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ABSTRACT 

This paper describes the use of a particular type of com-
puter simulator as a tool for teaching computer architec-
ture.   The Little Man Computer (LMC) paradigm was de-
veloped by Stuart Madnick of MIT in the 1960s and has 
stood the test of time as a conceptual device that helps stu-
dents understand the basics of how a computer works.  
With the success of the LMC paradigm, LMC simulators 
have also proliferated.  We compare and contrast the cur-
rent crowd of LMC simulators highlighting visual features.  
We found unexpected insights since despite starting with 
the same paradigm with the same goals, each implementa-
tion is distinct with different strengths and weaknesses.  It 
is our intention that interested educators will find this a 
useful starting point or useful reference for incorporating 
simulation into their courses.   

1 INTRODUCTION 

The value of teaching computer architecture and assembly 
language programming is an old debate that continues to 
resurface as outside pressures on educational institutions 
press for market-driven skills based on high-level abstrac-
tion.  We feel that concrete and rigorous low-level educa-
tional experiences are necessary as a foundation before 
building toward higher-level abstraction.   Dr. C. Ravis-
hankar, Professor of Computer Science/University of Cali-
fornia-Riverside says it clearly, “Information hiding is all 
very good, but students need to have some information be-
fore they can start hiding it.”  

Computer architecture is also maligned because it is a 
difficult topic to teach.  First, a wide range of skills and de-
tails need to mastered – ranging from transistor implemen-
tation at the logic gate level up to the architecture of an en-
tire computer system (with one measure of scope being the 
number of transistors under consideration ranging from a 
few to millions).   

Second,  actual computer system architectures contain 
characteristics that are (A) unique to the manufacturer; (B) 
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complex to understand; and (C) cryptically documented.  
This makes executing laboratory experiments for students a 
challenge requiring extensive preparation and the result may 
be skills and knowledge not transferable to other machines.   

Third, computer architecture is intimidating to most 
students – while students may have a high level computer 
literacy of software applications, languages, and peripher-
als, many have incomplete, unrealistic, and sometimes pro-
foundly strange conceptions of how a computer works un-
derneath the cover.  Thus, most students are reluctant to 
figuratively or literally open the computer cover for dis-
covery, scared of the binary can-of-worms they do not un-
derstand.     

Lastly, students are crowded with marketing informa-
tion about computers from advertisements on television, 
radio, and magazines.   Since students are not informed 
consumers understanding computer architecture there are 
two effects: (1) empty or misleading information crowds 
out useful facts about computer architectures, and (2) stu-
dents acquire a false sense of competence due to familiar-
ity with computer marketing hype.     

All is not lost however.  Recent textbooks, web re-
sources, supplementing traditional lectures with active learn-
ing experiences, and the sharing of distributed expertise 
have empowered educators with new tools and increased the 
opportunity for student learning of computer architecture 
(Cassel et al. 2001; Yehezkel, Yurcik, and Pearson 2001). 
 This paper describes the use of visual computer simula-
tors as teaching tools for computer architecture.  Detractors 
state that simulation is not as good as the real thing.  We 
agree – simulation can be better than the real thing!  For in-
stance, assembly language programming can be one of the 
most user unfriendly human-computer interactions – a com-
puter simulator can make assembly language programming 
more user friendly and even intuitive.   A simulator can 
highlight core computer features of educational value and 
eliminate unnecessary details unique to a specific manufac-
turer.  Lastly, creating a computer simulator in software is a 
cathartic educational experience similar to building a real 
computer in hardware but less costly in monetary terms, 
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more flexible to allow the students to make mistakes and re-
cover, and easily extensible allowing increasing functional-
ity upon a core design.   Simulators can be built for many 
different actual machine architectures or general-
ized/experimental machines of educational value can be cre-
ated by students as projects. The Little Man Computer 
(LMC) simulators presented here fall under the class of a 
generalized/experimental machine of educational value. 

