
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

HYBRID AGENT-BASED SIMULATION FOR ANALYZING THE NATIONAL AIRSPACE SYSTEM

Seungman Lee
Amy Pritchett

David Goldsman

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205, U.S.A.

ABSTRACT

Hybrid agent-based simulation is required to provide a
mechanism for analyzing large-scale complex systems,
such as the National Airspace System (NAS). The dynamic
behavior of many complex systems is, in general, hybrid in
nature and can be best described by a combination of dis-
crete-event and continuous-time models, and their interac-
tions. Correspondingly, hybrid agent-based simulation ca-
pable of incorporating different types of models provides
an accurate means of evaluating the reliability and per-
formance of complex systems. However, in order to serve
as a design and analysis tool, a number of issues must be
addressed. This paper outlines issues in the development
of hybrid agent-based simulation architectures capable of
providing a scaleable mechanism for simulating the NAS.
In particular, an object-oriented approach is described. In
addition, methods of improving computational efficiency
of updating the simulation are described and compared.

1 INTRODUCTION

Analysis of large-scale complex systems, such as the NAS,
requires the use of hybrid agent-based simulation. Simula-
tion is an important tool for evaluating the performance of
systems, and provides a safe and cost-effective way of ex-
amining the impact of potential changes (National Re-
search Council 1998). Typically, large-scale complex sys-
tems include different types of entities interacting with
each other in significant ways. For example, the NAS can
be defined as a collection of mutually dependent entities,
such as aircraft, controllers, pilots, ground systems, and
communication, navigation and surveillance technologies.
Controllers (and pilots) are constantly changing aircraft
flight paths in response to the actions of other entities and
to changes in the environment. Each of these entities re-
quires a different type of simulation model with varying
fidelity based on the behavior of the entity. For instance,
aircraft in the NAS may require a high-fidelity continuous-

102
time simulation model to predict the dynamic behavior of
the aircraft, while certain stochastic events such as aircraft
arrivals or machine failures require discrete-event simula-
tion models.
 The individual behavior of these different entities and
overall behavior of the NAS, therefore, can be modeled by
a combination of both continuous-time and discrete-event
models, and their interactions. Although systems of real-
world applications are often characterized by a combina-
tion of discrete-event and continuous-time models, the sys-
tems have been mainly simulated by either entirely dis-
crete-event simulation models capable of capturing and
predicting stochastic effects within a system of interest, or
entirely continuous-time simulation models capable of pre-
dicting the dynamic behavior of physical systems such as
aircraft trajectories and mechanical system performance.
The NAS, for example, has been simulated before using
entirely discrete-event models (Odoni, et al. 1997). How-
ever, such simulations have been limited to specific appli-
cations or parts of the NAS (Jim and Chang 1998). Corre-
spondingly, hybrid agent-based simulation capable of
incorporating different types of models provides a means
of more-accurately evaluating the reliability and perform-
ance of large, complex systems. This combined simulation
methodology was first proposed by Fahrland (1970), and
the need for such combined simulations has been addressed
previously (Cellier 1979, Dessouky and Roberts 1997).
 In order for hybrid agent-based simulation to serve as
a valuable design and analysis tool, a number of important
issues must be addressed. First, a hybrid agent-based simu-
lation of a large-scale system must be sufficiently flexible
and extensible so that different types of agents can be eas-
ily added and modifiable to a wide range of scenarios of
varying scope and fidelity. The most important function of
agent-based simulation is to efficiently integrate different
types of models interacting with each other in complex
ways at unpredictable times. An agent-based simulation
architecture for large-scale complex systems, therefore,
should be able to efficiently incorporate different types of

9

Lee, Pritchett, and Goldsman

simulation models, such as continuous-time and discrete-
event models, into a combined simulation model for repre-
senting and analyzing the system of interest more accu-
rately and more completely.
 Second, the agent-based simulation of large-scale sys-
tems must also be computationally efficient in order to
provide statistically meaningful data within a reasonable
amount of computation time. The different models in hy-
brid agent-based simulation use different timing methods
to advance the simulation and also tend to require substan-
tially different update rates. For example, a continuous-
time model of aircraft flight dynamics might require very
small time steps and frequent update rates, whereas a dis-
crete-event model for generating aircraft objects into the
airspace might require relatively large update intervals.
This disparity between the various timing mechanisms of
different models must be resolved efficiently in the agent-
based simulation.
 Despite these differences, hybrid agent-based simula-
tion must also ensure that agents in the simulation are syn-
chronized at any time when they must interact or exchange
data between different types of models. In particular, the
different types of models have to be properly incorporated
and synchronized, even when dramatically different time
steps are used for numerical or logical reasons. However,
computationally efficient mechanisms have not been de-
finitively established for timing the updates of each indi-
vidual agent contained in agent-based simulation.
 This paper outlines issues in the development of (1)
fully integrated agent-based simulation architecture using
an object-oriented approach and (2) computationally effi-
cient timing mechanisms for the agent-based simulation.
The performance of different timing mechanisms is dem-
onstrated in an experiment comparing three timing mecha-
nisms using the NAS simulation as a test case.

