
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

ENABLING SMOOTH AND SCALABLE DYNAMIC 3D VISUALIZATION
OF DISCRETE-EVENT CONSTRUCTION SIMULATIONS

Vineet R. Kamat
Julio C. Martinez

Construction Engineering and Management Program

200 Patton Hall
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0105, U.S.A.

ABSTRACT

Visualizing simulated construction operations is an effec-
tive means of communicating the logic and the inner work-
ing of simulation models in a comprehensive and compre-
hendible manner. This can facilitate both model
verification and validation and help establish credibility of
simulation analyses. Due to the inherent working nature of
discrete-event simulation systems, visualizing simulated
operations in a smooth and continuous manner in 3D vir-
tual worlds presents numerous interesting challenges. This
paper describes research being conducted at Virginia Tech
to enable smooth and scalable dynamic 3D visualization of
discrete-event construction simulations.

1 INTRODUCTION

Discrete-event modeling is an inherently complex activity
that is both a science and an art. The modeling of construc-
tion operations requires the description, in the language of
the simulation modeling system, of mental plans that are
often complex and elaborate. Differences between the
mental plan and the operation actually modeled in a first
attempt are ubiquitous. Verification is the process by
which the model creator looks at what has been actually
modeled, compares it to what was intended, and updates
the model to accurately reflect the intention.

The developer of the computer simulation model,
however, may have misconceptions about how the actual
operation will take place in the field. Thus, a model may
not be an accurate representation of reality despite proper
verification by its developer. Such errors cannot be discov-
ered by verification because the model indeed reflects what
the model creator intended. The aim of Validation there-
fore is to determine whether simulation models accurately
represent the real-world system under study. This is typi-
cally carried out by consulting people who are intimately
familiar with the operations of the actual system, but who
1528
are not necessarily proficient in simulation. Simulation
models are termed as Credible when the models, in their
entirety, are accepted as being valid. The results are then
used as an aid in making decisions (Law and Kelton 2000).

In the case of both verification and validation, the in-
ner workings of a model and its output need to be commu-
nicated to others for discussion and input, and in a way that
is both comprehensive and comprehendible (Oloufa and
Ikeda 1997). Construction simulation tools typically pro-
vide results in the form of numerical or statistical data.
However, they do not illustrate the modeled operations
graphically in 3D.

This poses significant difficulty in communicating the
logic and the inner working of simulation models, espe-
cially to persons who are not trained in simulation but are
domain experts. Decision makers often do not have the
means, the training and/or the time to verify and validate
simulation models based solely on numerical output. Po-
tential practitioners are therefore always skeptic about
simulation analyses and have little confidence in their re-
sults (Ioannou and Martinez 1996).

2 RESEARCH INITIATIVE

The design and analysis of construction operations using
simulation is feasible only if the insights gleaned are used
in making decisions and increasing understanding (i.e., the
models are credible). The logic and the inner working of
simulation models can only be verified and validated by
communicating the simulated operations in a way that is
both comprehensive and comprehendible.
 Visualizing simulated operations can be an effective
means of achieving this (Law and Kelton 2000, Rohrer
2000, Jain 1999, Henriksen 1998, Tucker et al. 1998, Rob-
inson 1997, Cox 1988, Biles and Wilson 1987). It is a gen-
erally accepted fact that visually presented information is
understood and grasped more easily than any other form of
communication. The need to visualize simulated operations

Kamat and Martinez

is more relevant in the context of construction because
construction operations analysts (e.g., superintendents)
typically do not have the necessary training in simulation
to allow them to validate simulation results based on nu-
merical values in tables and charts.

Visualization of simulated construction operations in-
volves being able to “see” graphically on the computer, the
operations being carried out in the same way as they would be
in the real world. In the case of a simulated world, this in-
cludes the same logical and physical relationships that are
embedded in the underlying discrete-event simulation models.

3 THE NATURE OF DISCRETE
EVENT SIMULATION

In continuous simulation, the state of a model is continu-
ously tracked at every instant in time using differential equa-
tions of motion (Law and Kelton 2000). In discrete-event
simulation, in contrast, the state of models changes only at
discrete, but possibly random, sets of simulated time points
(Schriber and Brunner 1999). These time points are typically
the start or end of activities, and it is only then that a dis-
crete-event simulation can communicate with other proc-
esses, or perform other actions such as input/output.
 In order to visualize a simulated operation it is neces-
sary to see, in addition to the physical components of a fa-
cility, the equipment, personnel, materials and temporary
structures required to build it. Moreover, it is necessary to
depict the movements, transformations and interactions be-
tween the various simulation entities (e.g. resources). The
movements and transformations must be spatially and tem-
porally accurate.
 In order to depict smooth motion, visual elements
must be shown at the right position and orientation several
times per second. Issues such as trajectories in 3D space,
speed and acceleration need to be considered. Due to the
nature of discrete-event simulation and the dynamic and
complex nature of construction, this was a challenging
proposition. The basic question, then, was how to achieve
realistic and dynamic continuous motion, based on infor-
mation that is available only when discrete events occur in
a simulation.

