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ABSTRACT 

Visualizing simulated construction operations is an effec-
tive means of communicating the logic and the inner work-
ing of simulation models in a comprehensive and compre-
hendible manner. This can facilitate both model 
verification and validation and help establish credibility of 
simulation analyses. Due to the inherent working nature of 
discrete-event simulation systems, visualizing simulated 
operations in a smooth and continuous manner in 3D vir-
tual worlds presents numerous interesting challenges. This 
paper describes research being conducted at Virginia Tech 
to enable smooth and scalable dynamic 3D visualization of 
discrete-event construction simulations. 

1 INTRODUCTION 

Discrete-event modeling is an inherently complex activity 
that is both a science and an art. The modeling of construc-
tion operations requires the description, in the language of 
the simulation modeling system, of mental plans that are 
often complex and elaborate. Differences between the 
mental plan and the operation actually modeled in a first 
attempt are ubiquitous. Verification is the process by 
which the model creator looks at what has been actually 
modeled, compares it to what was intended, and updates 
the model to accurately reflect the intention.  

The developer of the computer simulation model, 
however, may have misconceptions about how the actual 
operation will take place in the field. Thus, a model may 
not be an accurate representation of reality despite proper 
verification by its developer. Such errors cannot be discov-
ered by verification because the model indeed reflects what 
the model creator intended. The aim of Validation there-
fore is to determine whether simulation models accurately 
represent the real-world system under study. This is typi-
cally carried out by consulting people who are intimately 
familiar with the operations of the actual system, but who 
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are not necessarily proficient in simulation. Simulation 
models are termed as Credible when the models, in their 
entirety, are accepted as being valid. The results are then 
used as an aid in making decisions (Law and Kelton 2000). 

In the case of both verification and validation, the in-
ner workings of a model and its output need to be commu-
nicated to others for discussion and input, and in a way that 
is both comprehensive and comprehendible (Oloufa and 
Ikeda 1997). Construction simulation tools typically pro-
vide results in the form of numerical or statistical data. 
However, they do not illustrate the modeled operations 
graphically in 3D.  

This poses significant difficulty in communicating the 
logic and the inner working of simulation models, espe-
cially to persons who are not trained in simulation but are 
domain experts. Decision makers often do not have the 
means, the training and/or the time to verify and validate 
simulation models based solely on numerical output. Po-
tential practitioners are therefore always skeptic about 
simulation analyses and have little confidence in their re-
sults (Ioannou and Martinez 1996). 

2 RESEARCH INITIATIVE 

The design and analysis of construction operations using 
simulation is feasible only if the insights gleaned are used 
in making decisions and increasing understanding (i.e., the 
models are credible). The logic and the inner working of 
simulation models can only be verified and validated by 
communicating the simulated operations in a way that is 
both comprehensive and comprehendible. 
 Visualizing simulated operations can be an effective 
means of achieving this (Law and Kelton 2000, Rohrer 
2000, Jain 1999, Henriksen 1998, Tucker et al. 1998, Rob-
inson 1997, Cox 1988, Biles and Wilson 1987). It is a gen-
erally accepted fact that visually presented information is 
understood and grasped more easily than any other form of 
communication. The need to visualize simulated operations 
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is more relevant in the context of construction because 
construction operations analysts (e.g., superintendents) 
typically do not have the necessary training in simulation 
to allow them to validate simulation results based on nu-
merical values in tables and charts. 

Visualization of simulated construction operations in-
volves being able to “see” graphically on the computer, the 
operations being carried out in the same way as they would be 
in the real world. In the case of a simulated world, this in-
cludes the same logical and physical relationships that are 
embedded in the underlying discrete-event simulation models. 