2 AGENT-BASED SIMULATION
ARCHITECTURE

A hybrid agent-based simulation model represents a simu-
lation architecture for modeling and simulation of complex
systems consisting of a mixture of discrete and continuous
components. In the simulation of large-scale complex sys-
tems, multiples of these different types of models interact
with each other in significant ways. The behavior of the
systems can be defined as hybrid dynamics incorporating
discrete-event and continuous-time models. The most im-
portant feature of the hybrid agent-based simulation model
is the efficient integration of different types of models in-
teracting with each other. The different modeling and
simulation approaches used for continuous-time and dis-
crete-event models must be integrated in a consistent man-
ner so that entire systems can be simulated with an appro-
priate speed/accuracy tradeoff.
1030
 Several approaches have been suggested to integrate
the different types of models within combined simulation.
Augmented approaches, such as the discrete-augmented
approach and the continuous-augmented approach, have
adapted existing simulations of one type to include the
other (Saleh, Jou, and Newton 1994). For example,
Klingener (1996) described an approach for the incorpora-
tion of interacting continuous processes into a discrete-
event simulation model. Several modeling languages have
also been developed for combined system simulation (Des-
souky and Roberts 1997). These approaches usually force
the systems into either a strictly discrete or continuous
model, and may lead to an inadequate representation of the
system under study.
 The simulation architecture to appropriately represent
the behavior of hybrid systems should be able to (1) accept
different types of models with varying fidelity without plac-
ing unnecessary restrictions on the type of models, (2) con-
trol their timing in a computationally efficient manner, and
(3) handle interactions between entities within the system.
 Object-oriented (O-O) simulation is becoming the ap-
propriate approach for modeling large-scale, complex,
and/or distributed systems (Roberts and Dessouky 1998).
The agent-based approach to simulation can benefit from O-
O modeling because it provides constructs and concepts that
support the definition of agents. An entity in the real world
is modeled as an agent, which itself is represented as a class.
An agent is an abstract representation of an entity that inter-
acts with and contributes to its environment. Instances of the
agent are represented as objects of the class. For example, in
the simulation of the NAS, aircraft in the NAS are modeled
as agents and represented by a class. The NAS simulation
includes hundreds of aircraft as agents of the same type;
these are represented as instances, or objects, of the aircraft
class. The interactions between agents in agent-based simu-
lation will become clear by using the O-O approach.
 Agent-based simulation architecture using an O-O ap-
proach, therefore, can efficiently represent the collective dy-
namic behavior of a large number of agents interacting with
each other. Further, this agent-based architecture using an O-
O approach allows for fast prototyping and simulation of
large, complex systems due to the ease of modeling. With
reusable and modular component design as provided by
concepts such as encapsulation, inheritance, and polymor-
phism, an agent-based simulation can be efficient to develop
and maintain (Sichman, Conte, and Gilbert 1998). In addi-
tion, this approach can be used to control the timing and up-
dating of agents in a computationally efficient manner.
 Instead of forcing agents to fit into one of various dif-
ferent types of models, each agent in the agent-based simu-
lation architecture is required to satisfy the minimal re-
quirements of a standard interface. Specifically, each agent
must update its state upon command, report the time of its
next update, and identify whether its own update requires
any other objects to also update. Each agent, therefore, has