2 THE LMC PARADIGM 

The LMC paradigm was developed by Stuart Madnick and 
John Donovan of MIT during the 1960s where it was 
taught to all MIT undergraduate computer science students.  
The paradigm has stood the test of time as a conceptual 
device which helps students understand the basics of com-
puter architecture.  Irv Englander/Bentley College cur-
rently has a popular textbook which continues the LMC 
tradition (Englander 1996; Englander 2000). 
 The LMC paradigm consists of a walled mailroom, 100 
mailboxes numbered 00 through 99, a calculator, a two-digit 
location counter, an input basket, and an output basket.  
Each mailbox is designed to hold a single slip of paper upon 
which is written a three-digit decimal number. Note that 
each mailbox has a unique address and the contents of each 
mailbox is different from the address.   The calculator can be 
used for input/output, temporarily store numbers, and to add 
and subtract.  The two-digit location counter is used to in-
crement the count each time the Little Man executes an in-
struction.   The location counter has a reset located outside 
of the mailroom.  Finally, there is the “Little Man” himself, 
depicted as a cartoon character, who performs tasks within 
the walled mailroom.  Other than a reset switch for the loca-
tion counter, the only communication an external user has 
with the Little Man is via slips of paper with three-digit 
numbers put into the input basket or retrieved from the out-
put basket.  An instruction cycle takes place as follows:  
 

• The Little Man looks at the counter, memorizes 
the number, and increments the counter by one. 

• He retrieves an instruction from the mailbox 
specified by the memorized number. 

• He then executes the instruction. 
 

The instruction could be: 
 

• an arithmetic instruction (add or subtract) involv-
ing use of the calculator 

• a memory access (load or store) in which data is 
transferred between a mailbox and the calculator 

• an I/O instruction (input or output) in which data 
is transferred between the calculator and the input 
or output tray 
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• a program flow instruction (skip, branch, jump) 
that conditionally or unconditionally alters the 
value in the location counter 

• a halt instruction (or coffee break) that halts exe-
cution of the program 

 
The LMC paradigm is illustrated in Figure 1. 
 

 
Figure 1: The Little Man Computer Paradigm 

The analogy between LMC and real computers is not 
perfect.  In a real computer, memory (mailboxes) are sepa-
rated both physically and functionally from the central 
processing unit (CPU).  In most computers, registers are 
available to hold data temporarily while it is being proc-
essed.  Although the LMC paradigm has no registers, the 
calculator display loosely serves the purpose of an accumu-
lator. Clock timing and interrupts are not part of the LMC 
paradigm.  Lastly, the LMC instruction set is based on the 
decimal system, not binary as a real computer would be.  
In spite of these deviations from reality, the use of this 
simple but powerful model with a more familiar number 
system allows students to focus on understanding the tasks 
being performed in executing instructions rather than the 
sometimes complex details of a specific manufacturer’s 
implementation.  In addition, the Postroom Computer (see 
section 3.1) addresses some of these points. 

3 MULTIPLE LITTLE MAN 
COMPUTER SIMULATORS 

With the success of the LMC paradigm, LMC simulators 
have proliferated.  The current crowd of LMCs not only 
captures LMC information processing functionality but 
also use visual techniques to highlight LMC operation.  
The goal is to allow student visualization of different parts 
of the LMC simultaneously to show relationships and thus 
form student intuition. 
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 Unexpected insights can be gained by comparing and 
contrasting the current crowd of LMC simulators since de-
spite implementing the same paradigm with the same 
goals, each implementation is distinct with different 
strengths and weaknesses.  We start off with an in-depth 
description of the most sophisticated LMC simulator and 
then work backward to describe less developed LMCs.  In-
dependent of sophistication, all of the LMC simulators are 
successful at focusing on a different aspect of educational 
pedagogy in teaching computer architecture. 

3.1 The Postroom Computer 

The Postroom Computer  is the most developed extension 
of the Little Man Computer model, designed to introduce 
aspects of computer architecture and low-level program-
ming in an incremental way.  The extensions are designed 
to provide a range of computing models within the LMC 
paradigm.  As they are introduced they can be related both 
to the LMC paradigm and to “real” machines. The main 
extensions are: 
 

• a range of instruction set architectures – 0, 1, 2, 
and 3 address machines, 

• a choice of addressing architectures – immediate 
or indirect, 

• a choice of I/O architectures – (implicit) busy wait 
or interrupt driven, 

• a large number of mailboxes, and hence a larger 
address space and a larger (multiple digit) loca-
tion counter,  

• some opcodes are different. 
 
