
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

A CROWD OF LITTLE MAN COMPUTERS:
VISUAL COMPUTER SIMULATOR TEACHING TOOLS

William Yurcik

Department of Applied Computer Science
Illinois State University

Normal, IL 61790, U.S.A.

 Hugh Osborne

School of Computing & Mathematics
University of Huddersfield

Queensgate, Huddersfield, HD1 3DH, U.K.

ABSTRACT

This paper describes the use of a particular type of com-
puter simulator as a tool for teaching computer architec-
ture. The Little Man Computer (LMC) paradigm was de-
veloped by Stuart Madnick of MIT in the 1960s and has
stood the test of time as a conceptual device that helps stu-
dents understand the basics of how a computer works.
With the success of the LMC paradigm, LMC simulators
have also proliferated. We compare and contrast the cur-
rent crowd of LMC simulators highlighting visual features.
We found unexpected insights since despite starting with
the same paradigm with the same goals, each implementa-
tion is distinct with different strengths and weaknesses. It
is our intention that interested educators will find this a
useful starting point or useful reference for incorporating
simulation into their courses.

1 INTRODUCTION

The value of teaching computer architecture and assembly
language programming is an old debate that continues to
resurface as outside pressures on educational institutions
press for market-driven skills based on high-level abstrac-
tion. We feel that concrete and rigorous low-level educa-
tional experiences are necessary as a foundation before
building toward higher-level abstraction. Dr. C. Ravis-
hankar, Professor of Computer Science/University of Cali-
fornia-Riverside says it clearly, “Information hiding is all
very good, but students need to have some information be-
fore they can start hiding it.”

Computer architecture is also maligned because it is a
difficult topic to teach. First, a wide range of skills and de-
tails need to mastered – ranging from transistor implemen-
tation at the logic gate level up to the architecture of an en-
tire computer system (with one measure of scope being the
number of transistors under consideration ranging from a
few to millions).

Second, actual computer system architectures contain
characteristics that are (A) unique to the manufacturer; (B)

1632
complex to understand; and (C) cryptically documented.
This makes executing laboratory experiments for students a
challenge requiring extensive preparation and the result may
be skills and knowledge not transferable to other machines.

Third, computer architecture is intimidating to most
students – while students may have a high level computer
literacy of software applications, languages, and peripher-
als, many have incomplete, unrealistic, and sometimes pro-
foundly strange conceptions of how a computer works un-
derneath the cover. Thus, most students are reluctant to
figuratively or literally open the computer cover for dis-
covery, scared of the binary can-of-worms they do not un-
derstand.

Lastly, students are crowded with marketing informa-
tion about computers from advertisements on television,
radio, and magazines. Since students are not informed
consumers understanding computer architecture there are
two effects: (1) empty or misleading information crowds
out useful facts about computer architectures, and (2) stu-
dents acquire a false sense of competence due to familiar-
ity with computer marketing hype.

All is not lost however. Recent textbooks, web re-
sources, supplementing traditional lectures with active learn-
ing experiences, and the sharing of distributed expertise
have empowered educators with new tools and increased the
opportunity for student learning of computer architecture
(Cassel et al. 2001; Yehezkel, Yurcik, and Pearson 2001).
 This paper describes the use of visual computer simula-
tors as teaching tools for computer architecture. Detractors
state that simulation is not as good as the real thing. We
agree – simulation can be better than the real thing! For in-
stance, assembly language programming can be one of the
most user unfriendly human-computer interactions – a com-
puter simulator can make assembly language programming
more user friendly and even intuitive. A simulator can
highlight core computer features of educational value and
eliminate unnecessary details unique to a specific manufac-
turer. Lastly, creating a computer simulator in software is a
cathartic educational experience similar to building a real
computer in hardware but less costly in monetary terms,

Yurcik and Osborne

more flexible to allow the students to make mistakes and re-
cover, and easily extensible allowing increasing functional-
ity upon a core design. Simulators can be built for many
different actual machine architectures or general-
ized/experimental machines of educational value can be cre-
ated by students as projects. The Little Man Computer
(LMC) simulators presented here fall under the class of a
generalized/experimental machine of educational value.

