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ABSTRACT 

A simulation-based cycle time-throughput curve requires a 
large amount of simulation output data, and an experimen-
tation framework is needed to enhance the precision and 
accuracy of a simulation-based cycle time-throughput 
curve. In this research, approaches and solutions are pre-
sented on three prime issues: 1) the establishment of the 
simulation sampling strategies; 2) the determination of the 
simulation sequences; and 3) the determination of the 
length of a simulation run. First, strategic simulation sam-
pling guidelines are proposed as to how to use a fixed 
amount of samples when trying to generate a precise and 
accurate cycle time-throughput curve for complex systems. 
Second, in order to provide good references for the sequen-
tial experiments to generate precise simulation-based cycle 
time-throughput curves, a set of discrete design points is 
ranked sequentially. Third, a sequential stopping rule is 
developed to determine the length of a simulation run 
based on a time series forecasting procedure. 

1 INTRODUCTION 

1.1 Motivation 

Effective manufacturing capacity management is one of 
the major issues confronting manufacturing industries in 
increasing the productivity of a system. Specifically, in 
factory level operations, a production manager wants to 
concurrently maximize throughput while minimizing cycle 
time and Work In Process (WIP). In today's competitive 
environment, short cycle times are critical. Short cycle 
times can be achieved by: 1) lowering the throughout of a 
system; 2) providing more capacity to the system; or 3) de-
creasing the variability in the system (Fromm 1992). Espe-
cially in a technology-driven environment like a semicon-
ductor wafer fabrication facility (fab), a reduction in the 
system variability may be the only short-term cycle time 
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improvement method possible without decreasing through-
put. This is because it may take several months to receive a 
newly ordered piece of equipment. 

Because a single estimate of cycle time shows only a 
local snapshot of a system, it is often preferable to charac-
terize the system by a Cycle Time-THroughput (CT-TH) 
curve over a range of throughput rates, which provides a 
comprehensive profile of the system. This is particularly 
important in supply chain management activities when one 
wants to concisely represent performance trade-offs of a 
factory. 

A CT-TH curve is a powerful tool in evaluating the 
trade-off relationships between cycle time, throughput and 
WIP. The curve shows the predicted average cycle time 
plotted against throughput rate, and it also illustrates the 
variability of cycle time as well as the asymptotic system 
capacity. The sensitivity of cycle time to throughput can be 
appraised by examining the curvature or steepness of the 
curve. Different operating policies can be quantitatively 
evaluated by reviewing curve shifts (Dayhoff and Atherton 
1986, Fowler et al. 1997). In a queueing system, the traffic 
intensity ρ is defined as ρ = λ/µ  where λ is the arrival rate, 
and µ is the service rate. This ρ can substitute for the sys-
tem throughput (output; i.e. x-axis in Figure 1) since the 
throughput is the arrival rate (input rate) times the yield. 
Figure 1 shows the analytical CT-TH curve of an M/M/1 
queueing model with a service rate µ  equal to unity. 

If the underlying system is simple enough, it may be 
possible to obtain a mathematical equation for the CT-TH 
curve. As the system increases in complexity, discrete event 
simulation becomes the most viable approach for generating 
the CT-TH curve because simulation can capture any level 
of manufacturing detail. However, the problem is that exten-
sive detail increases the amount of model construction time 
and computer run time necessary for statistically precise and 
accurate output generation. Increased computer run times 
lead to increased cost so that simulation might ultimately be 
an expensive option (Brown et al. 1997). 
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Figure 1: A CT-TH Curve of an M/M/1 Queueing Model 

 
Within this context, the focus of this research is to de-

velop a methodology that leads to efficient CT-TH curve 
generation using discrete event simulation. An overall 
framework for generating simulation-based CT-TH curves 
presented in this paper should increase the productivity of 
simulation modeling and experimentation. Consequently, it 
will assist manufacturing companies in deriving some tan-
gible benefits with respect to: 1) cost reduction by CT-TH 
curve based operations analysis; 2) pertinent decision mak-
ing on manufacturing capacity management and equipment 
purchases through improved precision and accuracy of cy-
cle time and throughput estimates; and 3) improvement of 
supply chain management decisions by representing the 
performance trade-offs of a factory. 