The extensions in the Postroom Computer have a high 

degree of orthogonality, inspired by the architecture of the 
PDP11.  This orthogonality means that it would be more 
correct to speak of 16 separate Postroom Computers, rather 
than one  Postroom Computer.  The basic Postroom Com-
puters are very similar to the original LMC, while the more 
advanced models bear more similarity to real architectures, 
in particular the PDP11. The design space of the Postroom 
Computers is shown in Figure  2. 
 

 
Figure 2: The Postroom Computer Design Space 
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Both the fetch/execute cycle and the microcode im-
plementation are fully specified and traceable (using the 
Update Plan specification formalism – see section 3.1.4), 
allowing explanation of these concepts to be fully inte-
grated with the model. In the other direction, a compiler is 
available from a simple high level language to Postroom 
Computer code. It is also possible to configure the per-
formance of the various components of the machine model 
to emphasize the importance of, for example, caching.  
Work is in progress on a simplified version of the 
Postroom Computer aimed at primary school children (age 
group 7-11). 

3.1.1 Postroom Instruction Set Extensions 

The first extension of the paradigm is the introduction of 
different instruction set architectures.  There are four 
Postroom Computer instruction set architectures: 
 

1. a zero address stack-based machine 
2. a one address accumulator-based machine 
3. a two address machine, with one source operand 

and one destination operand 
4. a three address machine, with two source oper-

ands and one destination operand 
 
The basic design of the instruction set is common to all 

machines.  The opcode consists of one digit and each ad-
dress field is three digits long. A word on an n address ma-
chine is   3(n+1) digits long.  Note that this implies that each 
machine could have up to 1000 three digit opcodes, which 
would make it possible to introduce CISC architectures, but 
in didactic practice it is better to stick to the conceptually 
simpler one digit opcodes.  There are some minor differ-
ences in the instruction sets – e.g. the zero address machine 
has PSH (push to stack) and POP  (pop from stack) instruc-
tions, rather than LDA (load accumulator) and STA (store 
accumulator), while the two and three address machines use 
these opcodes for MOV (move value) and MEA (move effec-
tive address).  The two and three address machines replace 
the JMP (unconditional jump) and SKP (conditional skip) 
instructions of the zero and one address machines with a 
single conditional JMP instruction, and uses the extra op-
code for a MSK (logical mask) instruction. 

3.1.2 Postroom Addressing Mode Extensions 

The second extension to the basic model introduces extra 
flexibility in addressing.  In the basic model (the direct ad-
dressing  model), a three digit address is simply an address 
in memory.  In the indirect addressing model, the three digits 
are comprised of a one digit addressing mode and a two digit 
register number. The large number of registers is mostly due 
to the microcode implementation, which is based on a RISC 
architecture.  There are ten user registers (general purpose 
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registers) and 20 “administrative” registers – program 
counter, stack pointer, flag register, MAR, MDR, I/O buffer 
registers etc. The ten addressing modes are: 
 

• register direct and indirect 
• immediate direct and indirect 
• base direct and indirect 
• predecrement direct and indirect 
• postincrement direct and indirect  

3.1.3 Postroom Input/Output Extensions 

The third dimension in the design space is provided by the 
Postroom Computer's I/O model.  In the basic Postroom 
Computer an I/O instruction ( INP  [input] or OUT [out-
put]) is executed, just like any other instruction, as an 
atomic action – i.e., execution of the program is suspended 
until the input or output is complete.  This is implicitly a 
form of busy wait I/O.  In the interrupt driven I/O model an 
I/O instruction will cause an interrupt.  An interrupt han-
dler must be provided that traps the interrupt and passes the 
necessary data to the I/O module that will perform the re-
quired action.  Upon completion of the I/O, the I/O module 
will cause another interrupt, which must again be trapped 
by the interrupt handler. 