3 THE NATURE OF DISCRETE 
EVENT SIMULATION 

In continuous simulation, the state of a model is continu-
ously tracked at every instant in time using differential equa-
tions of motion (Law and Kelton 2000). In discrete-event 
simulation, in contrast, the state of models changes only at 
discrete, but possibly random, sets of simulated time points 
(Schriber and Brunner 1999). These time points are typically 
the start or end of activities, and it is only then that a dis-
crete-event simulation can communicate with other proc-
esses, or perform other actions such as input/output.  
 In order to visualize a simulated operation it is neces-
sary to see, in addition to the physical components of a fa-
cility, the equipment, personnel, materials and temporary 
structures required to build it. Moreover, it is necessary to 
depict the movements, transformations and interactions be-
tween the various simulation entities (e.g. resources). The 
movements and transformations must be spatially and tem-
porally accurate.  
 In order to depict smooth motion, visual elements 
must be shown at the right position and orientation several 
times per second. Issues such as trajectories in 3D space, 
speed and acceleration need to be considered. Due to the 
nature of discrete-event simulation and the dynamic and 
complex nature of construction, this was a challenging 
proposition. The basic question, then, was how to achieve 
realistic and dynamic continuous motion, based on infor-
mation that is available only when discrete events occur in 
a simulation.  

4 DESCRIBING DYNAMIC 3D VISUALIZATION 
THROUGH PARAMETRIC TEXT 
STATEMENTS 

The primary research activity in the presented work was to 
determine the amount and the nature of information that 
would be needed to accurately and unambiguously de-
scribe, both spatially and temporally, a complex construc-
tion operation so that it could be recreated in a virtual 
world. This includes the movements and transformations of 
the people, machines, materials and the evolving con-
structed facility.  
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 Secondly, it had to be determined whether it was pos-
sible to obtain that information from discrete-event simula-
tion models. Without it, simulation models would not be 
able to communicate the required information and author 
visualizations.  
 The specific nature of the communicated information 
cannot be determined a-priori by a general-purpose simula-
tion system, as it is dependent on the specific operation 
that is being modeled. Thus, this communication has to be 
achieved by end-user programming of the simulation sys-
tem. The communication therefore should be based on a 
language that is both expressive (to achieve realistic visu-
alization) and simple (so that it can be generated by end-
user programming).  
 During a simulation run, the simulation clock tracks 
the passage of simulated time (as distinct from wall-clock 
time). The clock advances in discrete steps (typically of 
unequal size) during the run (Schriber and Brunner 1999). 
After all possible actions have been taken at a given simu-
lated time, the clock is advanced to the time of the next 
earliest event. Then the appropriate actions are carried out 
at this new simulated time, etc. The execution of a run 
therefore takes the form of a two-phase loop: “carry out all 
possible actions at the current simulated time,” followed by 
“advance the simulated clock”. These two phases are re-
peated over and over again until a simulation run-ending 
condition is encountered. Due to this nature, two things oc-
curring at the same simulation time are, in effect, proc-
essed serially by discrete-event simulation systems. 
 This phenomenon suggested that designing a straight-
line (Appel 1997) dynamic 3D visualization language 
would be the most appropriate form of the above-described 
communication. Such a language needed to be simple 
enough to be generated by end-user programmable soft-
ware such as a discrete-event simulation system. At the 
same time, the language should be semantically rich in or-
der to be able to realistically visualize complex construc-
tion operations based on the limited amount of discrete in-
formation that can be communicated by a running 
simulation model. By necessity, programs in such a lan-
guage would be arbitrarily long.  

4.1 Designing the Dynamic 3D  
Visualization Language 

Table 1 lists the key animation commands designed and 
implemented in the language and provides a concise expla-
nation of their functionality. Each parametric animation 
statement can span multiple lines with arguments separated 
by white space. Arguments that include white space must 
be enclosed in single quotations. A statement ends with a 
semicolon. Comments can be placed in trace files by mak-
ing the first non white space character after a statement a 
“/”. The comment continues until the end of the line. The 
designed language commands can be broadly classified 
into four categories, i.e. System, Scene-Building, Property-
Setting, and Motion-Depicting Commands.  
9
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 TIME is the primary system command. The TIME 
statement keeps track of the simulation time during visu-
alizations by indicating the instant at which all subsequent 
commands until the next TIME statement take place. Every 
discrete event that is recorded by a simulation model in a 
trace file will have a preceding TIME statement to indicate 
the simulation time at which the event took place. 
 