1.2 Shapes of CT-TH Curves 

In manufacturing systems, two different shapes of CT-TH 
curves are often encountered; i.e. monotonically increasing 
shape and U-shape. Figure 2 shows the two different 
shapes of CT-TH curves (Park 2000). 
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Figure 2: Two Different Shapes of CT-TH Curves 

 
We denote a Minimum Batch Size (MBS) policy by (a, 

b) where a and b are integers satisfying 1 < a < b, and a 
and b indicate the minimum and maximum batch size, 
respectively. If a is equal to b, then the MBS policy 
becomes a Full Batch (FB) policy as (b, b). If a is equal to 
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a Full Batch (FB) policy as (b, b). If a is equal to unity, the 
MBS policy becomes a Greedy Batch (GB) policy as (1, b). 

A monotonically increasing CT-TH curve is expected 
when a manufacturing system has no batch processing or 
adopts a GB policy. If a FB or a MBS policy is adopted, a 
U-shaped CT-TH curve generally results (Wright Williams 
& Kelly 1999). For the monotonically increasing CT-TH 
curve (GB policy in Figure 2), there is one “knee”, one as-
ymptote and an intercept at the zero traffic intensity limit. 
When the traffic intensity x is close to zero, cycle time is 
almost equal to the pure processing time. If the traffic in-
tensity x approaches the capacity of the system, the cycle 
time goes to infinity due to an ever-increasing queue. In 
the vicinity of the knee, the cycle time changes rapidly. 
The curvature is dependent on characteristics of the system. 
One of the most important characteristics is the variability 
in the system. More variability leads to a steeper CT-TH 
curve. In the extreme case, a system with zero variability 
would have a CT-TH curve that is a horizontal line; i.e. the 
cycle time would be the same no matter how much the sys-
tem is utilized up to its maximum capacity (Fromm 1992). 
For the U-shaped CT-TH curve (FB policy in Figure 2), 
there is a region of relatively low traffic intensities where 
the cycle time actually decreases as the traffic intensity in-
creases. It can take a long time to fill up a batch when the 
traffic intensity is low. Hence, two distinct knees exist. The 
two asymptotes illustrate the extreme cases of this behavior. 

1.3 Considerations for Generating a  
Simulation-Based CT-TH Curve 

Let’s suppose that a simulation experimenter is interested 
in the range of traffic intensity x beyond 0.60 with respect 
to the CT-TH curve in Figure 1. In Figure 3, the analytical 
CT-TH curve is reproduced as the curve connecting the 
black dots within the range of interest. Without the 
mathematical queueing equation for the CT-TH curve, a 
simulation-based CT-TH curve can be generated like the 
curve connecting the big hollow dots in Figure 3. 

However, in a naive simulation experimentation, the 
simulation-based CT-TH curve may have some problems 
on the precision and accuracy of the curve regardless the 
extent of simulation efforts. 

Note that the design points of traffic intensity x = 0.70, 
0.80, 0.90 and 0.97 are selected to be investigated for gen-
erating cycle time estimates in Figure 3. At each design 
point, four simulation replicates are generated, and a 
“grand” mean is calculated using the four cycle time esti-
mates. Actually, the simulation-based CT-TH curve is gen-
erated using the total of forty replicates, ten replicates at 
each design point. However, for the illustration purpose in 
this paper, only four small hollow dots representing four 
cycle time estimates are shown at each design point in or-
der to highlight the unequal variances through the design 
points interested. The actual sample variances of every ten 
9
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replicates are 0.1716, 1.1139, 6.2430 and 22.0620 at the 
design points x = 0.70, 0.80, 0.90 and 0.97 respectively. In 
the simulation, the length of every single simulation run is 
1000 observations, and there is no data truncation. 
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Figure 3: Comparison of the Analytical CT-TH Curve with 
the Simulation-Based CT-TH Curve 
 

We also note that the simulation-based CT-TH curve 
is very close to the Analytical Cycle Time (ACT) up to the 
design point x = 0.90. However, at the design point x = 
0.97, there is a big bias between the value of the ACT and 
the grand mean. This is because 1000 observations are not 
enough to overcome initialization bias. 

