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ABSTRACT 

This paper considers a complex job shop problem with re-
entrant flow and batch processing machines. A modified 
shifting bottleneck heuristic (MSB) is considered for gen-
erating machine schedules to minimize the total weighted 
tardiness. We observe that the MSB could produce infeasi-
ble schedules where cyclic schedules are found. A cycle 
elimination procedure is proposed to remove the possibility 
of the MSB generating cyclic schedules in the solution. 

1 INTRODUCTION 

Semiconductor manufacturing is one of the fastest growing 
industries in the world today--the market demand for semi-
conductors is increasing. The industry has grown since mid 
July 1999 and reached the highest total sales of $204 bil-
lion at the end of 2000 (Semiseek News 2001). Even 
though the recent US economy is slowing down the indus-
try, most analysts still believe that the industry will re-
bound by late 2001 or sometime in 2002 (Silicon Strategies 
2001). The demand for semiconductors is no longer based 
on PC sales but also communication and information de-
vices that have become necessary tools of today (Smith 
2001). The high competition between semiconductor 
manufacturers makes customer satisfaction very important. 
If a semiconductor manufacturer cannot deliver an order on 
time, customers will try to find other manufacturers that 
are more reliable. Therefore, the timely completion of or-
ders is a high priority.  
 There are several performance measures that can be 
used to evaluate due-date based completion time of orders 
in a manufacturing facility, such as lateness and tardiness. 
The lateness of job j, Lj, is defined as the difference be-
tween the completion time of a job (Cj) and the job’s due 
date (dj). Tardiness (Tj) is the maximum of Lj and zero. A 
job may also have a certain weight or priority to represent 
the importance of the job. One of the performance meas-
ures that relates to jobs that have importance levels is 
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weighted tardiness (wjTj). Since “real-world” jobs usually 
have levels of importance, weighted tardiness is a useful 
performance measure for evaluating a semiconductor 
manufacturer’s delivery performance. 

2 COMPLEX JOB SHOPS 

A classical job shop typically contains n jobs where each 
job follows a predetermined route. The object of the classi-
cal job shop scheduling problem is to schedule all jobs in 
such a way to optimize the value of a given performance 
measure of interest.  Each route can consist of several 
processing steps. A process step is always associated with 
a certain machine. Each job in a job shop can have a proc-
ess step that requires the same machine as other jobs. 
There could be a maximum of n jobs competing for each 
machine in a job shop problem without re-entrant flow 
(wherein jobs visit the same machine multiple times). A 
job shop characterized by n jobs being processed on m ma-
chines will have (n!)m possible schedules. Therefore, the 
scheduling of a job shop is not an easy task. 
 A complex job shop has far more complicating issues 
compared with a classic job shop. An example of a com-
plex job shop is a wafer fabrication facility (“wafer fab”). 
The number of processing steps in a wafer fab can vary be-
tween 300 up to 500 steps for each job route (product 
type). It is typical to use the term ‘tool group’ (TG) instead 
of machine in wafer fab environment, as a TG is a group of 
machines that has the same operating characteristics. A 
complex job shop usually has parallel machines operating 
within a TG, often with more than one machine available 
for processing. The possibility of sequence-dependent 
setup times also adds to the complexity of the wafer fab 
scheduling problem. The sequence of the processes that 
share a TG determines the total setup times required in the 
problem. Different sequences of processes could result in 
different setup times. For example, changing the dopant 
ion from boron to phosphorus in an ion implanter may re-
quire more time than changing from boron to arsenic. A 
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“good” schedule seeks to minimize total setup time, which 
also minimizes the total completion time of jobs. 
 Re-entrant flow processes also appear in the wafer fab 
environment where a job goes through the same TG more 
than once in its route. Re-entrant flow expands the number 
of possible job schedules on the same TG, thereby result-
ing in a greater solution space. The possibility of batching 
different jobs together for processing on a certain TG in-
creases the complexity of the wafer fab scheduling prob-
lem. Jobs are batched together when they have the same 
job ID or the same recipe name. There is also a maximum 
number of jobs (b) that can be batched together at one time 
due to the tool’s physical capacity. However,  it is possible 
to batch less than b jobs, which makes the number of batch 
combinations to be large. For a job shop that has n jobs 
with b jobs as the maximum batch size, there are O(nb) 
batch possibilities. 
 Another parameter that can be used in batching jobs is 
batch horizon (Mason et al. 2001). Batch horizon defines the 
amount of time a tool will be held idle in order to form a 
“fuller” batch. If a job is ready within the batch horizon then 
that job can be batched together with other jobs that meet the 
same requirement. Considering all of the processing com-
plexities described above, the wafer fab scheduling problem 
has too many solution possibilities that complete enumera-
tion is not possible to be performed under a reasonable time.  
This makes sense, as the classical job shop scheduling prob-
lem is unsolvable.  Therefore, researchers often employ heu-
ristic approaches to attack these problems. 