4 DESCRIBING DYNAMIC 3D VISUALIZATION
THROUGH PARAMETRIC TEXT
STATEMENTS

The primary research activity in the presented work was to
determine the amount and the nature of information that
would be needed to accurately and unambiguously de-
scribe, both spatially and temporally, a complex construc-
tion operation so that it could be recreated in a virtual
world. This includes the movements and transformations of
the people, machines, materials and the evolving con-
structed facility.
152
 Secondly, it had to be determined whether it was pos-
sible to obtain that information from discrete-event simula-
tion models. Without it, simulation models would not be
able to communicate the required information and author
visualizations.
 The specific nature of the communicated information
cannot be determined a-priori by a general-purpose simula-
tion system, as it is dependent on the specific operation
that is being modeled. Thus, this communication has to be
achieved by end-user programming of the simulation sys-
tem. The communication therefore should be based on a
language that is both expressive (to achieve realistic visu-
alization) and simple (so that it can be generated by end-
user programming).
 During a simulation run, the simulation clock tracks
the passage of simulated time (as distinct from wall-clock
time). The clock advances in discrete steps (typically of
unequal size) during the run (Schriber and Brunner 1999).
After all possible actions have been taken at a given simu-
lated time, the clock is advanced to the time of the next
earliest event. Then the appropriate actions are carried out
at this new simulated time, etc. The execution of a run
therefore takes the form of a two-phase loop: “carry out all
possible actions at the current simulated time,” followed by
“advance the simulated clock”. These two phases are re-
peated over and over again until a simulation run-ending
condition is encountered. Due to this nature, two things oc-
curring at the same simulation time are, in effect, proc-
essed serially by discrete-event simulation systems.
 This phenomenon suggested that designing a straight-
line (Appel 1997) dynamic 3D visualization language
would be the most appropriate form of the above-described
communication. Such a language needed to be simple
enough to be generated by end-user programmable soft-
ware such as a discrete-event simulation system. At the
same time, the language should be semantically rich in or-
der to be able to realistically visualize complex construc-
tion operations based on the limited amount of discrete in-
formation that can be communicated by a running
simulation model. By necessity, programs in such a lan-
guage would be arbitrarily long.

4.1 Designing the Dynamic 3D
Visualization Language

Table 1 lists the key animation commands designed and
implemented in the language and provides a concise expla-
nation of their functionality. Each parametric animation
statement can span multiple lines with arguments separated
by white space. Arguments that include white space must
be enclosed in single quotations. A statement ends with a
semicolon. Comments can be placed in trace files by mak-
ing the first non white space character after a statement a
“/”. The comment continues until the end of the line. The
designed language commands can be broadly classified
into four categories, i.e. System, Scene-Building, Property-
Setting, and Motion-Depicting Commands.
9

Kamat and Martinez

 TIME is the primary system command. The TIME
statement keeps track of the simulation time during visu-
alizations by indicating the instant at which all subsequent
commands until the next TIME statement take place. Every
discrete event that is recorded by a simulation model in a
trace file will have a preceding TIME statement to indicate
the simulation time at which the event took place.

Table 1: Key Animation Language Commands and their
Functionality

Statement Functionality
TIME Indicates the simulation time at

which all subsequent com-
mands take place.

CLASS Associates a class of simula-
tion entities with their geomet-
ric description contained in a
CAD file.

CREATE Creates specific simulation ob-
jects by instantiating prede-
fined classes.

PLACE Places simulation objects at
particular locations or at the
beginning of resource move-
ment paths.

SET CLASS…
FORECLEARANCE

Specifies the minimum dis-
tance to be maintained be-
tween two following objects of
the same class.

MOVE Simulation objects begin mov-
ing on resource movement
paths at the time specified by a
preceding TIME statement.

ROTATE Simulation objects begin rotat-
ing along specified planes at
the time specified by a preced-
ing TIME statement.