2 THE LMC PARADIGM

The LMC paradigm was developed by Stuart Madnick and
John Donovan of MIT during the 1960s where it was
taught to all MIT undergraduate computer science students.
The paradigm has stood the test of time as a conceptual
device which helps students understand the basics of com-
puter architecture. Irv Englander/Bentley College cur-
rently has a popular textbook which continues the LMC
tradition (Englander 1996; Englander 2000).
 The LMC paradigm consists of a walled mailroom, 100
mailboxes numbered 00 through 99, a calculator, a two-digit
location counter, an input basket, and an output basket.
Each mailbox is designed to hold a single slip of paper upon
which is written a three-digit decimal number. Note that
each mailbox has a unique address and the contents of each
mailbox is different from the address. The calculator can be
used for input/output, temporarily store numbers, and to add
and subtract. The two-digit location counter is used to in-
crement the count each time the Little Man executes an in-
struction. The location counter has a reset located outside
of the mailroom. Finally, there is the “Little Man” himself,
depicted as a cartoon character, who performs tasks within
the walled mailroom. Other than a reset switch for the loca-
tion counter, the only communication an external user has
with the Little Man is via slips of paper with three-digit
numbers put into the input basket or retrieved from the out-
put basket. An instruction cycle takes place as follows:

• The Little Man looks at the counter, memorizes
the number, and increments the counter by one.

• He retrieves an instruction from the mailbox
specified by the memorized number.

• He then executes the instruction.

The instruction could be:

• an arithmetic instruction (add or subtract) involv-
ing use of the calculator

• a memory access (load or store) in which data is
transferred between a mailbox and the calculator

• an I/O instruction (input or output) in which data
is transferred between the calculator and the input
or output tray
1633
• a program flow instruction (skip, branch, jump)
that conditionally or unconditionally alters the
value in the location counter

• a halt instruction (or coffee break) that halts exe-
cution of the program

The LMC paradigm is illustrated in Figure 1.

Figure 1: The Little Man Computer Paradigm

The analogy between LMC and real computers is not
perfect. In a real computer, memory (mailboxes) are sepa-
rated both physically and functionally from the central
processing unit (CPU). In most computers, registers are
available to hold data temporarily while it is being proc-
essed. Although the LMC paradigm has no registers, the
calculator display loosely serves the purpose of an accumu-
lator. Clock timing and interrupts are not part of the LMC
paradigm. Lastly, the LMC instruction set is based on the
decimal system, not binary as a real computer would be.
In spite of these deviations from reality, the use of this
simple but powerful model with a more familiar number
system allows students to focus on understanding the tasks
being performed in executing instructions rather than the
sometimes complex details of a specific manufacturer’s
implementation. In addition, the Postroom Computer (see
section 3.1) addresses some of these points.

3 MULTIPLE LITTLE MAN
COMPUTER SIMULATORS

With the success of the LMC paradigm, LMC simulators
have proliferated. The current crowd of LMCs not only
captures LMC information processing functionality but
also use visual techniques to highlight LMC operation.
The goal is to allow student visualization of different parts
of the LMC simultaneously to show relationships and thus
form student intuition.

Yurcik and Osborne

 Unexpected insights can be gained by comparing and
contrasting the current crowd of LMC simulators since de-
spite implementing the same paradigm with the same
goals, each implementation is distinct with different
strengths and weaknesses. We start off with an in-depth
description of the most sophisticated LMC simulator and
then work backward to describe less developed LMCs. In-
dependent of sophistication, all of the LMC simulators are
successful at focusing on a different aspect of educational
pedagogy in teaching computer architecture.

3.1 The Postroom Computer

The Postroom Computer is the most developed extension
of the Little Man Computer model, designed to introduce
aspects of computer architecture and low-level program-
ming in an incremental way. The extensions are designed
to provide a range of computing models within the LMC
paradigm. As they are introduced they can be related both
to the LMC paradigm and to “real” machines. The main
extensions are:

• a range of instruction set architectures – 0, 1, 2,
and 3 address machines,

• a choice of addressing architectures – immediate
or indirect,

• a choice of I/O architectures – (implicit) busy wait
or interrupt driven,

• a large number of mailboxes, and hence a larger
address space and a larger (multiple digit) loca-
tion counter,

• some opcodes are different.

The extensions in the Postroom Computer have a high

degree of orthogonality, inspired by the architecture of the
PDP11. This orthogonality means that it would be more
correct to speak of 16 separate Postroom Computers, rather
than one Postroom Computer. The basic Postroom Com-
puters are very similar to the original LMC, while the more
advanced models bear more similarity to real architectures,
in particular the PDP11. The design space of the Postroom
Computers is shown in Figure 2.