3 PREVIOUS WORK 

Kubiak et al. (1996) discussed the use of shortest process-
ing time job order and a dynamic programming algorithm 
to minimize the total flow time in a job shop. The job shop 
problem that they investigated has n jobs and k machines 
where each job enters the first machine (the hub) k times. 
Each job has the same route that visits alternately the first 
machine, M1 (the hub) and M2, M3, …, Mk.  Furthermore, 
there could be a setup time between two operations in M1. 
While their approach seems to work well for this problem, 
there was not any discussion about how batch possibilities 
are handled. 
 Hwang and Sun (1997) explored a similar problem with 
sequence-dependent setup time. Their problem involves a 
two-machine flow shop in which jobs are processed more 
than once on the first machine. Using  a modified dynamic 
programming approach, they were able to minimize the 
makespan of jobs. Nose et al. (1999) tried to solve the job 
shop scheduling problem using a genetic algorithm. The job 
shop problem that they covered involves re-entrant flows of 
job. Nevertheless, none of the above works include a discus-
sion on batching processing machines.  
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 Chandru et al. (1993) discussed single and parallel 
batch machines as a separate process from the job shop 
problem. Uzsoy (1995) described an approach to schedule 
batch machines with non-identical  job families. In the batch 
machines problem with non-identical job families, each job 
has a family name where only jobs with the same family can 
be batched together. This is similar to the recipe concept in 
semiconductor fabrication. Lee and Uzsoy (1999) covered 
the single batch machine problem with dynamic job arrivals. 
None of these papers integrate the batch process within a job 
shop environment. Besides, only one batch process was be-
ing considered while there is more than one batch-
processing step in wafer fab job shop problem. 
 Ahmadi et al. (1992) discussed a two-step process that 
has at least one batching machine. Still, the two-step proc-
ess is a simple model compared to the wafer fab scheduling 
problem. While there has been a lot of discussion about 
batching and re-entrant flow processes separately, only a 
few integrate both processes in a single scheduling prob-
lem. Roobeek (1997) used a fuzzy logic based approach 
called A Better Choice in solving the wafer fab job shop 
problem. Mason et al. (2001) covered a complex job shop 
problem with re-entrant flow and batch possibilities. The 
wafer fab was taken as an example of the complex job 
shop problem. Mason et al. applied a modified shifting 
bottleneck heuristic (MSB) as an approach to the wafer fab 
job shop problem. 

4 MODIFIED SHIFTING BOTTLENECK 

 The original shifting bottleneck heuristic developed by 
Adams et al. (1988),  decomposes a job shop problem into 
several single machine subproblems. The subproblems are 
solved iteratively, with each subproblem involving one 
machine and a number of process steps (jobs) to be per-
formed on that particular machine. Each job has a release 
(ready) time and due date that are determined by the se-
quence of the processes on other machines. The heuristic 
applies a certain “subproblem solution procedure” (SSP) to 
get a good solution for the subproblem. For example, the 
earliest due date (EDD) dispatching rule could be used as a 
SSP to schedule jobs based on the due date of each job. 
 The output of a SSP is a schedule that contains all the 
jobs  performed on a particular machine. After each sub-
problem is solved, machine criticality measures (MCM) 
are calculated to determine which machine is a criti-
cal/bottleneck machine that has to be scheduled first. Then, 
the heuristic removes the chosen (scheduled) machine from 
evaluation in subsequent iterations and repeats the whole 
process. Table 1 gives a summary of how the SB heuristic 
works.  
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Table 1: Description of the SB Heuristic for Minimiz-
ing TWT in Complex Job Shops (Mason et al. 2001) 