 The Scene-Building commands set up the visualization
environment and manage the initial and dynamic creation
and destruction of simulation entities. For instance, CLASS
commands identify the CAD files that contain the geometric
representation of simulation entities. CREATE commands
subsequently create specific simulation objects at various
times in the simulation by instantiating predefined classes.
 The Property-Setting commands allow the specifica-
tion and manipulation of certain physical properties for
simulation entities at both a class and object level. For in-
stance, the SET CLASS FORECLEARANCE command
enables the authoring simulation model to specify the
minimum distance to be maintained between two following
objects of the same class during visualization (e.g. trucks
traveling on the same path). The SET OBJECT
FORECLEARANCE similarly permits this property to be
specified on a per-object basis if necessary.
153
 The Motion-Depicting commands form the core com-
ponents of the designed animation language. These com-
mands depict the dynamic state of the simulation models.
For instance, the MOVE command moves instantiated
simulation objects on movement paths to describe the mo-
tion of resources and other simulation entities on the con-
struction site. ROTATE is another primary Motion-
Depicting command that allows the depiction of rotation of
simulation entities during visualization.

5 THE DYNAMIC
CONSTRUCTION VISUALIZER

The Dynamic Construction Visualizer (DCV) is a general-
purpose 3D visualization/animation system that imple-
ments the above-described dynamic 3D visualization lan-
guage. The DCV allows simulation model developers to
visualize modeled operations with chronological and spa-
tial accuracy in 3D virtual space. The system is independ-
ent of any particular simulation-modeling program or CAD
modeling software.
 Files written in the designed 3D visualization language
(hereinafter referred to as the DCV language) unambigu-
ously describe the physical configuration of modeled opera-
tions with the passage of time. The DCV language allows
the construction and manipulation of complex 3D scenes.
Simulated operations are visualized by processing sequen-
tial, time-ordered animation commands written in the DCV
language. The animation commands are contained in an
ASCII text file hereinafter referred to as the trace file.
 DCV trace files are meant to be generated by simula-
tion software. Any simulation software capable of writing
custom text output during a simulation run can generate the
trace files automatically. These include most of the pro-
grammable generic and special-purpose simulation lan-
guages as well as high-level programming languages such
as BASIC, FORTRAN, C and C++. Non-language based
simulation software may also be adapted to generate trace
files during a simulation run (Henriksen 1998).
 The DCV uses 3D models of all pertinent resources
and system entities to depict the simulated operations and
the evolving product in 3D. The DCV system does not
possess any built-in 3D model building capability. Instead,
required 3D models of system entities can be imported
from a wide variety of 3D CAD modeling software. The
DCV provides direct support for the VRML file format.
Geometry files from practically every 3D modeling pro-
gram (e.g. AutoCAD™, MicroStation™, 3D Studio™) can
be easily exported or converted into VRML format.

6 ANIMATING SIMULATED OPERATIONS

Understanding the working of the DCV animation clock is
fundamental to understanding the animation capabilities of
the DCV. The DCV measures time in floating point ani-
0

Kamat and Martinez

mated time units. One time unit can equal whatever dura-
tion is most suitable for the animation (e.g. a microsecond,
a minute, or a day) as long as it matches the time unit in
the simulation model that is driving the animation.
 DCV animations can run at any desired animation
speed. The animation speed, also known as the viewing ra-
tio, represents the number of animated time units per sec-
ond of viewing time. For instance, if the simulation model
(and the animation) uses seconds as a unit of time, and the
viewing ratio is 6, then the DCV animation is running at a
rate of six animated seconds per viewing second. Conse-
quently, a modeled activity requiring one minute for com-
pletion in reality would be accomplished in 10 (i.e. 60/6)
seconds in the animation. In the DCV application, the user
can change the viewing ratio of an animation at any time
depending on the animation speed desired.
 The primary time-tracking DCV command is TIME.
The syntax of the TIME command is:

TIME timevalue;