Simulation experimenters should consider several 
things when building a simulation experimentation frame-
work. Considerations should be made regarding: 1) deter-
mination of the interesting range of traffic intensity to be 
investigated; 2) determination of specific design points (e.g. 
specific values of traffic intensity) to be investigated in the 
range of interest; 3) determination of the sequence of simu-
lation experiments according to the importance of the se-
lected design points in order to improve not only the preci-
sion of a simulation-based CT-TH curve but also the 
efficiency of the simulation experimentation; 4) allocation 
of simulation efforts to the selected design point (e.g. 
choose the number of simulation replications at a design 
point and/or specify the length of a simulation run); and 5) 
determination of whether or not to truncate initial transient 
data to reduce the initialization bias. Careful analysis of 
these general considerations can lead to efficient simula-
tion-based CT-TH curve generation. 
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2 PHASES TOWARDS THE APPROACHES  
AND SOLUTIONS 

This research is composed of three successive phases listed 
below to achieve an overall framework for generating 
simulation-based CT-TH curves. 
 

•  Phase 1: Efficient CT-TH curve generation using 
a fixed sample size procedure 

•  Phase 2: D-optimal sequential experiments for 
generating a simulation-based CT-TH curve 

•  Phase 3: A sequential stopping rule for a steady 
state simulation based on a time series forecasting 

 
Phase 1 deals with the simulation sampling methods 

and sampling weights simultaneously in order to establish 
the simulation sampling strategies for efficient generation 
of precise and accurate simulation-based CT-TH curves for 
complex systems. In Phase 1, only the monotonically in-
creasing shaped curve is studied. Phase 1 led to a paper 
that has been accepted to appear in the International Jour-
nal of Production Research (Fowler et al. 2001).   

Phase 2 and 3 reinforce the aspect of the simulation 
sampling weights more mathematically. Basically, Phase 2 
focuses on the improvement of the precision of a simula-
tion-based CT-TH curve. To improve the precision as well 
as to avoid non-significant simulation experiments, Phase 
2 presents a mathematical procedure and referential solu-
tions for optimal experimental sequences. Both shapes of 
CT-TH curves as shown in Figure 2 are considered in 
Phase 2. Phase 2 led to a paper that has been accepted to 
appear in Operations Research (Park et al. 2001).  Finally, 
Phase 3 is more oriented to a general topic of simulation 
output analysis for achieving accuracy (i.e. the unbiased 
stable estimation), which results in developing a sequential 
stopping rule for a steady state simulation output process 
using a time series forecasting procedure. Phase 3 led to a 
paper that has been submitted to SCS Transactions 
(Mackulak et al. 2001).  

3 PHASE 1: ESTABLISHMENT  
OF STRATEGIES 

3.1 Components of the Strategy 

It is reasonable to assume that the budget and resources for 
any project are limited, so the objective of this phase is to 
provide guidelines for using a fixed amount of samples 
when trying to generate a precise and accurate simulation-
based CT-TH curve for complex systems. The key of this 
fixed sample size procedure is the determination of how to 
organize simulation experimentation for generating a CT-
TH curve with sufficiently small variance and bias. Each  
0
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strategy uses a unique combination of sampling methods 
and weights to discriminate its performance. 
 

• Sampling method: The sampling method deter-
mines the required simulation replications. The 
combination of Variance Reduction Techniques 
(VRTs) is related to the sampling method. 