Step 1. Let  M = the set of all m machines and 
M0 = the set of machines that have been 
sequenced or scheduled.  Set M0 = ∅. 

Step 2. Identify and solve the subproblems for 
each machine i ∈ M \ M0. 

Step 3. Identify a critical or bottleneck machine 
k ∈ M \ M0. 

Step 4. Sequence machine k using the subprob-
lem solution from Step 2.  Set M0 = M0 
∪ {k}. 

Step 5. Optional: Reoptimize the schedule for 
each machine m ∈ M0, considering the 
newly added disjunctive arcs for ma-
chine k. 

Step 6. If M = M0, stop.  Otherwise, go to Step 2. 
 
 The shifting bottleneck heuristic uses a disjunctive 
graph to illustrate the job shop problem. A disjunctive 
graph describes the processing step of each job as a node 
where each node within the same job is connected with a 
solid arc that represents a precedence constraint between 
the job processes (conjunctive arc). Disjunctive arcs 
(dashed arcs) are used to connect nodes with different jobs 
that are processed on the same machine. Each pair of nodes 
that share the same machine has two disjunctive arcs that 
represent the possible precedence constraints. 
 For example, a pair of nodes (2,1) and (2,2) that share 
a same machine has two possible precedence constraints, 
either processing node (2,1) before node (2,2) or vice 
versa. When a schedule for that particular machine is de-
termined, each pair of nodes that share the machine will 
only have one disjunctive arc (made conjunctive after 
scheduling the machine) that shows the precedence con-
straint between each pair nodes. The lengths of the con-
junctive arcs and the disjunctive arcs are the processing 
times for the nodes that the arcs leave. Figure 1 shows an 
example of a classical job shop disjunctive graph. 

 

3,2
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4,31,3 2,3

3,23,2

 
Figure 1: Disjunctive Graph for Job Shop with Makespan 
Objective (Pinedo and Chao 1999) 
 
 Mason et al. (2001) adapted the disjunctive graph by 
adding the re-entrant processes and ‘dummy’ nodes that rep-
120
resent all possible batch combination of jobs that meet the 
batching requirements (job type, recipe, etc.). The modified 
disjunctive graph represents a complex job shop where the 
term “tool group” is commonly used to describe a number of 
identical machines. Figure 2 displays the modified disjunc-
tive graph with 3 jobs and 4 tool groups. For the sake of 
clarity, only one batch combination is displayed. 
 The arcs leaving the original nodes are not associated 
with the batch processing time. Instead, the arcs leaving 
the dummy node are associated with the batch processing 
time as indicated by Pbatch in the figure. The arcs that leave 
the original nodes will have zero processing time, which 
represents the time required for batch formation.  
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Figure 2: Modified Disjunctive Graph for Job Shop 
with TWT Objective (Mason et al. 2001) 