Figure 2: The Postroom Computer Design Space
1634
Both the fetch/execute cycle and the microcode im-
plementation are fully specified and traceable (using the
Update Plan specification formalism – see section 3.1.4),
allowing explanation of these concepts to be fully inte-
grated with the model. In the other direction, a compiler is
available from a simple high level language to Postroom
Computer code. It is also possible to configure the per-
formance of the various components of the machine model
to emphasize the importance of, for example, caching.
Work is in progress on a simplified version of the
Postroom Computer aimed at primary school children (age
group 7-11).

3.1.1 Postroom Instruction Set Extensions

The first extension of the paradigm is the introduction of
different instruction set architectures. There are four
Postroom Computer instruction set architectures:

1. a zero address stack-based machine
2. a one address accumulator-based machine
3. a two address machine, with one source operand

and one destination operand
4. a three address machine, with two source oper-

ands and one destination operand

The basic design of the instruction set is common to all

machines. The opcode consists of one digit and each ad-
dress field is three digits long. A word on an n address ma-
chine is 3(n+1) digits long. Note that this implies that each
machine could have up to 1000 three digit opcodes, which
would make it possible to introduce CISC architectures, but
in didactic practice it is better to stick to the conceptually
simpler one digit opcodes. There are some minor differ-
ences in the instruction sets – e.g. the zero address machine
has PSH (push to stack) and POP (pop from stack) instruc-
tions, rather than LDA (load accumulator) and STA (store
accumulator), while the two and three address machines use
these opcodes for MOV (move value) and MEA (move effec-
tive address). The two and three address machines replace
the JMP (unconditional jump) and SKP (conditional skip)
instructions of the zero and one address machines with a
single conditional JMP instruction, and uses the extra op-
code for a MSK (logical mask) instruction.

3.1.2 Postroom Addressing Mode Extensions

The second extension to the basic model introduces extra
flexibility in addressing. In the basic model (the direct ad-
dressing model), a three digit address is simply an address
in memory. In the indirect addressing model, the three digits
are comprised of a one digit addressing mode and a two digit
register number. The large number of registers is mostly due
to the microcode implementation, which is based on a RISC
architecture. There are ten user registers (general purpose

Yurcik and Osborne

registers) and 20 “administrative” registers – program
counter, stack pointer, flag register, MAR, MDR, I/O buffer
registers etc. The ten addressing modes are:

• register direct and indirect
• immediate direct and indirect
• base direct and indirect
• predecrement direct and indirect
• postincrement direct and indirect

3.1.3 Postroom Input/Output Extensions

The third dimension in the design space is provided by the
Postroom Computer's I/O model. In the basic Postroom
Computer an I/O instruction (INP [input] or OUT [out-
put]) is executed, just like any other instruction, as an
atomic action – i.e., execution of the program is suspended
until the input or output is complete. This is implicitly a
form of busy wait I/O. In the interrupt driven I/O model an
I/O instruction will cause an interrupt. An interrupt han-
dler must be provided that traps the interrupt and passes the
necessary data to the I/O module that will perform the re-
quired action. Upon completion of the I/O, the I/O module
will cause another interrupt, which must again be trapped
by the interrupt handler.

3.1.4 Building a General-Purpose Computer
System Based on the Postroom Computer

The Postroom Computer system allows the user to assem-
ble, load and trace execution of Postroom Computer pro-
grams. A compiler from a simple high level language to
Postroom Computer assembler is provided. Different
speeds of Postroom Computer components can also be
modeled.

The Postroom Computer Assembler offers all the
usual features of an assembler: lexical and syntactic check,
symbolic labels, and mnemonics for opcodes, registers, ad-
dressing modes and condition codes. Both integer and
character data values are supported, and strings are con-
verted to sequences of characters. There is also a macro
mechanism, including macro parameters, allowing users to
program their own macros, e.g. a MUL x y macro for mul-
tiplication. Intermediate files are produced at each stage of
assembly, and may be preserved for inspection, and for il-
lustration of assembly processes – e.g. macro expansion,
label generation – to the students.

The loader will load a Postroom Computer machine
code file and start execution. Upon completion of the pro-
gram it will report the number of instructions executed, and
may be configured to also report the (virtual) time required
for execution. More advanced configuration options allow
the user to model differing levels of efficiency for the vari-
ous components of the Postroom Computer, defining the
(virtual) time taken for, for example, access to registers,
1635
and to cache, main and background memory, and for basic
I/O operations.