• Sampling weights: The sampling weights dictate 
not only the selection of appropriate design points 
in the experimental design space (i.e. in the inter-
esting range of traffic intensity) but also the im-
portance of each design point (i.e. how many 
samples are to be allocated to each design point). 

 
Obviously, these two components are not independent, 

so this phase seeks to find the best combinations of the 
method and weights depending on the limitation of sam-
ples and the complexity of the system. 

3.2 Evaluation of the Strategy: Scenarios  
and Regression Analysis 

In order to determine the efficiency of various simulation 
strategies, several scenarios are developed in this phase. A 
“scenario” describes a simulation sampling strategy for 
one set of simulation experiments. The scenarios are de-
veloped by three stages below. 

Using the transformed simulation data, linear regres-
sion analysis generates condensed measures of perform-
ance of a simulation sampling strategy. Mean Square Error 
(MSE) of a fitted regression model is the major perform-
ance measure of each simulation sampling strategy. 
 

•  Stage 1: Determine a general simulation structure 
•  Stage 2: Assign the sampling weight at each  

design point 
•  Stage 3: Develop the sampling methods using 

VRTs 

3.3 Rationale of the Strategy 

3.3.1 Sampling Methods 

Common Random Numbers (CRNs) and Antithetic Variates 
(AVs) are generic VRTs that can be implemented in gener-
ating a simulation-based CT-TH curve. When CRNs and 
AVs are applied to simulation experiments for generating a 
monotonically increasing CT-TH curve, they show typical 
behavior with respect to the curvature. 

Three different curves are shown in Figure 4-(a). Each 
curve connects four points. With the symbol •, the ACT is 
plotted, where the values are calculated by the analytical 
equation for the M/M/1 queueing model. Comparing the 
curve using the ACT with the CRNs (+) and Independent 
Random Numbers (IRNs, ∆) curves, it is possible to visual-
118
ize the bias between the ACT curve and the estimated 
curve from simulation experiments. The length of all simu-
lation runs is equal to 1000 observations, and no initial 
transient data are truncated. Using CRNs, if the first design 
point overestimates cycle time, likely others will as well. 
CRNs help in generating the right shape (i.e. monotoni-
cally increasing shape) of the curve, but there may be a 
shift (upwards in this example). 

Figure 4-(b) shows curves with AVs included. The 
curve with the ° symbol represents the sample mean of 
runs with CRNs and AVs at each design point. Notice that 
this curve is closer to the ACT curve. In the pairs of AVs 
runs, one is overestimated, the other is underestimated, so 
that the two CT-TH curves form the outward funnel shape. 
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Figure 4: Behavior of VRTs on the Curvature 

3.3.2 Sampling Weights 

The point with the ° symbol in Figure 5-(a) represents the 
grand mean cycle time using ten replicates. In creating 
Figure 5, each run is for 1000 observations, and no initial 
transient data are truncated. 
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Figure 5: Impact of Sampling Weights on the Curvature 
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Apart from variance, Figure 5-(a) reveals the potential 
problem of the initial transient when an equal length of run 
is applied to simulation experiments with empty and idle 
initial conditions through all design points. Up to the de-
sign point x = 0.90, the length of 1000 observations pro-
duces accurate estimates when the combination of CRNs 
and AVs is incorporated into the sampling method. At the 
design point x = 0.97, the length of 1000 observations does 
not overwhelm the initialization bias. Because the nonlin-
ear curvature in the design space near unity is crucial for 
the overall curvature of a CT-TH curve, it is important to 
obtain an accurate estimate of the cycle time in that region. 

The conditions of Figure 5-(a) are applied for Figure 
5-(b), but the simulation run length is elongated up to 
10000 observations. The +, - and ° symbols represent the 
grand sample means derived from the ten independent 
CRNs runs, the antithetic runs, and the average of the AVs 
pairs, respectively. The CT-TH curve using ten independ-
ent sample means of AVs average replications approxi-
mately coincides with the ACT curve. A change of curva-
ture is noticed when compared to Figure 5-(a). Particularly, 
the advantage of a longer simulation run is realized when 
the traffic intensity is very high (e.g. x = 0.97). In generat-
ing a monotonically increasing CT-TH curve, Figure 5-(b) 
indicates that simulation efforts should be concentrated on 
the design points around the highest traffic intensity with 
respect to the accuracy of the curve. 