 
 In the classic job shop disjunctive graph, pairs of dis-
junctive arcs will connect processes (operations) that share 
the same tool group. The disjunctive arcs will form a clique 
in the graph (i.e., a complete sub-graph). In a job shop with 
re-entrant flow, a particular job can enter the same tool 
group more than once. Therefore, a clique will not be 
formed when re-entrant flow is present. Figure 2 shows a job 
shop problem where job 2 has a re-entrant process. Nodes 
(4,2a), (4,2b), and (4,3) are connected by disjunctive arcs. 
However, nodes (4,2a) and (4,2b) are not connected by dis-
junctive arcs. Node (4,2b) requires node (4,2a) to be proc-
essed first due to job 2 process flow requirements (process 
routing). Therefore, a conjunctive arc is used instead. 
 The length of the arcs associated with a tool group that 
has a sequence-dependent setup is not equal to the process-
ing time of the associated node as it is in the classic disjunc-
tive graph, as an additional setup time is required. For ex-
ample, if node (3,1) in Figure 2 is scheduled after node (3,2) 
then the length of the arc leaving node (3,1) is equal to proc-
essing time of node (3,1) + setup time required to change the 
tool group’s configuration from the processing requirements 
at node (3,2) to the requirements at (3,1). The length of the 
arc leaving node (3,2) will be equal to the processing time of 
node (3,2) (see Figure 2). Lastly, three dummy nodes are 
applied in the graph instead of one as in the classic job shop 
disjunctive graph. As the total weighted tardiness (TWT) ob-
jective requires information on the completion time for each 
job, a separate node for each job is required to represent the 
ending node for each job (Pinedo and Chao 1999). 
2
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 A tool group is often made up of a number of identical 
machines (parallel machines). Figure 3 displays how the 
parallel machines condition is applied in the modified dis-
junctive graph. Initially, the disjunctive graph does not 
show the existence of parallel machines. After the parallel 
machine tool group is scheduled, conjunctive arcs that rep-
resent the precedence constraints between the nodes re-
place the disjunctive arcs pairs. In the parallel machines 
disjunctive graph, not all of the nodes that share the same 
tool group have a conjunctive arc that connects them. Only 
those that are scheduled in the same machine within the 
tool group will have conjunctive scheduling arcs. 
 For example, Figure 3 shows nodes (2,1), (2,2a), 
(2,2b), and (2,3) that share the same TG that has two iden-
tical machines. Initially all nodes are connected by pairs of 
disjunctive arcs. After a schedule for the particular TG is 
found, nodes (2,1) and (2,2b) are processed on the same 
machine, while nodes (2,2a) and (2,3) are processed on the 
other machine. Therefore, nodes (2,1) and (2,2b) are con-
nected with a conjunctive arc and so are nodes (2,2a) and 
(2,3). However, no arc connects nodes (2,2a) and (2,1) or 
nodes (2,1) and (2,3) or nodes (2,3) and (2,2b).   
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Figure 3: Disjunctive Graph Representation of 
Parallel Machine Scheduling (Mason et al. 2001) 

 
 The solution for the complex job shop problem will 
have a schedule for each tool group. A schedule is feasible 
when no cycles are present in the disjunctive graph (i.e., the 
schedule contains each node exactly once). A cycle is a se-
quence that starts and ends at the same point in the graph. A  
feasible schedule for a job shop problem in Figure 2 can be 
seen in Figure 4. Note that the arc lengths associated with 
each conjunctive scheduling arc have been updated. 

 

source

3,2

3,11,1 2,1

4,2
a1,2

Ba
tch

4,31,3 2,3

4,2
bU

V1

V2

V3

0

0

0

0

0

0

P
batch

P
batch

P
batch

P
23

P
43

P
42

P
32

P
32

P
43

P + setup
31 32-31

P
21

 
Figure 4: A Feasible Solution for Complex Job Shop 
Problem with TWT Objective 
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5 PROBLEM DESCRIPTION 

The MSB approach developed by Mason et al. (2001), was 
found to have the possibility of getting an infeasible (cy-
clic) solution due to the existence of delayed precedence 
constraints and the dummy batch nodes that are used in the 
heuristic. The delayed precedence constraints are con-
straints that are caused by the scheduling of other tool 
groups (Balas et al. 1995). The delayed precedence con-
straints are represented by additional conjunctive arcs in 
the graph due to the other tool groups’ schedules. 
 Figure 5 gives an example of a delayed precedence 
constraint. Before a schedule is found, node 3 does not 
have any precedence constraint. When a schedule is ap-
plied, conjunctive arcs are added to the graph which makes 
a precedence constraint exist between nodes 1 and 3 with a 
length of P1 + P2 unit time. The precedence constraint en-
forces node 1 must be performed at least P1 + P2  time units 
earlier than node 3. 