Lee, Pritchett, and Goldsman

to know when significant changes have occurred in the ac-
tions of its own process. All other dynamics of the compo-
nents can remain internal to their models; this internalism
prevents restricting the types of models allowed in the
simulation (Bezdek, Halley, and Hummel 1997, Davis and
Bigelow 1998). Based on this argument, the simulation ar-
chitecture should not place unnecessary restrictions on the
types of objects, but instead each object must satisfy the
base standard interface requirements.
 The Reconfigurable Flight Simulator (RFS) software,
designed using principles of O-O analysis, is used as the
simulation architecture for an agent-based simulation ap-
plication (Pritchett and Ippolito 2000, Pritchett, Lee, and
Goldsman 2001). This architecture allows for the inclusion
of several broad classes of objects. First, an arbitrary
number of controller, event, and measurement (CEM) ob-
jects can be added; these classes of objects can include
human performance models, as well as measurement and
discrete-event models. Likewise, an arbitrary number of
vehicle objects and input-output objects can be included to
provide continuous-time representations of aircraft dynam-
ics and data output / storage / entry, respectively. The en-
vironment controller and database (ECAD) provides a
shared simulation environment by establishing axis defini-
tions and by allowing for the inclusion of atmospheric and
terrain models as needed.
 A practical concern in agent-based simulation is that
the simulation should be sufficiently computationally effi-
cient that it is a time-effective analysis tool. In agent-based
simulation of large-scale systems, overall computational
efficiency can be achieved only when each agent is up-
dated as needed for its own internal dynamics, for correct
interactions with other agents, and for timely measure-
ments. The simulation architecture, therefore, should be
capable of timing the updates of the individual agents in a
computationally efficient manner. Specifically, if a timing
mechanism commands agents to update only when re-
quired, it can dramatically speed up the simulation while
maintaining its fidelity. Of course, methods of deciding
when an update may be required for correct interactions or
timely measurements are generally non-trivial once the
simulation at hand contains stochastic elements.

3 TIMING MECHANISMS

Research on timing mechanisms has been focused on mak-
ing each simulation model computationally efficient. How-
ever, timing mechanisms for an agent-based simulation in-
corporating different types of models have not been
developed thus far. As discussed in previous sections,
agent-based simulation includes different types of agent
models such as discrete-event models and continuous-time
models. These different models require different timing
methods and considerably different update rates. By devel-
oping a timing mechanism to efficiently control the differ-
1031
ent update rates of different simulation models, it is possi-
ble to reduce any unnecessary updates of agents and
consequently to improve the computational efficiency of
the simulation. More generally, this section focuses on
various aspects of timing mechanisms for agent-based
simulation of large, complex systems and describes their
implementation using an O-O approach.

3.1 Characteristics of Different Timing Methods

There are fundamental distinctive differences between tim-
ing methods for discrete-event models and continuous-time
models. Historically, there are two principal mechanisms
for advancing discrete-event simulations: next-event time
advance and fixed-increment time advance (Law and Kel-
ton 2000). With the fixed-increment timing mechanism,
the simulation moves forward in time at fixed intervals re-
gardless of whether anything happens within the time in-
tervals. With the next-event timing method approach, the
simulation is advanced from one event time to the next
significant event time and these intervals may be variable.
Discrete-event models update their state at discrete points
in time, when an event occurs to cause a change in the state
of the system.
 On the other hand, continuous-time models typically
attempt to represent internal dynamics, such as aircraft tra-
jectories, that are governed by physical laws, which are
expressed as differential equations (Zeigler, Praehofer, and
Kim 2000). For most continuous-time models, numerical-
analysis techniques that integrate the differential equations
numerically are used to compute the evolution of the sys-
tem states. In continuous-time models, the integration pro-
ceeds using a large number of small time steps. The time
step can be fixed at a small value to reduce error in the
numerical solutions and to capture the simulation’s basic
properties, or the time step can be variable in size within an
error tolerance.
 The timing mechanisms can also be defined as syn-
chronous or asynchronous as typically used in parallel and
distributed system simulation (Fujimoto 2000). While syn-
chronous timing methods require all agents in the simula-
tion to update at the same time, asynchronous timing
methods allow each agent to update individually and inde-
pendently. For large-scale or repeated runs of the simula-
tion, synchronous timing methods will be computationally
inefficient since the timing method requires all agents to
update at every time step, whether they need to or not. The
synchronization between agents interacting with one an-
other is also an important factor in determining the accu-
racy and speed of agent-based simulation.
 Based on the characteristics of those different timing
methods, several timing mechanisms to synchronize the time
of simulation updates can generally be categorized into three
schemes: synchronous fixed time interval, synchronous vari-
able time interval, and optimistic time-warp methods.