3.4 Simulation Sampling Strategies 

Important simulation sampling strategies established in 
Phase 1 are summarized as follows. See Fowler et al. 
(2001) for more details.  
 

• For small samples and/or complex systems: Strat-
egy with different sampling weights and AVs is 
most appropriate. AVs are robust to the sample 
size and effective to reduce the variance as well as 
bias of a simulation-based CT-TH curve. 

• For large samples: Strategy with equal sampling 
weights and CRNs/AVs is most appropriate. 
CRNs become more effective as the sample gets 
larger. 

• When the sufficiency of samples and/or the com-
plexity of systems are uncertain: It is recom-
mended to use different sampling weights and 
AVs (i.e. a “conservative” strategy). 

• For many candidate design points and/or small 
samples and/or complex systems: It is recom-
mended to eliminate one or two inner design 
points (i.e. an “aggressive” strategy). 
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4 PHASE 2: DETERMINATION  
OF SEQUENCES 

Some design points seem to be more important to building 
the right shape of a CT-TH curve in Figure 2. For example, 
design points located around the knee and the center of the 
curve or the two extremities of the design space seem to 
dominant points at other locations.  

In Phase 2, a set of discrete design points (i.e. ten de-
sign points of x in Figure 2, varying from 0.10 to 0.90 in 
increments of 0.10 and the high traffic case of 0.97) is pri-
oritized sequentially using a determinant criterion for a 
general class of ideally developed CT-TH curves shown in 
Figure 2. 

First, a nonlinear expectation function is established to 
describe the curvature of each shape of CT-TH curve in Fig-
ure 2. Second, using the nonlinear expectation function, a D-
optimal design pinpoints p starting design points all together 
simultaneously, and then the remaining n - p candidate de-
sign points are ranked sequentially for each shape of curves 
in Figure 2. The sequences proposed in this phase provide a 
good source of information with which a simulation experi-
menter can design simulation experiments without non-
significant simulation sampling. Manufacturing production 
lines with respect to different batch policies can be system-
atically simulated based on the sequences. 

4.1 Generalized Nonlinear Expectation Functions 

Initially, it is assumed that a simulation experimenter is 
capable of defining the basic shape of a CT-TH curve for 
the system concerned. From a nonlinear regression point of 
view, this means that a p-parameters nonlinear expectation 
function for fitting the CT-TH curve can be established 
prior to developing a type of optimal design. In Phase 2, 
the D-optimality criterion is used to determine the simula-
tion sequences. 

To establish two different kinds of generalized nonlin-
ear expectation functions, two approximations of the aver-
age cycle time are used associated with: 1) a G/G/1 queue-
ing model (Hopp and Spearman 1996); and 2) a 

cGG pb // )(  queueing model with a FB policy in a batch 
queue with general arrivals, a general service, and multiple 
servers (Phojanamongkolkij 2000). 

A generalized nonlinear expectation function of a CT-
TH curve is required to satisfy some necessary conditions 
(Park 2000). Additionally, to decide the appropriate value 
of p, the minimum number of data points required for gen-
erating a CT-TH curve should be considered. In Figure 2, 
three principal data points can configure the monotonically 
increasing CT-TH curve. Two data points could be located 
around the two asymptotes, and one data point could be 
placed at the knee of the curve as an “anchor” point. Simi-
larly, for the U-shape CT-TH curve in Figure 2, four data 



Park, Mackulak, and Fowler 
 

points are needed since the U-shape CT-TH curve requires 
two anchor points at the two different knees. 