 

  2

    1

  3   2

    1

 3

P1

P2

P1 + P2

 
Figure 5: An Example of a Delayed Precedence Constraint 
 
 Assume i < j.  The additional arcs that go from step j 
to an earlier step i (going backward in a disjunctive graph) 
produce cyclic paths when all batching possibilities are 
considered. The dummy batch nodes in the disjunctive 
graph connect all jobs that meet batching criteria require-
ments, thereby creating paths between jobs (see Figure 2). 
These paths, together with the delayed precedence con-
straints, can form a cyclic path that results in an infeasible 
solution. 
 Figure 6 shows an example of an initial disjunctive 
graph of a complex job shop with three jobs, three process 
flows, and two TGs (AB and C) with one machine on each 
TG. The disjunctive arcs are not shown for the sake of clar-
ity. Only dummy batch nodes (nodes 20 and 21) that repre-
sent the possibility of batching job 1 and 3 together are 
presented in the graph. At this point, there is not any TG 
scheduled in the complex job shop. 

 
C AB C CAB

20

14 15 16 17

10 11 12 13

18 19

21

981
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Figure 6: Initial Disjunctive Graph with Batch Possibility 
of Job 1 and Job 3 
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 To show how the MSB approach can result in infeasi-
ble schedules, let the solution for TG C’s schedule be 2-8-
4-10-6-12-14-16-18. Figure 7 shows TG C’s schedule. As 
TG C’s schedule is applied, arcs are added to the disjunc-
tive graph to represent the schedule. The additional arcs 
create delayed precedence constraints between some 
nodes. For example, there is not any precedence constraint 
between nodes 3 and 15 before the TG C schedule is ap-
plied. After the schedule is applied to the graph, a prece-
dence constraint appears between nodes 3 and 15. Before 
node 15 is processed, the following sequence of nodes has 
to be performed first: 3, 4, 5, 6, 10, 11, 12, and 14. 
 The additional arc between nodes 12 and 14 is going 
backward (going to an earlier step) in the graph. The com-
bination of this arc and the possibility of batching jobs 1 
and 3 together creates a cyclic path. For example, the pos-
sibility of batching jobs 1 and 3 (represented by nodes 20 
and 21) would produce the following cyclic schedules: 6-
12-14-15-20-4-10-6 and 6-12-14-15-20-16-17-21-6. Note 
that in each cyclic schedule case, the starting and ending 
nodes of the schedule are the same (node 6). 
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Figure 7: Disjunctive Graph After the Implementation of 
TG C 