Lee, Pritchett, and Goldsman

3.1.1 Synchronous Fixed Time Interval

This timing method requires all agents to update at a prede-
termined fixed time interval. The advantage here is that
synchronization will always be maintained since all differ-
ent types of agent models are simulated at the same time.
By the setting of a sufficiently small time step, this method
provides accurate results that can be guaranteed not to miss
any measurements or interactions. The obvious drawback
is that a small time step results in a large number of update
points. Although fixed time interval mechanisms are con-
ceptually very simple, they lead to unnecessary updates of
agents since the system needs to examine the simulation at
the fixed intervals even in cases where interactions or
measurements have not occurred. Thus, this method de-
grades the overall simulation speed. Another limitation is
that it is not easy to predetermine a single time step for the
simulator as the smallest time interval among those associ-
ated with every agent under worst-case conditions.

3.1.2 Synchronous Variable Time Interval

This method requires all agents in the simulation to update
at the same time, usually selecting the most restrictive time
step demanded by any of the agents in the simulation. The
time interval varies from one time step to the next to meet
the needs of the simulation. This method still forces some
agents to update unnecessarily even though simulators with
variable time intervals offer more efficiency and better
flexibility than simulators with fixed time intervals.

3.1.3 Optimistic Time-Warp Method

Asynchronous, optimistic ‘time-warp’ or ‘roll-back’ algo-
rithms have been applied to parallel simulations using dis-
crete-event and simple continuous-time models (Fujimoto
2000). These methods allow entities to advance forward in-
dependently and asynchronously until it is recognized that
synchronization should have occurred earlier due to an inter-
action between agents. At that point, the relevant agents are
rolled back to the time of the interaction and re-evaluated.
This method may degrade the overall simulation speed, de-
pending on the degree of roll back and frequency with which
it is used. These types of timing methods are ill-suited to
complex aerospace simulations where individual models
(such as high-fidelity aircraft dynamic models) can not be
easily converted to run backwards or to save (and re-
initialize) the full description of their past state space.

3.2 Asynchronous with Resynchronization Method

In theory, asynchronous timing mechanisms should be
much more computationally efficient than synchronous
timing methods since asynchronous timing methods do not
require all agents to update at every time step. However, a
103
completely asynchronous method is not appropriate for
agent-based simulation because it may not fully capture
interactions between agents. In an agent-based simulation,
it is common for one agent to collect state information
from other agents. For example, in the simulation of the
NAS, an air traffic controller agent might need the current
values of the location, speed, and heading state variables of
aircraft to determine a desired speed for the aircraft to
avoid loss of separation. Therefore, it is necessary to re-
synchronize all aircraft at the time when the air traffic con-
troller calculates the desired speed for the aircraft.
 Pritchett, Lee, and Goldsman (2001) demonstrated the
potential of a fourth timing method, asynchronous with re-
synchronization. This timing method allows agents to up-
date asynchronously following their own update times, but
also makes conservative estimates of when interactions
may occur in the future, and requires the relevant agents to
jointly update at these resynchronization intervals. The re-
mainder of this paper further examines this timing method
and outlines the considerations in setting the resynchroni-
zation interval.
 In an asynchronous with resynchronization simulation,
a ‘state updater’ object (a simulation executive) within the
agent-based simulation architecture must include a mecha-
nism for efficiently carrying out the updates of each agent
contained in the simulation and must guarantee that all
agents are updated in correct chronological order. To do
this, the state updater object maintains a list of the agents
active in the simulation. The mechanism for advancing
simulation time is based on the sorted object list, which is
ordered by the time of the agents’ next desired update. As
described in previous sections, all agents are required to
report the time of their next desired update as well as
which agents are also needed to update together. As such,
the state updater object can identify the agent next to be
updated and check whether it requires other agents to
jointly update, and then command the appropriate agents to
update. Once agents have been updated, they are sorted ac-
cordingly on the sorted object list, and the simulation is
advanced to the time of the next update.

3.2.1 Complete Resynchronization

The asynchronous with complete resynchronization
mechanism allows all agents in the simulation to update
independently until any agent requires resynchronization.
With this timing method, the state updater object synchro-
nizes all agents at each resynchronization interval. This
method is shown schematically in Figure 1 for a simulation
with three agents. For example, agent1 and agent2 update at
their own rates until agent3 requires resynchronization.
 In large-scale agent-based simulation, the asynchro-
nous with complete resynchronization method can be com-
putationally inefficient because it updates all agents when
any agent requires resynchronization.
2