Considering the necessary conditions and the mini-
mum number of data, two cycle time approximations are 
modified into generalized 3- and 4-parameters nonlinear 
expectation functions. Assuming that all parameters are 
equal to unity, the two CT-TH curves in Figure 2 are gen-
erated by Equations (1) and (2). 

 
 

(1) 
 

(2) 
 
 
Obviously, the values of the parameters define the 

shape of each curve. For example, in Equation (1), when x 
(i.e. the traffic intensity) approaches zero, the value of 

),( θxf  gets close to 3θ . However, in Equation (2), the 
value of ),( θxf  goes to infinity as x becomes close to zero. 
When x approaches 2θ  (i.e. the capacity), the values of 

),( θxf  in Equations (1) and (2) go to infinity. 

4.2 Procedure for the Determination  

Park (2000) illustrated a detailed mathematical procedure for 
determination of the sequence of simulation experiments for 
generating two different shapes of CT-TH curves in Figure 2. 
The procedure is divided into three stages as follows. 
 

•  Stage 1: Building the derivative matrix 
•  Stage 2: Solving a nonlinear optimization problem 

for the p starting design point 
•  Stage 3: Rank the remaining n - p candidate de-

sign points 

4.3 D-optimal Sequences 

The U-shape CT-TH curve in Figure 2 can be generated by 
the D-optimal sequence below, and it shows some features. 
 

(0.10, 0.50, 0.90, 0.97)  0.40  0.60  0.80 0.20  0.30  0.70 
 

First, among the four starting design points, two de-
sign points x = 0.10 and 0.97 seem to be attributed to the 
asymptotes, and the design point x = 0.90 can be regarded 
as the right anchor point. As for the design point x = 0.50 
(an approximate center point in the design space between 
x = 0.10 and 0.97), it seems to be selected in order to ex-
plain the flat region in the middle of the U-shape CT-TH 
curve. Second, the first two sequential design points x = 
0.40 and 0.60 reinforce the precise estimation on the 
middle of the curve. Then the remaining design points are 

3
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arranged to approach from the two extremities to the cen-
ter of the design space. 

For generating the monotonically increasing CT-TH 
curve in Figure 2, the D-optimal sequence of design points 
is determined as below. With the monotonically increasing 
CT-TH curve, all sequential design points are arranged to 
approach from the two extremities to the center of the de-
sign space. 
 
(0.10, 0.90, 0.97)  0.20  0.30  0.80 0.40  0.50  0.70  0.60 

5 PHASE 3: DETERMINATION OF THE  
LENGTH OF A SIMULATION RUN 

If the important design points are already identified, then a 
subsequent issue might be how long a simulation run should 
be at a specific design point to generate accurate data. 

When a simulation output process is a covariance sta-
tionary stochastic process generated from a steady state 
simulation, it is known that a time series of the cumulative 
sample means of the process has some “asymptotic” prop-
erties in favor of detecting the point where a precise and 
accurate estimate can be obtained, not where the steady 
state begins (Law 1977, Gafarian, Ancker and Morisaku 
1978). 

Because the cumulative sample mean averages out the 
raw data and produces a “smooth” statistic, it is expected 
that the cumulative sample mean will converge to a certain 
constant level. Therefore, if a sequential stopping rule 
seeks to be a simple algorithm as well as provide a stable 
estimate, a time series of the cumulative sample means can 
be a good data flow for those purposes. 

In Phase 3, a sequential stopping rule is developed, 
which is a compromise between the efficiency and the sim-
plicity of the algorithm for determining the length of a simu-
lation run. But the problem remains as to how a simulation 
model detects a stopping point by itself. A time series fore-
casting procedure is incorporated into the sequential stop-
ping rule to monitor the time series of the cumulative sample 
means continually and finally to detect a stopping point. See 
Mackulak et al. (2001) for more details. 

5.1 Forecasting Procedure 

Suppose that an observation TY  is collected at time T from 
a steady state process. The cumulative sample mean at time 
T, TC  is updated as Equation (3). 
 