Table 1:  Key Animation Language Commands and their 
Functionality 

Statement Functionality 
TIME Indicates the simulation time at 

which all subsequent com-
mands take place. 

CLASS Associates a class of simula-
tion entities with their geomet-
ric description contained in a 
CAD file. 

CREATE Creates specific simulation ob-
jects by instantiating prede-
fined classes. 

PLACE Places simulation objects at 
particular locations or at the 
beginning of resource move-
ment paths. 

SET CLASS… 
FORECLEARANCE 

Specifies the minimum dis-
tance to be maintained be-
tween two following objects of 
the same class. 

MOVE Simulation objects begin mov-
ing on resource movement 
paths at the time specified by a 
preceding TIME statement. 

ROTATE Simulation objects begin rotat-
ing along specified planes at 
the time specified by a preced-
ing TIME statement. 

 
 The Scene-Building commands set up the visualization 
environment and manage the initial and dynamic creation 
and destruction of simulation entities. For instance, CLASS 
commands identify the CAD files that contain the geometric 
representation of simulation entities. CREATE commands 
subsequently create specific simulation objects at various 
times in the simulation by instantiating predefined classes. 
 The Property-Setting commands allow the specifica-
tion and manipulation of certain physical properties for 
simulation entities at both a class and object level. For in-
stance, the SET CLASS FORECLEARANCE command 
enables the authoring simulation model to specify the 
minimum distance to be maintained between two following 
objects of the same class during visualization (e.g. trucks 
traveling on the same path). The SET OBJECT 
FORECLEARANCE similarly permits this property to be 
specified on a per-object basis if necessary.  
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 The Motion-Depicting commands form the core com-
ponents of the designed animation language. These com-
mands depict the dynamic state of the simulation models. 
For instance, the MOVE command moves instantiated 
simulation objects on movement paths to describe the mo-
tion of resources and other simulation entities on the con-
struction site. ROTATE is another primary Motion-
Depicting command that allows the depiction of rotation of 
simulation entities during visualization. 

5 THE DYNAMIC  
CONSTRUCTION VISUALIZER 

The Dynamic Construction Visualizer (DCV) is a general-
purpose 3D visualization/animation system that imple-
ments the above-described dynamic 3D visualization lan-
guage. The DCV allows simulation model developers to 
visualize modeled operations with chronological and spa-
tial accuracy in 3D virtual space. The system is independ-
ent of any particular simulation-modeling program or CAD 
modeling software. 
 Files written in the designed 3D visualization language 
(hereinafter referred to as the DCV language) unambigu-
ously describe the physical configuration of modeled opera-
tions with the passage of time. The DCV language allows 
the construction and manipulation of complex 3D scenes. 
Simulated operations are visualized by processing sequen-
tial, time-ordered animation commands written in the DCV 
language. The animation commands are contained in an 
ASCII text file hereinafter referred to as the trace file.  
 DCV trace files are meant to be generated by simula-
tion software. Any simulation software capable of writing 
custom text output during a simulation run can generate the 
trace files automatically. These include most of the pro-
grammable generic and special-purpose simulation lan-
guages as well as high-level programming languages such 
as BASIC, FORTRAN, C and C++. Non-language based 
simulation software may also be adapted to generate trace 
files during a simulation run (Henriksen 1998). 
 The DCV uses 3D models of all pertinent resources 
and system entities to depict the simulated operations and 
the evolving product in 3D. The DCV system does not 
possess any built-in 3D model building capability. Instead, 
required 3D models of system entities can be imported 
from a wide variety of 3D CAD modeling software. The 
DCV provides direct support for the VRML file format. 
Geometry files from practically every 3D modeling pro-
gram (e.g. AutoCAD™, MicroStation™, 3D Studio™) can 
be easily exported or converted into VRML format. 