3.1.4 Building a General-Purpose Computer 
System Based on the Postroom Computer 

The Postroom Computer system allows the user to assem-
ble, load and trace execution of Postroom Computer pro-
grams.  A compiler from a simple high level language to 
Postroom Computer assembler is provided. Different 
speeds of Postroom Computer components can also be 
modeled. 

The Postroom Computer Assembler offers all the 
usual features of an assembler: lexical and syntactic check, 
symbolic labels, and mnemonics for opcodes, registers, ad-
dressing modes and condition codes.  Both integer and 
character data values are supported, and strings are con-
verted to sequences of characters. There is also a macro 
mechanism, including macro parameters, allowing users to 
program their own macros, e.g. a MUL x y  macro for mul-
tiplication.  Intermediate files are produced at each stage of 
assembly, and may be preserved for inspection, and for il-
lustration of assembly processes – e.g. macro expansion, 
label generation – to the students. 

The loader will load a Postroom Computer machine 
code file and start execution.  Upon completion of the pro-
gram it will report the number of instructions executed, and 
may be configured to also report the (virtual) time required 
for execution.  More advanced configuration options allow 
the user to model differing levels of efficiency for the vari-
ous components of the Postroom Computer, defining the 
(virtual) time taken for, for example, access to registers, 
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and to cache, main and background memory, and for basic 
I/O operations.   

Program execution can be traced.  The simplest trace 
will show the source-code line currently being executed.  
A more detailed trace is available showing state changes 
in the machine model.  These are expressed using Update 
Plans: a formal, yet intuitively clear, specification lan-
guage for low level activities (Osborne 1992; Osborne 
1994; Osborne 1996).  Yet more detailed traces are avail-
able, describing execution at the fetch/execute level and 
microcode level.  The fetch/execute cycle and microcode 
are also fully specified in Update Plans. Files of the 
traces can also be produced for inspection after execution 
has terminated.  Execution may be in burst mode, in 
which instructions are executed until a HLT (halt execu-
tion) instruction is reached, or step mode, in which exe-
cution steps through the program one “program unit” at a 
time.  The user may specify the level of the “program 
unit” to be a single Postroom Computer instruction, a 
single phase of the fetch/execute cycle, or a single mi-
crocode instruction. There is a mechanism using annota-
tion of the source code that allows the user to set 
Postroom Computer instruction level breakpoints.  The 
step level is independent of the trace level, i.e. the user 
may, for example, step through the program one 
Postroom Computer instruction at a time, while tracing 
execution at the fetch/execute cycle level. 

A compiler is available for a simple imperative lan-
guage with if, while, repeat and case statements, primitive 
and compound types (both standard and user defined), and 
procedures.  The compiler provides lexical and syntactic 
checking, and type checking in which the user can choose 
the degree of polymorphism and implicit coercion. Compi-
lation is by stepwise program transformation, and each step 
in the transformation can be inspected by the user, and 
used for teaching purposes.  Currently no attempt is made 
to optimize the resultant Postroom Computer code.  A use-
ful exercise for students is to give them the unoptimized 
code produced by the compiler with the challenge to make 
it as (space and/or time) efficient as possible. 

3.2 Web-Based LMC-1  

Under the direction of Professors Larry Brumbaugh and 
William Yurcik of Illinois State University (Yurcik and 
Brumbaugh 2001; Yurcik, Vila, and Brumbaugh 2000), an 
interactive LMC simulator (see Figure 3) was developed so 
that students could visualize simultaneous events occurring 
during the execution of their LMC assembly language pro-
grams.   Word of this intuitive visualization spread such 
that the application was  eventually ported to a web-based 
application implemented in Java embedded within an app-
let to provide ubiquitous Internet access. The only user re-
quirement is a Java-enabled browser such as Internet Ex-
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plorer 4.0 or Netscape Navigator 3.0.  Unique features to 
this web-based LMC-1 simulator include: 