(3) 
 

After the “cumulative mean curve” sufficiently flattens 
out to a near constant level, it is presumed that the cumula-
tive sample mean TC  is almost unchanged over time, or, if 
it is changing, it is doing so very slowly. At this point, it is 

∑
=

=
T

t
tT Y

T
C

1

1
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supposed that the level is near the steady state mean µ , 
and that TC  is regarded as a stable estimate of µ . Hence, 
the simulation output process can be terminated. 

In this case, an appropriate model for a time series of 
the cumulative sample means can be defined as Equation 
(4), 

 
(4) 

 
where Tε  is a random component having mean 0 and vari-
ance 2

εσ . 
If a time series follows a constant mean process as 

shown in Equation (4), the simple exponential smoothing 
method can be used as a forecasting procedure. Simple ex-
ponential smoothing is defined as equation (5), 

 
(5) 

 
where TS  is called “smoothed value”, and the fraction α  is 
called the “smoothing constant” (Montgomery, Johnson 
and Gardiner 1990). 

In general, the τ -period-ahead forecast error com-
puted for period T is the actual value in period T minus the 
forecast for period T made at the end of period τ−T  as de-
fined in Equation (6), 
 

(6) 
 
where )(ˆ τ−TCT  is the forecast for period T made at the 
end of period τ−T . 

In considering the pattern of the cumulative mean 
curve, it may be logical to: 1) give more weight to recent 
forecast errors than to older ones; and 2) use the absolute 
values of the forecast errors to circumvent the oscillations 
of the curve. Hence, in the sequential stopping rule, the 
cumulative sum of the last N absolute 1-period-ahead fore-
cast errors, TE , as shown in Equation (7) can be a logical 
measure. 
 

(7) 
 
 

Consequently, if the decision criterion defined as 
equation (8) is satisfied, the simulation output process is 
terminated, 

 
(8) 

 
 
where γ  is the relative percentage error applied to TC . 
This means that if TE  is less than 100γ % of the current 
cumulative sample mean, it is assumed that the process can 
provide a stable estimate. 

TTC εµ +=

1
]1[ )1( −−+=≡ TTTT SCSS αα

ττ τ −−=−−= TTTT SCTCCTe )(ˆ)(

∑
+=

=
T

T-Nt
T teE

1
1 )(

)( TT CE ×< γ
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5.2 Algorithm 

The algorithm of the sequential stopping rule has an 
initialization step and three main steps like below. The 
three main steps are activated whenever new data is col-
lected from a process. In Figure 6, the detailed logic flow 
of the algorithm is presented. 
 

•  Step 0: Initialize the parameters 
•  Step 1: Collect the new data TY  and update TC  
•  Step 2: Perform the forecasting procedure 
•  Step 3: Compare TE  with ( TC×γ ) 
 

Initialize N, α, γ, T, ST, ET

CT ← (ΣYt)/T

e1(T) ← CT - ST-1

T ≥ N

ET < (γ ×CT)

ET ← ET + |e1(T)|

Yes

Stop

Yes

No

No

ET ← ET - |e1(T-N+1)|

Collect YT

ST ← αCT + (1−α)ST-1

e1(T-N+1) ← CT-N+1 - ST-N

T ← T+1

Step 0

Step 1

Step 2

Step 3

 
Figure 6: Logic Flow Diagram of the Algorithm 

6 OVERALL FRAMEWORK 

To assist simulation experimenters trying to overcome the 
typical problems associated with generating a simulation-
based CT-TH curve, this research presented the approaches 
and solutions for efficient CT-TH curve generation tech-
niques using discrete event simulation. 

In this research, some queueing models (e.g. M/M/1, 
G/G/1 and cGG pb // )( ) were analyzed, and then more 
complex systems (e.g. a flow shop system and a semicon-
ductor wafer fab) were employed and tested for validation 
purposes. 