Program execution can be traced. The simplest trace
will show the source-code line currently being executed.
A more detailed trace is available showing state changes
in the machine model. These are expressed using Update
Plans: a formal, yet intuitively clear, specification lan-
guage for low level activities (Osborne 1992; Osborne
1994; Osborne 1996). Yet more detailed traces are avail-
able, describing execution at the fetch/execute level and
microcode level. The fetch/execute cycle and microcode
are also fully specified in Update Plans. Files of the
traces can also be produced for inspection after execution
has terminated. Execution may be in burst mode, in
which instructions are executed until a HLT (halt execu-
tion) instruction is reached, or step mode, in which exe-
cution steps through the program one “program unit” at a
time. The user may specify the level of the “program
unit” to be a single Postroom Computer instruction, a
single phase of the fetch/execute cycle, or a single mi-
crocode instruction. There is a mechanism using annota-
tion of the source code that allows the user to set
Postroom Computer instruction level breakpoints. The
step level is independent of the trace level, i.e. the user
may, for example, step through the program one
Postroom Computer instruction at a time, while tracing
execution at the fetch/execute cycle level.

A compiler is available for a simple imperative lan-
guage with if, while, repeat and case statements, primitive
and compound types (both standard and user defined), and
procedures. The compiler provides lexical and syntactic
checking, and type checking in which the user can choose
the degree of polymorphism and implicit coercion. Compi-
lation is by stepwise program transformation, and each step
in the transformation can be inspected by the user, and
used for teaching purposes. Currently no attempt is made
to optimize the resultant Postroom Computer code. A use-
ful exercise for students is to give them the unoptimized
code produced by the compiler with the challenge to make
it as (space and/or time) efficient as possible.

3.2 Web-Based LMC-1

Under the direction of Professors Larry Brumbaugh and
William Yurcik of Illinois State University (Yurcik and
Brumbaugh 2001; Yurcik, Vila, and Brumbaugh 2000), an
interactive LMC simulator (see Figure 3) was developed so
that students could visualize simultaneous events occurring
during the execution of their LMC assembly language pro-
grams. Word of this intuitive visualization spread such
that the application was eventually ported to a web-based
application implemented in Java embedded within an app-
let to provide ubiquitous Internet access. The only user re-
quirement is a Java-enabled browser such as Internet Ex-

Yurcik and Osborne

plorer 4.0 or Netscape Navigator 3.0. Unique features to
this web-based LMC-1 simulator include:

• an LMC assembly code editor with instruction

syntax checking
• a one-pass assembler to visualize the mnemonic

assembly language to machine code conversion
• program status field which displays current status

of LMC operation including error messages and
flags (flags based on current calculator value if
positive, negative, zero, and error - working on
overflow)

• a visualization of the load process from machine
code to mailbox address/contents

• a halt operation for run-away programs
• different execution modes including step into

(single step), burst mode, step-over (goes through
conditional logic)

• location counter reset
• LMC assembly language program input/output to

local file system allowing programs to be saved
and loaded from local platform with security
based on Certificate Authority authentication

Figure 3: A Java Web-Based LMC-1 Simulator
<http://www.acs.ilstu.edu/faculty/javil
a/lmc/>

3.3 Web-Based LMC-2

Satyanarayana Seethasridhar, under the direction of Pro-
fessor M. Dadashzadeh of Wichita State University, has
developed a web-based ActiveX LMC-2 simulator, which
runs on Internet Explorer (preferred) or Netscape Naviga-
tor. This simulator does not attempt to visualize the fetch-
execute cycle but does visualize the calculator, in-
put/output boxes, location counter, and memory in a simple
and intuitive interface. There is no documentation pro-
vided but software developer contacts are linked. The Ini-
tial screen of the simulator is shown in Figure 4.
163

Figure 4: An ActiveX Web-Based LMC-2 Simulator
<http://www.cs.twsu.edu/~sxseetha/proje
ct/activex/littleman2.html>

3.4 Son-of-LMC

Alan Pinck of Algonquin College Canada has developed a
Son-of-LMC simulator running under Windows 95/98.
Son-of-LMC was developed in Visual Basic (v.4) and
Dynamic Link Libraries are provided. Unique to Son-of-
LMC is visualization of the bootstrap process, subroutine
calls, and the linking process. See Figure 5.