6 ANIMATING SIMULATED OPERATIONS 

Understanding the working of the DCV animation clock is 
fundamental to understanding the animation capabilities of 
the DCV. The DCV measures time in floating point ani-
0



Kamat and Martinez 

 
mated time units. One time unit can equal whatever dura-
tion is most suitable for the animation (e.g. a microsecond, 
a minute, or a day) as long as it matches the time unit in 
the simulation model that is driving the animation.  
 DCV animations can run at any desired animation 
speed. The animation speed, also known as the viewing ra-
tio, represents the number of animated time units per sec-
ond of viewing time. For instance, if the simulation model 
(and the animation) uses seconds as a unit of time, and the 
viewing ratio is 6, then the DCV animation is running at a 
rate of six animated seconds per viewing second. Conse-
quently, a modeled activity requiring one minute for com-
pletion in reality would be accomplished in 10 (i.e. 60/6) 
seconds in the animation. In the DCV application, the user 
can change the viewing ratio of an animation at any time 
depending on the animation speed desired. 
 The primary time-tracking DCV command is TIME. 
The syntax of the TIME command is: 

 
TIME timevalue; 

 
 The TIME command waits for the animation clock to 
reach the new value specified. The DCV then executes the 
commands that follow it until another TIME command is 
reached. When a TIME statement is encountered in a trace 
file, the DCV initially verifies that the timevalue is greater 
than or equal to the current animated time. If not, the anima-
tion terminates with an error. After ascertaining that the 
TIME command specifies a future time, the DCV suspends 
the reading of any more lines from the trace file until the ani-
mation time specified by the TIME command has been 
reached or exceeded. When that happens, the DCV reads and 
processes the next line(s) in the trace file until another TIME 
statement is encountered. Statements are read and processed 
in this manner until the end of the trace file is reached or the 
viewer interrupts the animation. The reading and processing 
of the trace file statements is practically instantaneous. All 
the while, the DCV continues to display the animation as it 
progresses at a constant, user-specified viewing ratio. 
 Figure 1 presents a sample DCV trace file. The implica-
tions of visualizing this trace file in the DCV are easily in-
terpretable. Immediately before the onset of the animation, 
two paths, “LoadToDump” and “DumpToLoad”, and three 
classes, “Terrain”, “Excavator”, and “Truck” are defined and 
their representations are stored into memory. Further reading 
of statements from the trace file is suspended until the ani-
mation time equals 6. Thus, a person viewing the animation 
sees a motionless excavator in the terrain for six animation 
time units. At this point, a truck, “Truck1”, is created and 
placed in the scene at the beginning of path “LoadToDump”. 
Six animation time units later (at time 12), “Truck1” starts 
moving along the path “LoadToDump” at a speed that will 
require 120 animation time units to reach the end of the path. 
At the same time (12), another truck, “Truck2”, is created 
and placed in the scene at the beginning of path “DumpTo-
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Load”. At animation time 18, “Truck2” starts moving along 
the “DumpToLoad” and will require 90 time units to reach 
its destination. At the moment “Truck2” starts moving, the 
already in motion “Truck1” will have completed about 
1/20th of its journey.  
 Figure 1 also displays graphically the processing of 
commands in the presented trace file. The real-timeline 
displayed below the animated-timeline assumes a view-
ing ratio of 6. 

7 CONCLUSION 

The presented research involved the design of a dynamic 
visualization language that enables the realistic, continuous 
3D depiction of construction operations simulated using dis-
crete-event simulation tools. The implementation of the lan-
guage (The DCV) enables running simulation models to re-
cord discrete sequential events in trace files using parametric 
text statements conforming to the DCV language. The 
statements contained in the files are then processed sequen-
tially and the simulated operations are depicted in a virtual 
world using 3D CAD models of all the involved entities. 
 The presented DCV language is capable of depicting 
several simulated construction operations dynamically in 
3D. Simulation modelers and decision makers can, as a re-
sult, effectively visualize many simulated construction op-
erations and better understand what was simulated. The 
current DCV language and its implementation are capable 
of describing operations that involve objects moving at 
constant speeds, that do not require any sort of run-time 
CAD model deformation, that do not involve unstructured 
or flowable entities (e.g. concrete), and in which resources 
(equipment and crew) always move on well defined paths.  
 Current and future research is/will be focused on en-
riching the DCV language lexicon and augmenting the im-
plementation to enable the realistic visualization of the en-
tire gamut of complex construction operations and the 
resulting products.   
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Figure 1: Processing of Commands in a Trace File 
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