Lee, Pritchett, and Goldsman

agent
1

agent
2

simulation time

agent
3

Figure 1: Asynchronous with Complete Resynchronization

3.2.2 Partial Resynchronization

At the times of resynchronization, only some of the agents
are required to update due to the interactions or measure-
ments involving them. Therefore, a better approach is to
update only those agents interacting with each other at re-
synchronization times. The asynchronous with partial re-
synchronization timing method allows agents in the simu-
lation to update at their own update times independently
until an agent specifically requires some of the other agents
to be resynchronized. With this timing method, the state
updater agent synchronizes only those agents that another
agent requires to also update at the resynchronization time.
This method is shown schematically in Figure 2: agent2 re-
quires only agent1 to update at time 5; agent3 requires only
agent2 to be updated at time 20; and agent3 requires both
agent1 and agent2 to update at time 40. This timing method
can improve computational efficiency by updating just
some of the agents interacting with each other at resyn-
chronization intervals.

agent 1

agent 2

simulation time

agent 3

5 20 40

Figure 2: Asynchronous with Partial Resynchronization

Several issues need to be addressed in the develop-

ment of the asynchronous with partial resynchronization
timing mechanism, some of which are beyond the scope of
this paper. One issue concerns cyclic dependencies be-
tween agents. For example, if agent1 requires agent2 to be
updated, agent2 requires agent3 to also be updated, and
agent3 requires agent1 to be updated, then the simulator
103
might be in an infinite loop. Another issue lies in identify-
ing the proper sequence in which agents need to be updated
for proper interactions.

3.3 Resynchronization Intervals

The computational efficiency of the asynchronous with re-
synchronization strategy depends upon the setting of the
resynchronization intervals. For example, if an interval is
conservatively set to be very short, the simulation will re-
synchronize too frequently, causing unnecessary updates of
individual entities in the simulation; conversely, if an in-
terval is set to be too long, the simulation may miss or skip
important interactions or measurements such as the conflict
or loss of separation between aircraft. Typically, larger re-
synchronization intervals require better predictions by in-
dividual agents about when an interaction may occur.
However, the most accurate predictions require significant
computation in their own right, negating their benefit, and
are fundamentally limited by the unpredictability of future
stochastic events. Likewise, the most accurate predictors
may require significant knowledge of the underlying dy-
namics of many agents in the simulation. The development
of very accurate predictors can thus be laborious and ex-
pensive, as well as application specific.
 Setting the resynchronization interval may be modeled
as a signal-detection problem, in which it is desired to
minimize both false alarms (early resynchronization) and
missed detections (resynchronizations that skip over inter-
actions and measurements) in the face of uncertainty about
the future dynamics (Kuchar 1996). Therefore, methods of
setting resynchronization intervals can be measured in two
ways: by their ability to predict when an interaction or
measurement may occur; and by their implicit trade-off be-
tween false alarms and missed detections.

4 MEASUREMENT AGENTS

To make asynchronous with resynchronization timing
methods more computationally efficient, it is important to
capture interactions or measurements exactly when they
occur. It is also necessary to develop an object that can
predict when interactions between agents might occur, for
purposes of setting the resynchronization intervals and to
identify which agents will interact with each other at the
resynchronization intervals. Our approach makes active
‘measurement agents’ that report when they must next be
updated. This projected update time can be a conservative
estimate of when a measurement may be needed or when
an interaction may next occur.
 Since the interactions generally involve two agents, it
is most efficient to develop a modular measurement object
for predicting the interaction times between only two
agents of any type. As a benefit, by making a measurement
object that can take any types of two agents in the simula-
3

Lee, Pritchett, and Goldsman

tion, the resynchronization intervals in the asynchronous
with resynchronization timing methods can be predicted
more accurately and efficiently.
 A ‘measurement management agent’ (MMA) is re-
quired for creating and managing modular measurement
objects for all pairs of relevant agents in the simulation.
The MMA maintains a list of modular measurement ob-
jects to efficiently manage the update of the measurement
objects. The MMA is also required to meet the interface
standards as described earlier. The MMA identifies the
measurement object that has the minimum value of the
next update time in the list of measurement objects and re-
ports the next desired update time to the state updater ob-
ject. The base standard interfaces stipulate that each of
these modular measurement objects must report the time of
their next update and return the two relevant agents to be
jointly updated. When the MMA is called to update in the
simulator, it updates only the measurement object with the
minimum value for its next update time. Therefore, only
the two agents that are associated with the measurement
object need to be resynchronized at the time.
 The MMA uses an O-O modular structure, which
makes it easy to add and develop new measurement objects
that collect different statistical data and predict different
interactions between two agents. The MMA can be given
the capability to monitor and modify resynchronization in-
tervals, to develop its own predictive power based on ex-
perience, and to adjust its measurement objects’ resyn-
chronization intervals accordingly through several
mechanisms. For example, neural networks can be used to
predict when measurements or interactions will occur as
the simulation progresses (Wu 1994). Once a neural net-
work is trained, it can provide more accurate resynchroni-
zation intervals quickly and without substantial computa-
tions, and can be stored for future simulation runs.