 The TIME command waits for the animation clock to
reach the new value specified. The DCV then executes the
commands that follow it until another TIME command is
reached. When a TIME statement is encountered in a trace
file, the DCV initially verifies that the timevalue is greater
than or equal to the current animated time. If not, the anima-
tion terminates with an error. After ascertaining that the
TIME command specifies a future time, the DCV suspends
the reading of any more lines from the trace file until the ani-
mation time specified by the TIME command has been
reached or exceeded. When that happens, the DCV reads and
processes the next line(s) in the trace file until another TIME
statement is encountered. Statements are read and processed
in this manner until the end of the trace file is reached or the
viewer interrupts the animation. The reading and processing
of the trace file statements is practically instantaneous. All
the while, the DCV continues to display the animation as it
progresses at a constant, user-specified viewing ratio.
 Figure 1 presents a sample DCV trace file. The implica-
tions of visualizing this trace file in the DCV are easily in-
terpretable. Immediately before the onset of the animation,
two paths, “LoadToDump” and “DumpToLoad”, and three
classes, “Terrain”, “Excavator”, and “Truck” are defined and
their representations are stored into memory. Further reading
of statements from the trace file is suspended until the ani-
mation time equals 6. Thus, a person viewing the animation
sees a motionless excavator in the terrain for six animation
time units. At this point, a truck, “Truck1”, is created and
placed in the scene at the beginning of path “LoadToDump”.
Six animation time units later (at time 12), “Truck1” starts
moving along the path “LoadToDump” at a speed that will
require 120 animation time units to reach the end of the path.
At the same time (12), another truck, “Truck2”, is created
and placed in the scene at the beginning of path “DumpTo-
1531
Load”. At animation time 18, “Truck2” starts moving along
the “DumpToLoad” and will require 90 time units to reach
its destination. At the moment “Truck2” starts moving, the
already in motion “Truck1” will have completed about
1/20th of its journey.
 Figure 1 also displays graphically the processing of
commands in the presented trace file. The real-timeline
displayed below the animated-timeline assumes a view-
ing ratio of 6.

7 CONCLUSION

The presented research involved the design of a dynamic
visualization language that enables the realistic, continuous
3D depiction of construction operations simulated using dis-
crete-event simulation tools. The implementation of the lan-
guage (The DCV) enables running simulation models to re-
cord discrete sequential events in trace files using parametric
text statements conforming to the DCV language. The
statements contained in the files are then processed sequen-
tially and the simulated operations are depicted in a virtual
world using 3D CAD models of all the involved entities.
 The presented DCV language is capable of depicting
several simulated construction operations dynamically in
3D. Simulation modelers and decision makers can, as a re-
sult, effectively visualize many simulated construction op-
erations and better understand what was simulated. The
current DCV language and its implementation are capable
of describing operations that involve objects moving at
constant speeds, that do not require any sort of run-time
CAD model deformation, that do not involve unstructured
or flowable entities (e.g. concrete), and in which resources
(equipment and crew) always move on well defined paths.
 Current and future research is/will be focused on en-
riching the DCV language lexicon and augmenting the im-
plementation to enable the realistic visualization of the en-
tire gamut of complex construction operations and the
resulting products.

ACKNOWLEDGMENTS

The research presented here has been supported by the Na-
tional Science Foundation (Grant CMS-9733267). Any opin-
ions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

Appel, A.W. 1997. Modern Compiler Implementation in
C: Basic Techniques. New York, NY: Cambridge
University Press.

Biles, W.E., and S.T. Wilson. 1987. Animated Graphics
and Computer Simulation. Proceedings of the 1987
Winter Simulation Conference, ed. H. Grant, W. D.

Kamat and Martinez

Figure 1: Processing of Commands in a Trace File

CREATE T
ru

ck1 T
ru

ck;

PLACE T
ru

ck1 O
N LoadToDump;

TIM
E 12;

0 3 6 9 12 15 18 21

0 0.5 1 1.5 2 2.5 3 3.5

MOVE T
ru

ck1 LoadToDump 120;

CREATE T
ru

ck2 T
ru

ck;

PLACE T
ru

ck2 O
N D

umpToLoad;

TIM
E 18; MOVE T

ru
ck2 D

umpToLoad 90;

Animated
Time

Viewing Time (seconds)

PATH LoadToDump (3,2,1) (0,1,5) (-5,0,3);
PATH DumpToLoad (-4,0,3) (1,1,5) (2,2,1);
CLASS Terrain Terrain.wrl;
CLASS Excavator EX1100.wrl;
CLASS Truck A30C.wrl;

TIME 0;
CREATE ExTerrain Terrain;
PLACE ExTerrain AT (0,0,0);
CREATE Excvtr1 Excavator;
PLACE Excvtr1 AT (5,2,1);

TIME 6;
CREATE Truck1 Truck;
PLACE Truck1 ON LoadToDump;

TIME 12;
MOVE Truck1 LoadToDump 120;
CREATE Truck2 Truck;
PLACE Truck2 ON DumpToLoad;

TIME 18;
MOVE Truck2 DumpToLoad 90;

CREATE E
xTerra

in T
erra

in;

PLACE E
xTerra

in A
T (0

,0,0);

CREATE E
xcvtr1

 E
xcavator;

PLACE E
xcvtr1

 A
T (5

,2,1);

TIM
E 6;
Kelton, and A. Thesen, 472-477. San Diego, CA: So-
ciety for Computer Simulation.