6 PROPOSED SOLUTION 

Mason et al.’s (2001) MSB heuristic only results in an infea-
sible solution in cases where a non-batch TG is scheduled 
before batch-TGs are scheduled. The non-batch TG schedule 
forms delayed precedence constraints that, together with the 
dummy batch nodes, create the cyclic paths. If the dummy 
batch nodes 20 and 21 are removed in Figure 7, in other 
words, eliminating the possibilities of batching job 1 and job 
3, no cyclic paths will be formed. A key to the solution is to 
find which batch nodes are feasible and which ones are not 
due to the possibility of forming cyclic paths.  
 The cyclic paths are related to a node a that is con-
nected by a conjunctive arc to node b that has a lower step 
number, and the previously mentioned dummy batch 
nodes. Nodes that precede a and nodes that succeed b also 
contribute in creating cyclic paths. For example, node 12 
and 14 in Figure 7 are a and b respectively. Job 2 and 3 are 
the job numbers associated with a and b. Therefore, no 
batching possibilities between job 2 and job 3 are allowed 
otherwise cyclic paths will be produced (12-14-15-dummy 
1204
batch node-10-11-12 and 12-14-15-16-17-dummy batch 
node-12). Node 6 precedes node 12 and its associated job 
number is 1. Batching possibilities between job 1 and job 3 
should not be considered otherwise cyclic paths will be 
formed (6-12-14-15-20-4-10-6 and 6-12-14-15-20-16-17-
21-6). 
 However, the solution is not as easy as removing the 
batch possibilities of certain jobs on all batch steps. There 
might be a possibility of not batching certain jobs on a par-
ticular batch step and yet, the same jobs can be batched on 
other batch step. The positions of nodes relative to a and b 
in the disjunctive graph play an important role in finding 
the feasibility of batching jobs on a particular batch step. 
However, it is difficult to get the relative positions of 
nodes in a job shop problem. 
 A flow shop is a simplified version of a job shop as all 
jobs follow the same route. Similarly, a flexible flow shop 
provides for the existence of parallel machines, as opposed 
to the single-machine flow shop environment. Jobs in a flow 
shop have a fixed, common number of processing steps.  
Therefore, it is possible to establish each node’s relative po-
sition according to the step number and the job number in 
the disjunctive graph.  The disjunctive graph (not including 
the dummy nodes) can be represented as an X-Y matrix 
where X is the step number and Y is the job number. 
 Using the matrix, it is possible to check for nodes that 
will form a cycle if they are batched.  Therefore, the job 
shop problem is modified into a flexible flow shop prob-
lem using dummy nodes to fill in the space in the matrix 
where a particular step is not included in a particular job 
route. Table 2 and 3 show an example how a complex job 
shop problem can be modified into a flexible flow shop 
problem. Each step has an associated TG type and a recipe 
name. Further, only jobs that have the same recipe name 
can be batched together. 
 

Table 2: Job Shop Problem 
Job Step1 Step2 Step3

1 AB(R1) E -
2 CD AB(R1) -
3 CD AB(R2) AB(R1)  

 
Table 3: Flow Shop Problem 

Job Step1 Step2 Step3 Step4
1 dummy dummy AB(R1) E
2 CD dummy AB(R1) dummy
3 CD AB(R2) AB(R1) dummy  

 
 Based on the observations above, a general rule is 
proposed to eliminate the cyclic possibilities in the com-
plex job shop scheduling problem. Define the following 
variables: 

 
q = total number of jobs 
n = total number of steps 
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mi =TG at step i (i = 1, 2, …, n) 
σij = node with step i, job j (i = 1, 2, …, n ; j = 1, 2, …, q) 
πij = predecessor node with step i, job j  
νij = successor node with step i, job j 
 
The cycle elimination procedure can be described as fol-
lows: 
 
Step 1.  Modify the complex job shop problem into a 

flexible flow shop problem 
Step 2.  For each arc that represents  σij  σkl  (k < i, j ≠ l) 

on the current TG schedule,  find all πcd of σij (c > 
i) and νop of σkl ( o < k). 

Step 3. Find σrs (s = j) and σrv (v = l), for each r (i < r < k, 
mr = batch TG). 

Step 4. For each πcd (c > r, d ≠ j) of σij, find σra (a = d), 
(mr = batch TG). 

Step 5. For each νop ( o < r, p ≠ l) of σkl, find σrb (b = p), 
(mr = batch TG). 

Step 6. For each r (i < r < k, mr = batch TG), can’t batch:  
1. σrs with σrv  
2. σra with σrv (if σra is found) 
3. σrs with σrb  (if σrb is found) 
4. σra with σrb (if σra and σrb are found) 

 
 Consider Figure 8 where a job shop problem with four 
jobs has been modified into a flexible flow shop problem. 
The triangle nodes represent the dummy nodes that are 
added to form the flow shop. TG C, with a single machine, 
has been scheduled as the graph describes. The batch pos-
sibilities are represented by a simple box for the sake of 
clarification. In this problem, all jobs can be batched to-
gether, as they share the same recipe. 
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Figure 8: Example of Modified Complex Job Shop  

 
The cycle elimination procedure is employed as follows: 
 
Step 1. The complex job shop has been converted to a 

flexible flow shop in Figure 8. 
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Step 2.  There is only one arc that represents σij  σkl  (k 
< i, j ≠ l) that is the arc that goes from node 6 
(σ51) to node 14 (σ13). 