5 EXPERIMENT RESULTS

5.1 Test Case: Simulation of a Standard
Terminal Arrival Route

To demonstrate the computational efficiency of these dif-
ferent timing mechanisms, an experiment was conducted
using the simulation architecture and measurement agents
described in the previous sections. The simulation modeled
the stream of arriving aircraft flying the Macey Two Stan-
dard Terminal Arrival Route (STAR) into Atlanta Harts-
field airport.
 For the simulation, several different types of agent
models were developed using the simulation architecture
described in the previous section. These models include
waypoint following aircraft that traverse the desired trajec-
tory defined by a list of waypoints, random aircraft genera-
tor agents that generate aircraft agents stochastically with a
specified inter-arrival time distribution, air traffic control-
103
ler agents that determine aircraft sequences in merging ar-
rival streams and then command speeds to aircraft to main-
tain proper spacing within the traffic streams, and
measurement objects that predict the time to the violation
of minimum separation between aircraft and collect statis-
tical data of interest.

5.2 Performance Measurement

It is not a trivial problem to measure computational effi-
ciency between different timing mechanisms. In particular,
it can be difficult to compare the relative computational ef-
ficiency of different timing mechanisms if the simulation
includes stochastic elements. Each agent requires some
time to execute its internal dynamics. The cost of computa-
tion is proportional to the number of agent executions per-
formed. Therefore, the number of agent executions per-
formed during the simulation can be used as a performance
measure of the agent-based simulation. In the simulation of
the NAS, for example, many aircraft agents are generated,
and this type of agent is quite computationally intensive
due to both its own continuous-time internal dynamics and
enforced resynchronization by other agents. Thus, the av-
erage number of updates for each aircraft agent is a good
performance measure of the different timing mechanisms
in this test case.

5.3 Simulation Results

The simulation results for three different timing mechanisms
are shown in Figure 3. The ‘Fast-Time’ label represents the
synchronous with variable time interval method. The ‘Com-
plete Resynch.’ moniker denotes the asynchronous with
complete resynchronization timing mechanism, and ‘Partial
Resynch.’ represents the asynchronous with partial resyn-
chronization timing mechanism. In the asynchronous with
complete resynchronization simulation, the air traffic con-
troller agents and measurement objects require all aircraft
agents to also be updated at the resynchronization intervals.
In the asynchronous with partial resynchronization simula-
tion, the controller agents require only the aircraft in their
sector to be updated, and the measurement objects require
only two aircraft to be updated at times when there may be a
potential loss of separation.
 The computational efficiency of the simulation is sig-
nificantly improved overall with both asynchronous with re-
synchronization timing methods by allowing aircraft agents
to update independently until the resynchronization is re-
quired. Specifically, as illustrated in Figure 3, the asynchro-
nous with partial resynchronization timing method is more
computationally efficient than the asynchronous with com-
plete resynchronization. The inter-arrival time distribution of
aircraft into the arrival route also affects the performance of
the timing mechanisms. The lower average inter-arrival time
(150 seconds) creates a high traffic volume, in which there
4

Lee, Pritchett, and Goldsman

are often conflict possibilities and measurement objects pre-
dict shorter resynchronization intervals. In this case, the
asynchronous with resynchronization methods require rela-
tively frequent resynchronization.
 In the asynchronous with partial resynchronization
method, fewer updates were required for all aircraft on av-
erage, as the method required only two aircraft objects to
update at the frequent resynchronization intervals, while
the asynchronous with complete resynchronization method
required all aircraft objects to update at every resynchroni-
zation interval.
 In summary, when agents have widely varying update
times and need to interact frequently, the asynchronous
with partial resynchronization method can greatly improve
computational efficiency. Even with the most conservative
and simple methods of estimating these resynchronization
intervals, significant performance gains were found in the
time required to run the simulation of the NAS test case.