Figure 5: The Son-of-LMC Simulator
<http://www.algonquinc.on.ca/infosystem
s/pincka/dat2343/lect063.htm>
6

Yurcik and Osborne

3.5 Shockwave LMC

A team at the University of Hertfordshire has developed a
shockwave animation visualization (browser plug-in) of
the LMC paradigm to “test” students understanding of the
paths he takes “in his day-to-day routine”. They report that
students gain a fuller understanding of the fetch/execute
cycle by visualizing the individual components and their
interactions. The “Introduction” page of the Shockwave
LMC is Shown in Figure 6.

Figure 6: The Shockwave LMC Information Display

<http://www.herts.ac.uk/lis/ltdu_temp/l
tdu/projects/mm5/>

3.6 LMC Documentation

There are three main websites for LMC simulator docu-
mentation in addition to the Englander text:

• Web-based LMC-1 has a brief description of the
LMC paradigm in addition to simulator specific
details so users can do just-in-time reference
while LMC assembly programming.
<http://www.acs.ilstu.edu/faculty
/javila/lmc/>

• Hugh Osborne has extensive documentation of
various versions of LMC, comparable to a living
textbook since it is modified frequently, more
LMC material here than in the Englander text-
book.<http://helios.hud.ac.uk/scom
hro/Courses/LMC/lmc-doc.html>

• Professors Susan Riedel and Jeffrey Hock of
Marquette University have created a LMC Docu-
mentation and User’s Guide. Originally prepared
in January 1994 and revised in August 1994 (cur-
rent is version 3.5). Much of the LMC software
found here is written by the author’s students to
satisfy course requirements in software design or
special projects. <http://povinelli.
eece.mu.edu/teaching/coen030/lmc.
html>
163
3.7 LMCs in Progress

Kath Garnet of DeMontfort University U.K. has proposed
student LMC simulator projects using Borland Java ap-
plets, Macromedia Director for animation, running on
MSWindows98 but no products yet. <http://www.
cse.dmu.ac.uk/~it97ta1/Project/ToR.html
>

4 LMC SIMULATORS IN THE CLASSROOM

LMC simulators serve as a first introduction to computer
architectures. The paradigm is introduced and related to
specific instruction set implementations and visualization
of the fetch/execute cycle.

The Postroom 0, 1, 2 and 3 address machines allow a
discussion of the different architectures and their advan-
tages and disadvantages – e.g., instruction complexity
against program complexity. The zero instruction machine
in particular can serve as an introduction to the concept of
the stack.

Indirect addressing increases the flexibility of the
model. This is related to the basic LMC model by describ-
ing the main memory as being in a separate storeroom with a
corresponding longer access time (see Figure 7). Students
are introduced to the concept of a memory hierarchy, and are
encouraged to use the loader's timing mechanism to compare
the efficiency of indirect and direct addressed programs

Figure 7: LMC with a Main Memory Storeroom

The need for interrupt driven I/O is again explained in
terms of efficiency, comparing the speed of typical CPUs
to that of typical I/O devices, including human beings. The
model is again expanded with a background memory mod-
7

Yurcik and Osborne

eled as being in a warehouse at some distance from the
postroom (see Figure 8) and direct memory access is dis-
cussed.

Figure 8: LMC Background Memory Warehouse Model

The fully specified and traceable fetch/execute cycle
and microcode levels enable these concepts to be related
directly to the LMC model. The microcode implementation
is based on RISC architectures and although its implemen-
tation is currently sequential, it will in future be pipelined
providing a Postroom Computer example of this type of
architecture.

The flexibility of different LMC implementations
makes a large range of realistic programming exercises
possible. Students have in the past successfully undertaken
the following exercises:

• implementing double word and floating point

arithmetic
• programming a simple stack based arithmetic cal-

culator, including variable storage and retrieval
• writing an interrupt handler for basic I/O actions

5 FUTURE LMC SIMULATOR
DEVELOPMENTS

Predicting the future is always problematic but we attempt
some educated guesses on subsequent LMC simulator de-
velopments. Combining the intuitive user interface design
of web-based Java LMC-1 with the more developed un-
derlying processing capabilities of the Postroom computer
would be the LMC simulator state-of-the-art circa 2001. A
wish list for extensions to the 2001 state-of-the-art include:

• addition of a 4th dimension to the design model:
binary to decimal

• extend the I/O module to allow multiple devices
to be attached

• extend the I/O module for DMA
163
• make it possible to switch off integer I/O so that
students have to provide I/O routines for input and
output of numbers as character strings

• complete the “pcc” (Postroom Computer Compiler)
• provide a basic operating system for the LMC