 
• an LMC assembly code editor with instruction 

syntax checking  
• a one-pass assembler to visualize the mnemonic 

assembly language to machine code conversion 
• program status field which displays current status 

of LMC operation including error messages and 
flags (flags based on current calculator value if 
positive, negative, zero, and error - working on 
overflow)  

• a visualization of the load process from machine 
code to mailbox address/contents 

• a halt operation for run-away programs 
• different execution modes including step into 

(single step), burst mode, step-over (goes through 
conditional logic) 

• location counter reset  
• LMC assembly language program input/output to 

local file system allowing programs to be saved 
and loaded from local platform with security 
based on Certificate Authority authentication 

 

 
 

Figure 3: A Java Web-Based LMC-1 Simulator 
<http://www.acs.ilstu.edu/faculty/javil
a/lmc/> 

3.3 Web-Based LMC-2 

Satyanarayana Seethasridhar, under the direction of Pro-
fessor M. Dadashzadeh of Wichita State University, has 
developed a web-based ActiveX LMC-2 simulator, which 
runs on Internet Explorer (preferred) or Netscape Naviga-
tor.   This simulator does not attempt to visualize the fetch-
execute cycle but does visualize the calculator, in-
put/output boxes, location counter, and memory in a simple 
and intuitive interface.  There is no documentation pro-
vided but software developer contacts are linked. The Ini-
tial screen of the simulator is shown in Figure 4.   
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Figure 4: An ActiveX Web-Based LMC-2 Simulator 
<http://www.cs.twsu.edu/~sxseetha/proje
ct/activex/littleman2.html>     

3.4 Son-of-LMC 

Alan Pinck of Algonquin College Canada has developed a 
Son-of-LMC simulator running under Windows 95/98. 
Son-of-LMC was developed in Visual Basic (v.4) and   
Dynamic Link Libraries are provided.  Unique to Son-of-
LMC is visualization of the bootstrap process, subroutine 
calls, and the linking process.  See Figure 5.  

 

 
 

Figure 5: The Son-of-LMC Simulator 
<http://www.algonquinc.on.ca/infosystem
s/pincka/dat2343/lect063.htm> 
6
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3.5 Shockwave LMC 

A team at the University of Hertfordshire has developed a 
shockwave animation visualization (browser plug-in) of 
the LMC paradigm to “test” students understanding of the 
paths he takes “in his day-to-day routine”.  They report that 
students gain a fuller understanding of the fetch/execute 
cycle by visualizing the individual components and their 
interactions. The “Introduction” page of the Shockwave 
LMC is Shown in Figure 6.  

 
Figure 6: The Shockwave LMC Information Display 

<http://www.herts.ac.uk/lis/ltdu_temp/l
tdu/projects/mm5/> 

3.6 LMC Documentation 

There are three main websites for LMC simulator docu-
mentation in addition to the Englander text: 
 

• Web-based LMC-1 has a brief description of the 
LMC paradigm in addition to simulator specific 
details so users can do just-in-time reference 
while LMC assembly programming. 
<http://www.acs.ilstu.edu/faculty
/javila/lmc/> 

• Hugh Osborne has extensive documentation of 
various versions of LMC, comparable to a living 
textbook since it is modified frequently, more 
LMC material here than in the Englander text-
book.<http://helios.hud.ac.uk/scom
hro/Courses/LMC/lmc-doc.html>  

• Professors Susan Riedel and Jeffrey Hock of 
Marquette University have created a LMC Docu-
mentation and User’s Guide.  Originally prepared 
in January 1994 and revised in August 1994 (cur-
rent is version 3.5).   Much of the LMC software 
found here is written by the author’s students to 
satisfy course requirements in software design or 
special projects.  <http://povinelli. 
eece.mu.edu/teaching/coen030/lmc.
html>  
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3.7 LMCs in Progress 

Kath Garnet of DeMontfort University U.K. has proposed 
student LMC simulator projects using Borland Java ap-
plets, Macromedia Director for animation, running on 
MSWindows98 but no products yet.  <http://www. 
cse.dmu.ac.uk/~it97ta1/Project/ToR.html
>  

4 LMC SIMULATORS IN THE CLASSROOM 

LMC simulators serve as a first introduction to computer 
architectures.  The paradigm is introduced and related to 
specific instruction set implementations and visualization 
of the fetch/execute cycle. 