6 CONCLUSIONS

Hybrid agent-based simulation using an objected-oriented
approach provides a mechanism for more accurately and ef-
ficiently analyzing large-scale, complex systems such as the
NAS. Such a simulation model represents well the dynamic
behavior of large, complex systems involving substantial
numbers of entities that can be best described by either (or
both) continuous-time models or discrete-event models. The
103
application of hybrid agent-based simulation can be used for
a priori safety analysis of large-scale complex systems. For
example, the impact of human error or machine failures on
the safety of such systems can be evaluated by using more
realistic hybrid agent-based simulation.
 As noted herein, hybrid agent-based simulation archi-
tecture should be sufficiently flexible and extensible to eas-
ily incorporate different types of models with varying
fidelity and resolution. With O-O software architecture, an
agent-based simulation could accept models of any type,
control their different timing in a computationally efficient
manner, and handle interactions between the agents within
the simulation.
 In order to serve as a valuable design and analysis
tool, the agent-based simulation of large, complex systems
must also be computationally efficient to provide statisti-
cally meaningful results within a reasonable amount of
computation time. This paper has discussed timing mecha-
nisms for hybrid agent-based simulation to improve com-
putational efficiency. Such efficiency can be achieved
when agents are updated only when needed for their inter-
nal dynamics, for accurate interactions with other agents,
and for timely measurements.
 This paper focused on timing the updates of individual
agents in the agent-based simulation. Different types of
timing mechanisms were reviewed, and a comparatively
new timing method, asynchronous with resynchronization,
was detailed. Its accuracy and computational efficiency

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 50 100 150 200 250 300

Number of Arrived Aircraft

A
ve

ra
ge

 N
um

be
r o

f U
pd

at
es

 p
er

 A
irc

ra
ft

Fast-Time 150

Fast-Time 300

Complete Resynch. 150

Complete Resynch. 300

Partial Resynch. 150

Partial Resynch. 300

Average Aircraft
Inter-Arrival Time (sec)

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 50 100 150 200 250 300

Number of Arrived Aircraft

A
ve

ra
ge

 N
um

be
r o

f U
pd

at
es

 p
er

 A
irc

ra
ft

Fast-Time 150

Fast-Time 300

Complete Resynch. 150

Complete Resynch. 300

Partial Resynch. 150

Partial Resynch. 300

Average Aircraft
Inter-Arrival Time (sec)

Figure 3: Experimental Results of the Simulation with Different Timing Mechanisms and Avg Aircraft Inter-Arrival Times
5

Lee, Pritchett, and Goldsman

depends on the setting of resynchronization intervals. In
particular, considerations in setting the resynchronization
intervals were outlined and O-O modular measurement
agents capable of predicting resynchronization intervals
were developed and described to facilitate the implementa-
tion of new timing mechanisms. This measurement object
has the direct benefit of allowing for easy implementation
of new measurements in the simulation, as this high-level
object monitors all pairs of relevant agents and interacts
with the larger simulation architecture, including com-
manding the relevant agents to resynchronize. These de-
velopments are expected to enable more accurate and com-
putationally efficient simulations.
 As described earlier, the resynchronization intervals
depend strongly on the update time of modular measure-
ment objects. Measurement objects, therefore, need to be
improved to be capable of estimating efficiently and intel-
ligently when interactions may occur, in order to improve
the computation efficiency of the asynchronous with re-
synchronization simulation method. Currently under de-
velopment is an intelligent and efficient module to predict
via neural nets the next update time for each measurement
object.
 Even with the conservative and simple measurement
object that estimates resynchronization intervals, signifi-
cant computational gains were achieved using the new tim-
ing mechanisms in a test case simulation of the NAS.

ACKNOWLEDGEMENT

This work was funded by the NASA Ames Research Center
under Grant NAG-2-1291, with Irv Statler, Mary Conners
and Kevin Corker administering and serving as technical
points of contact. The authors would also like to thank those
who have contributed to the development of the simulation,
including Corey Ippolito, Ted Chen, and Satchidanand
Kalaver. Parts of this paper appeared in the Proceedings of
the 2001 Digital Avionics Systems Conference.

REFERENCES

Bezdek, W. J., T. A. Halley, and P. C. Hummel. 1997.
Model reuse for software development and testing:
The application of common interfaces to support vari-
able fidelity models. In Proceedings of the AIAA Mod-
eling and Simulation Technologies Conference, New
Orleans, LA, 376–386.

Cellier, F. E. 1979. Combined continuous / discrete system
simulation languages – usefulness, experiences and fu-
ture development. Methodology in Systems Modelling
and Simulation: 201–220.