(written in pcc?)
• implement basic TCP/IP protocols for LMC
• visually show microcode flow underneath each

LMC assembly instructions
• introduce pipelining in microcode
• extend the tracing abilities to show execution at

the logic gate level (in the binary machine)
• a “kiddies version” LMC simulator aimed at late

elementary school/high school students

The ultimate aim: to provide a computer architec-
ture/low level programming paradigm that can take students
from their first elementary school introduction to “how do
computers work?” through first year undergraduate Com-
puter Systems Architecture 101, to more advanced under-
graduate modules on compiler construction, advanced archi-
tectures and networks. Ideally a future LMC could be
formally specified using Update Plans giving not only a
“megaLMC” but also the first, as far as the authors are
aware, example of a system fully specified and validated
from high level code/operating system down to logic gates.

6 SUMMARY

This paper summarizes the use of a LMC simulator as a
visual tool to teach computer architecture. We emphasized
that there is a crowd of different LMC simulators and we
described and compared the LMC simulators known to the
authors. We actively encourage other LMC developers to
contact us so that the crowd is complete but we realize this
may be a never-ending task. Thus this paper is snapshot in
time of the current evolution of a long-lived and successful
teaching paradigm that shows survivability into the fore-
seeable future. The authors also encourage anyone with
knowledge of related computer simulator projects to con-
tact them.

ACKNOWLEDGMENTS

The first author would like to thank Larry Brumbaugh and
Rahul Gedupudi who contributed insights into developing
computer simulators and in many ways helped stir up the
current crowd of LMC simulators.

The second author would like to thank the University
of Huddersfield for the Teaching Fellowship funding pro-
vided in 1999/2000 for the development of the Postroom
Computer.
8

Yurcik and Osborne

REFERENCES

Cassel, L., D. Kumar, K. Boulding, J. Davies, M. Holliday,
J. Impagliazzo, M. Pearson, G. S. Wolffe, and W.
Yurcik. 2001. Distributed Expertise for Teaching
Computer Organization and Architecture. ITiCSE
Working Group Report, [to appear] ACM SIGCSE
Bulletin].

Englander, I. 1996. The Architecture of Hardware and Sys-
tems Software. John Wiley & Sons, first edition.

Englander, I. 2000. The Architecture of Hardware and
Systems Software. John Wiley & Sons, second edition.

Osborne, H. 1994. Update Plans. In Proceedings of the 25th
Hawaii International Conference on System Sciences,
IEEE Computer Society Press: 488-496.

Osborne, H. 1992. Update Plans – A High Level Low Level
Specification Language. PhD. Thesis, University of
Nijmegen, Toernooiveld 1, Nijmegen, The Nether-
lands.

Osborne, H. 1992. Update Plans for Parallel Architectures.
In Abstract Machine Models for Parallel and Distrib-
uted Computing (Proceedings of the Third Abstract
Machines Workshop, Amsterdam), IOS Press.

Yehezkel, C., W. Yurcik, and M. Pearson. 2001. Teaching
Computer Architecture with a Computer-Aided Learn-
ing Environment: State-of-the-Art Simulators. In Pro-
ceedings of International Conference on Simulation
and Multimedia in Engineering Education (ICSEE),
Society for Computer Simulation Press.

W. Yurcik, and L. Brumbaugh. 2001. A Web-Based Little
Man Computer Simulator. In Proceedings of the 32nd
ACM SIGCSE Technical Symposium on Computer
Science Education, ACM Press: 204-208.

W. Yurcik, J. Vila and L. Brumbaugh. 2000. An Interac-
tive Web-Based Simulation of a General Computer
Architecture. In Proceedings of IEEE International
Conference on Engineering and Computer Education
(ICECE), IEEE Press.

AUTHOR BIOGRAPHIES

WILLIAM YURCIK is an Assistant Professor of Applied
Computer Science at Illinois State University. His re-
search interests are system survivability and simulation
education. He is a member of ACM, IEEE, SCS, and is the
creator of the Simulation Education Homepage. His Email
address is <wjyurci@ilstu.edu>.

HUGH OSBORNE is a Senior Lecturer of Computer
Science at University of Huddersfield. His research
interests are in formal methods and specification systems.
He is a member of NVTI (Nederlandse Vereniging voor
Theoretische Informatica: The Dutch Association for
Theoretical Computer Science). His email address is
<h.r.osborne@hud.ac.uk>.
1639

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