The Postroom 0, 1, 2 and 3 address machines allow a 
discussion of the different architectures and their advan-
tages and disadvantages – e.g., instruction complexity 
against program complexity.  The zero instruction machine 
in particular can serve as an introduction to the concept of 
the stack. 

Indirect addressing increases the flexibility of the 
model.  This is related to the basic LMC model by describ-
ing the main memory as being in a separate storeroom with a 
corresponding longer access time (see Figure 7). Students 
are introduced to the concept of a memory hierarchy, and are 
encouraged to use the loader's timing mechanism to compare 
the efficiency of indirect and direct addressed programs 

 

 
 

Figure 7: LMC with a Main Memory Storeroom 
 

The need for interrupt driven I/O is again explained in 
terms of efficiency, comparing the speed of typical CPUs 
to that of typical I/O devices, including human beings.  The 
model is again expanded with a background memory mod-
7
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eled as being in a warehouse at some distance from the 
postroom (see Figure 8) and direct memory access is dis-
cussed. 

 

 
 

Figure 8: LMC Background Memory Warehouse Model 
 

The fully specified and traceable fetch/execute cycle 
and microcode levels enable these concepts to be related 
directly to the LMC model. The microcode implementation 
is based on RISC architectures and although its implemen-
tation is currently sequential, it will in future be pipelined 
providing a Postroom Computer example of this type of 
architecture.   

The flexibility of different LMC implementations 
makes a large range of realistic programming exercises 
possible.  Students have in the past successfully undertaken 
the following exercises: 

 
• implementing double word and floating point 

arithmetic 
• programming a simple stack based arithmetic cal-

culator, including variable storage and retrieval 
• writing an interrupt handler for basic I/O actions 

5 FUTURE LMC SIMULATOR  
DEVELOPMENTS 

Predicting the future is always problematic but we attempt 
some educated guesses on subsequent LMC simulator de-
velopments. Combining the intuitive user interface design 
of  web-based Java LMC-1 with the more developed un-
derlying processing capabilities of the Postroom computer 
would be the LMC simulator state-of-the-art circa 2001.  A 
wish list for extensions to the 2001 state-of-the-art include: 
 

• addition of a 4th dimension to the design model: 
binary to decimal 

• extend the I/O module to allow multiple devices 
to be attached 

• extend the I/O module for DMA 
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• make it possible to switch off integer I/O so that 
students have to provide I/O routines for input and 
output of numbers as character strings 

• complete the “pcc” (Postroom Computer Compiler) 
• provide a basic operating system for the LMC 

(written in pcc?) 
• implement basic TCP/IP protocols for LMC 
• visually show microcode flow underneath each 

LMC assembly instructions  
• introduce pipelining in microcode 
• extend the tracing abilities to show execution at 

the logic gate level (in the binary machine) 
• a “kiddies version” LMC simulator aimed at late 

elementary school/high school students  
 

The ultimate aim: to provide a computer architec-
ture/low level programming paradigm that can take students 
from their first elementary school introduction to “how do 
computers work?” through first year undergraduate Com-
puter Systems Architecture 101, to more advanced under-
graduate modules on compiler construction, advanced archi-
tectures and networks.   Ideally a future LMC could be 
formally specified using Update Plans giving not only a 
“megaLMC” but also the first, as far as the authors are 
aware, example of a system fully specified and validated 
from high level code/operating system down to logic gates.  

6 SUMMARY 

This paper summarizes the use of a LMC simulator as a 
visual tool to teach computer architecture.  We emphasized 
that there is a crowd of different LMC simulators and we 
described and compared the LMC simulators known to the 
authors.   We actively encourage other LMC developers to 
contact us so that the crowd is complete but we realize this 
may be a never-ending task.  Thus this paper is snapshot in 
time of the current evolution of a long-lived and successful 
teaching paradigm that shows survivability into the fore-
seeable future. The authors also encourage anyone with 
knowledge of related computer simulator projects to con-
tact them. 
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