In addition to discrete event simulation methodologies 
(e.g. VRTs and simulation output analysis), this research 
also utilized several statistical methodologies including: 1) 
linear and nonlinear regression analysis; 2) D-optimal de-
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sign of experiments; and 3) a time series forecasting pro-
cedure. See Fowler et al. (2001), Mackulak et al. (2001) 
and Park et al. (2001) for more details. 

An integrated overall framework for generating simula-
tion-based CT-TH curves is illustrated in Figure 7. The 
overall framework takes into account the following system 
and experimentation characteristics:  1) the complexity of 
the system; 2) the size of the simulation sample; 3) the proc-
ess type of the system with respect to batch policies; and 4) 
the simulation experimenter's preference on the experimen-
tal framework. Based on these characteristics, the simulation 
modeling and experimental decisions are made concerning: 
1) the simulation sampling weights; 2) the simulation sam-
pling method; 3) the starting design of the simulation ex-
periments; 4) the sequence of additional simulation design 
points; and 5) the length of a simulation run. 

In Figure 7, associated with the blocks of the starting 
designs, EXT indicates an extreme design point in the de-
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sign space. ANC and CEN mean an anchor point and a cen-
ter point in the design space, respectively. Detailed expla-
nation on the framework shown in Figure 7 is given below. 
 

• First, simulation sampling strategy: A simulation 
experimenter should see whether or not the sys-
tem concerned is to be regarded as a simple sys-
tem. If the system might be viewed as a simple 
system, and the available sample is large enough, 
then it is recommended to use the simulation sam-
pling strategy with equal sampling weights and 
CRNs/AVs. When the system is not simple and/or 
the size of sample is small, it is expected that the 
simulation sampling strategy with different 
sampling weights and AVs performs well. 

• Second, starting design: If the production process 
contains any batching processes like FB or MBS 
policy, and thus the CT-TH curve is expected to 
Start

Stop

System

Process

Experimenter's
preference

Simple
system

Large
sample

Equal sampling weights
CRNs/AVs

Different sampling weights
AVs

No

No

Product
batching

Yes

No

4 starting design points
(2 EXTs, 1 ANC & 1 CEN)

3 starting design points
(2 EXTs & 1 ANC)

Sampling weights
Sampling method

Starting design
(Apply the stopping rule)

Aggressive

Yes

Eliminate one or two
inner design points

Use all
samples

Yes

No

Yes

Yes

Sample

Perform the sequential
experiments

No Sequential designs
(Apply the stopping rule)

 
Figure 7: Overall Framework for Generating Simulation-Based CT-TH Curves 
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form a U-shape, the simulation experimenter 
might select a starting design with 4 design points. 
The referential starting design points (0.10, 0.50, 
0.90, 0.97) can guide the simulation experimenter 
on selecting the location of design points to be in-
vestigated. It is preferred to choose design points, 
two for extreme points, one for an anchor point 
and one for a center point. Meanwhile, if the sys-
tem experimenter considers a system associated 
with a monotonically increasing CT-TH curve, he 
or she can set up a starting design with 3 design 
points located around (0.10, 0.90, 0.97). 

• Third, sequential designs: Once sufficient simula-
tion experiments are dedicated to the starting de-
sign points, the simulation experimenter can con-
tinue to investigate the sequential design points 
based on the referential sequences. At this time, 
the experimenter’s preference on the simulation 
experimentation framework could be taken into 
consideration. If the experimenter wants to obtain 
more precise and accurate cycle time estimates on 
the dominant design points (i.e. the anchor, the 
center or extreme design points), then he or she 
might eliminate one or two candidate sequential 
design points and allocate samples more on the 
survived design points until all samples are ex-
hausted. 

• Fourth, applying the stopping rule: The sequential 
stopping rule developed in Phase 3 can be used 
for every simulation replication not only at the 
starting design points but also at the sequential 
design points. The experimenter can adjust the pa-
rameters in the algorithm simultaneously to make 
the sequential stopping rule more (or less) sensi-
tive to the pattern of the time series. 
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