Cox, S.W. 1988. GPSS/PC™ Graphics and Animation.
Proceedings of the 1988 Winter Simulation Confer-
ence, ed. P. L. Haigh, J. C. Comfort, and M. A.
Abrams, 129-135. San Diego, CA: Society for Com-
puter Simulation.

Henriksen, J.O. 1998. Windows-Based Animation with
PROOF™. Proceedings of the 1998 Winter Simulation
Conference, ed. J. S. Carson, M. S. Manivannan, D. J.
Medeiros, and E. F. Watson, 241-247. San Diego, CA:
Society for Computer Simulation.

Ioannou, P.G., and J. Martinez. 1996. Animation of Complex
Construction Simulation Models. Proceedings of the 3rd
1532
Congress on Computing in Civil Engineering, 620-626.
Reston, VA: American Society of Civil Engineers.

Jain, S. 1999. Simulation in the Next Millennium,
Proceedings of the 1999 Winter Simulation
Conference, ed. D. T. Sturrock, G. W. Evans, P. A.
Farrington, and H. B. Nemhard, 1478-1484. San
Diego, CA: Society for Computer Simulation.

Law, A.M., and W.D. Kelton. 2000. Simulation Modeling
and Analysis, 3rd Ed. New York, NY: McGraw-Hill.

Oloufa, A.A., and M. Ikeda. 1997. Library-Based Simulation
Modeling in Construction. Proceedings of the 4th Con-
gress on Computing in Civil Engineering, 198-205.
Reston, VA: American Society of Civil Engineers.

Kamat and Martinez

Robinson, S. 1997. Simulation Model Verification and

Validation: Increasing the User’s Confidence. Pro-
ceedings of the 1997 Winter Simulation Conference,
ed. D. H. Withers, B. L. Nelson, S. Andradottir, and
K. J. Healy, 53-59. San Diego, CA: Society for Com-
puter Simulation.

Rohrer, M.W. 2000. Seeing is Believing: The Importance
of Visualization in Manufacturing Simulation. Pro-
ceedings of the 2000 Winter Simulation Conference,
ed. P. A. Fishwick, K. Kang, J. A. Joines, and R. R.
Barton, 1211-1216. San Diego, CA: Society for Com-
puter Simulation.

Schriber, T.J., and D.T. Brunner. 1999. Inside Discrete-
Event Simulation Software: How it Works and Why it
Matters. Proceedings of the 1999 Winter Simulation
Conference, ed. D. T. Sturrock, G. W. Evans, P. A.
Farrington, and H. B. Nemhard, 72-80. San Diego,
CA: Society for Computer Simulation.

Tucker, S.N., P.J. Lawrence, and M. Rahilly. 1998. Dis-
crete-event Simulation in Analysis of Construction
Processes. CIDAC Simulation Paper, 1-14. Mel-
bourne, Australia.

AUTHOR BIOGRAPHIES

VINEET R. KAMAT is a PhD student and Research As-
sistant in the Via Department of Civil Engineering at Vir-
ginia Tech. He received his M.S. in Civil Engineering at
Virginia Tech in 2000; and a B.E. in Civil Engineering at
Goa University, India in 1998. He designed and imple-
mented the Dynamic Construction Visualizer with J. Mar-
tinez as part of his graduate research. His research interests
include discrete-event simulation and visualization of con-
struction operations. His email and web addresses are
<vkamat@vt.edu> and <http://filebox.vt.
edu/users/vkamat>.

JULIO C. MARTINEZ is an Assistant Professor in the
Via Department of Civil Engineering at Virginia Tech. He
received his Ph.D. in Civil Engineering at the University of
Michigan in 1996; an MSE in Construction Engineering
and Management from the University of Michigan in 1993;
an M.S. in Civil Engineering from the University of Ne-
braska in 1987; and a Civil Engineer’s degree from Uni-
versidad Catolica Madre y Maestra (Santiago, Dominican
Republic) in 1986. He designed and implemented the
STROBOSCOPE simulation language with P. Ioannou and
is currently V. Kamat’s research advisor. In addition to
discrete event simulation, his research interests include
construction process modeling and decision support sys-
tems for construction. His email and web addresses are
<julio@vt.edu> and <http://strobos.ce.
vt.edu>.
1533

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

