierarchy of com-
ponent subsystem- and system-level objects.
1011
The approach proposed for using these objects is to
create a main procedure, which defines a vector for routing
loads through the independent modules. The arrival pro-
cedure initializes the values of a set of load attributes
which index both the current routing step and the number
of calls to each module. While the example is simple, gen-
eralizing this approach to larger and more complex simula-
tion objects appears to be straightforward. The potential
downside to this approach is the large number of load at-
tributes that might be required for a complex routing and
the attendant memory requirements.

As outlined in Section 5, using the ACE and D-trace
utilities of AutoMod produced the desired reuse of graphi-
cal representations. The use of hierarchically structured
static sets of objects (for machine parts) generated individ-
ual cell files for reuse with the component level objects.
Experimentation with D-trace provided a 3-D graphical
environment for the entire system. While D-trace does re-
quire many redundant steps (a problem with repeatedly ex-
porting and importing of conveyor arrangements) it does
offer realism and the attendant advantages of communicat-
ing design concepts to clients.

Tying together all the individual source and cell files
is the configuration management plan defined in Section 6.
This plan gives guidance to managers and engineers on
how to execute file changes, sharing restrictions and pro-
cedural flow. This plan is essential to providing structure
for the object-oriented techniques developed for process
logic and graphical reuse.

8 CONCLUSIONS

Based on results of this feasibility study, we recommend that
LMDT apply the proposed modularization approach to an
industrial strength simulation. Assuming this approach
scales, then we recommended that LMDT develop a simula-
tion object library of process and component level objects.
Graphical representation of component level objects should
also be developed with a reusable methodology. To mini-
mize problems ensuring the integrity of objects in the li-
brary, it is essential that LMDT follow a configuration man-
agement plan, such as that developed during this project.
With a simulation object library of source code and graphi-
cal renderings, LMDT engineers will have a tool to econo-
mize the development of distribution system simulations.

REFERENCES

Barney, B., Keller, S., Schwieters, R., Villasenor, J.,
White, K. P., Terry, W. 2001. The feasibility of a mul-
tilevel simulation environment tool for designing mail
and distribution facilities. In Proceedings of the 2001
Systems Engineering Capstone Conference, ed. K. P.
White, Jr., and Danner, H.L., 85-90. Charlottesville,
VA: University of Virginia.

White, Jr., Barney, Keller, Schwieters, Villasenor, Terry, Fairbrother, and Saxton

Meyer, B. 1987. Reusability: The case for object-oriented

design. IEEE Software, March.
Phillips, T. 1998. AutoMod by AutoSimulations. In Pro-

ceedings of the 1998 Winter Simulation Conference,
ed. D. J. Medeiros, E. F. Watson, J. S. Carson, and M.
S. Manivannan, 213-218. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers.

Rohrer, M. 1999. AutoMod Product Suite Tutorial. In Pro-
ceedings of the 1999 Winter Simulation Conference, ed.
P.A. Farrington, H. B. Nembhard, D. TG. Sturrock, and
G. W. Evans, 220-226. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

ACKNOWLEDGMENTS

Many thanks to Jerry Banks for a crash course in Auto-
Mod. This paper is a substantially revised and updated
version of Barney et al. (2001).

AUTHOR BIOGRAPHIES

K. PRESTON WHITE, JR., is Professor of Systems Engi-
neering at the University of Virginia. He received the
B.S.E., M.S., and Ph.D. degrees from Duke University. He
has held faculty appointments at Polytechnic University and
Carnegie-Mellon University and served as Distinguished
Visiting Professor at Newport News Shipbuilding and at
SEMATECH. He is U.S. Editor for International Abstracts in
Operations Research and Associate Editor for International
Journal of Intelligent Automation and IEEE Transactions on
Electronics Packaging Manufacturing Technology. He is a
member of INFORMS, SCS, and INCOSE and a senior
member of IEEE and IIE. He sits on the Advisory Board of
VMASC and represents IEEE/SMC on the WSC Board.

BRIAN BARNEY is a fourth-year Systems Engineering
student from Rockville Centre, NY. He has been an active
volunteer in the Charlottesville community coaching
YMCA basketball and tutoring high school students. For
this project, Brian experimented with the ACE and D-
Trace utilities of AutoMod and focused on the feasibility
of graphical reuse. He plans to work in Manhattan, NY,
after returning from a trip to Europe in June.

SCOTT KELLER is a fourth-year Systems Engineering
Student from Mountainside, NJ. He has volunteered many
hours to a local children’s hospital and animal shelter. His
principal contributions to this project included the experi-
mentation with process logic reuse and correspondence
with the client. Scott has accepted a position with Lock-
heed Martin Distribution Technologies in Owego, NY.

ROBERT SCHWIETERS is a fourth-year Systems Engi-
neering student from Centreville, VA. He competed in the
pole vault for the UVA Track and Field team. His princi-
1012
pal contributions to this project included the configuration
management plan and the graphic renderings for resources
in simulations. Robb has accepted a position with Accen-
ture in Reston, VA.

JACQUELINE VILLASENOR is a fourth-year Systems
Engineering student from Fairfax, VA. She directly con-
tributed to the creation of the simulation for this project.
She plays outside center for the University Women’s
Rugby team and will compete in her second Nationals
tournament this year.

WILLIAM S. TERRY is the Technology Director for
Lockheed Martin Distribution Technologies in Owego,
NY. He received a B.S. in Electrical Engineer-
ing/Computer Science from Clarkson University and a
M.S. in Computer Engineering from Syracuse University.
He has worked as a system engineer or system architect on
a variety of complex system development programs mostly
related to supply chain automation and defense systems.

RICHARD G. FAIRBROTHER is Engineer/Scientist with
Lockheed Martin Systems Integration, Owego, NY. Mr.
Fairbrother has been designing, developing and analyzing
simulations for Lockheed Martin Distribution Technologies
the last four years. During this period, he has worked on
projects for the United States Postal Service, the Royal Mail
(UK), AusPost (Australia), as well as a number of commer-
cial material handling efforts. The primary develop-
ment/analysis tool has been AutoMod/AutoStat, including
experience with Taylor ED. Mr. Fairbrother’s current focus
areas are the creation of a Simulation Development Process
for Lockheed Martin Distribution Technologies and the ex-
ploitation of AutoMod’s ActiveX interface with an emphasis
on integrating simulations into a multi-application environ-
ment. Additional efforts include the development of simula-
tor/stimulator architectures for the APPS proposal and pro-
viding technical support to the 2000-2001 Capstone Project
at the University of Virginia.

RICHARD D. SAXTON is Manager, Facilities and Simu-
lation Systems Engineering, Lockheed Martin Systems In-
tegration, Owego, NY. Mr. Saxton manages the simulation
engineering department within the Lockheed Martin Dis-
tribution Technologies business area. Prior to serving in
his current role, Mr. Saxton worked as Systems Engineer
and Program Manager in the Distribution Technologies,
Avionics, and Systems Solutions business areas at the
Owego facility. Mr. Saxton has developed simulations
throughout his career beginning in APL and mainframe
SimScript environments. His recent efforts include sup-
porting and promoting simulation within the Distribution
Technologies business area and the larger Owego site and
providing support to the 2000-2001 Capstone Project at the
University of Virginia.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