Davis, P. K. and J. H. Bigelow. 1998. Experiments in
multiresolution modeling (MRM). Report MR-1004-
DARPA, Rand, Santa Monica, CA.
1036
Dessouky, Y. and C. A. Roberts. 1997. A review and clas-
sification of combined simulation. Computers and In-
dustrial Engineering 32 (2): 251–264.

Fahrland, D. A. 1970. Combined discrete event continuous
systems simulation, Simulation 14 (2): 61–72.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation
Systems. New York, NY: Wiley.

Jim, H. K. and Z. Y. Chang. 1998. An airport passenger
terminal simulator: A planning and design tool. Simu-
lation Practice and Theory 6: 387–396.

Klingener, J. F. 1996. Programming combined discrete-
continuous simulation models for performance. In
Proceedings of the 1996 Winter Simulation Confer-
ence, ed. J. M. Charnes, D. J. Morrice, D. T. Brunner,
and J. J. Swain, 833–839, Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Kuchar, J. K. 1996. Methodology for alerting-system per-
formance evaluation. AIAA Journal of Guidance, Con-
trol, and Dynamics 19 (2): 438–444.

Law, A. M. and W. D. Kelton. 2000. Simulation Modeling
and Analysis, 3d Ed. New York, NY: McGraw-Hill.

National Research Council. 1998. The Future of Air Traffic
Control: Human Operators and Automation, ed. C. D.
Wickens, A. S. Mavor, R. Parasuraman, and J. P.
McGee, Washington, DC: National Academy Press.

Odoni, A. R., et al. 1997. Existing and required modeling
capabilities for evaluating ATM systems and concepts.
Technical Report, MIT International Center for Air
Transportation.

Pritchett, A. R. and C. Ippolito, 2000. Software architec-
ture for a Reconfigurable Flight Simulator. In Pro-
ceedings of the AIAA Modeling and Simulation Tech-
nologies Conference, Denver, CO.

Pritchett, A. R., S. M. Lee, and D. Goldsman. 2001. Hy-
brid-system simulation for safety analysis of the Na-
tional Airspace System. Accepted for publication in
AIAA Journal of Aircraft.

Roberts, C. A. and Y. M. Dessouky. 1998. An overview of
object-oriented simulation. Simulation 70 (6): 359–368.

Saleh, R. A., S.-J. Jou, and A. R. Newton. 1994. Mixed-
Mode Simulation and Analog Multilevel Simulation,
Boston, MA: Kluwer.

Sichman, J. S., R. Conte, and G. L. Gilbert. 1998. Multi-
agent systems and agent-based simulation. In First In-
ternational Workshop, MABS ‘98, New York, NY:
Springer.

Wu, J.-K. 1994. Neural Networks and Simulation Methods.
New York, NY: Marcel Dekker.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. San
Diego, CA: Academic Press.

Lee, Pritchett, and Goldsman

AUTHOR BIOGRAPHIES

SEUNGMAN LEE is a Ph.D. student in the School of In-
dustrial and Systems Engineering at the Georgia Institute
of Technology. He received a B.S. from Hanyang Univer-
sity and M.S. degrees from Pohang University and Carne-
gie Mellon University. His research interests include air
traffic control, flight simulation, and large-scale agent-
based simulation of hybrid systems. His e-mail and web
addresses are <seungman@isye.gatech.edu> and
<www.isye.gatech.edu/~seungman>.

AMY R. PRITCHETT is an Assistant Professor in the
Schools of Industrial and Systems Engineering and Aero-
space Engineering at the Georgia Institute of Technology.
She received S.B., S.M., and Sci.D. degrees from the De-
partment of Aeronautics and Astronautics at the Massachu-
setts Institute of Technology. Her research specialties in-
clude cockpit design, air traffic control, flight simulation,
and large-scale agent-based simulation of hybrid systems.
Her e-mail and web addresses are <amyp@isye.
gatech.edu> and <www.isye.gatech.edu/
~amyp>.

DAVID GOLDSMAN is a Professor in the School of In-
dustrial and Systems Engineering at the Georgia Institute
of Technology. His research interests include simulation
output analysis and ranking and selection. He also studies
applications arising in the healthcare field. Dave has been
an active participant in the Winter Simulation Conference
— he is currently on the Board of Directors, and was the
1995 Program Chair and 1992 Associate Proceedings Edi-
tor. His e-mail and web addresses are <sman@isye.
gatech.edu> and <www.isye.gatech.edu/
~sman>.
1037

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