Step 3. m2 and m4 are batch TG. σrs = σ21 (node 3) and 
σ41 (node 5), σrv = σ23 (node 15) and σ43 (node 
17). 

Step 4. πcd (c > r, d ≠ j) of σ51 : π32 (node 10) 
  Only r = 2 applies in this case since r = 4 > c = 3 
  π32 σra = σ22 (node 9)  
Step 5. νop ( o < r, p ≠ l) of σ13 : ν14 (node 20) and ν34 

(node 22). ν14 and ν34 have the same job number 
and o = 1 in ν14 < r = 2 and 4 , only ν14 needs to 
be considered. ν14  σrb = σ24 (node 21) and σ44 
(node 23) 

Step 6. On step r = 2, m2 = batch TG, can’t batch: 
1. σ21 with σ23 
2. σ22 with σ23 
3. σ21 with σ24 
4. σ22 with σ24 

  On step r = 4, m4 = batch TG, can’t batch: 
1. σ41 with σ43 
2. σ41 with σ44 

 
Table 4 shows the cyclic paths that are removed by the cy-
cle elimination procedure. 
 

Table 4: Cyclic Paths List 
batch associated cyclic paths

removed nodes
σ 21 , σ 23 3 , 15 6-14-15-BN-10-6
σ 22 , σ 23 9 , 15 6-14-15-BN-10-6
σ 21 , σ 24 3 , 21 6-14-20-21-BN-4-5-6
σ 22 , σ 24 9 , 21 6-14-20-21-BN-10-6
σ 41 , σ 43 5 , 17 6-14-15-16-17-BN-6
σ 41 , σ 44 5 , 23 6-14-20-22-23-BN-6  

 
 The procedure also works for the parallel machines 
case where a TG consists of more than one machine. Paral-
lel machines only change the relationship (path existence) 
between nodes in the disjunctive graph. Therefore, it will 
not affect the behavior of the procedure since the proce-
dure will take any relationship condition. In fact, the paral-
lel machines case has less probability of having cyclic 
paths as compared to the single machine case. Because 
nodes that are connected in the single machine problem 
might not be connected in the parallel machines problem 
(see Figure 3), the number of paths between nodes is re-
duced, thereby reducing the probability of having cyclic 
paths in the disjunctive graph. 
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7 CONCLUSION AND FUTURE RESEARCH 

Semiconductor manufacturing is one of the fastest growing 
industries in the world today. The high competition be-
tween semiconductor manufacturers makes customer satis-
faction very important. Therefore, the timely completion of 
orders is a high priority. A recently developed modified 
Shifting Bottleneck (MSB) scheduling approach to the 
complex job shop problem was shown to produce cyclic 
schedules due to the combination of delayed precedence 
constraints and dummy batching nodes. A cycle elimina-
tion procedure was developed for the MSB approach to 
promote cycle-free schedules. 
 The arcs that represent the delayed precedence con-
straints, particularly ones that go to earlier steps in the dis-
junctive graph, and dummy batch nodes in the MSB heu-
ristic can cause the heuristic to obtain an infeasible 
solutions. The cycle elimination procedure is based on the 
characteristics of a flexible flow shop problem, which is a 
simplified version of the complex job shop problem. Batch 
node feasibility is evaluated in the procedure using the in-
formation on non-batching TG schedule that creates the 
delayed precedence constraints. 
 Another idea to avoid infeasible solutions is to schedule 
batch TGs first before scheduling other non-batch TGs. In 
this way, the batch nodes are fixed and the schedule of other 
TGs are based on the fixed batch nodes therefore eliminating 
the possibility of having cyclic paths.  This approach does 
not count the MCM for batch TG that could lead to a worse 
solution quality. Mason (2000) has applied this on a small 
model and the result suggests that it is beneficial. However, 
the approach needs to be tested on larger problems to con-
firm its effect on the overall solution quality. 
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