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ABSTRACT ulation optimization include Andradéttir (1998), Azadivar
(1999), Swicher et al. (2000), and April et al. (2001).
Simulation optimization has received considerable attention The remainder of the paper is organized as follows. In

from both simulation researchers and practitioners. In this Section 2 we establish a common framework for simulation
tutorial we present a broad introduction to simulation opti- optimization problems and present the notation to be used.
mization and the many techniques that have been suggestedSection 3 surveys techniques for optimizing continuous
to solve simulation optimization problems. Both continu- decision variables, and Section 4 does the same for discrete
ous and discrete problems are discussed, but an emphasigiecision variables. In Section 5 we discuss simulation
is placed on discrete problems and practical methods for optimization software, and finally Section 6 contains some
addressing such problems. concluding remarks.

1 INTRODUCTION 2 PROBLEM SETTING

Many systems in areas such as manufacturing, supply chain Simulation optimization is optimization where the perfor-
management, financial management, are too complex to be mance is the output of a simulation model, and the problem
modeled analytically. Discrete event simulation has long setting thus contains the usual optimization components:
been a useful tool for evaluating the performance of such

systems. However, a simple evaluation of performance is  Decision variables,
often insufficient and a more exploratory process may be *  objective function, and
needed in the form of simulation optimization. Simulation * constraints.

optimization is the process of finding the best values of some . , )
We denote the decision variables ésnd the constraints

decision variables for a system where the performance is " ) i
evaluated based on the output of a simulation model of this &€ represented by these variables having to be contained

system. There has been a great deal of work on simulation N S0me feasible regio®, that is6 € ©. The objective
optimization in the research literature, and more recently function is a real valued function defined on these variables

optimization routines has been incorporated into several /@ © — R, butdue to the complexity and stochastic nature
commercial simulation packages. of _the underlylng.system an anglytlcal expression dpes not
Techniques for simulation optimization vary greatly de- €Xit for f(-) and it must be estimated using a function of
pending on the exact problem setting. In this tutorial we the stochastic simulation output, saye), that we write as
take the underlying structure of the decision variables, that & function of the decision variables. Typically, this might
is discrete or continuous, to be the primary distinguishing be an unbiased estimate of the true objective function, that

factor. There also appears to be a significant gap between'S () = E[X(#)], but we will not be concerned with
those methods that have been studied extensively in the tNiS here nor how this performance output relates to the

research literature and those that are commonly use in prac- Simulation output variables. _
tice. In this tutorial we survey methods used for both Various simulation optimization technigues can be clas-
continuous and discrete optimization and discuss which of Sified based on the nature of the feasible region. If it is

these methods have been successfully implemented as par@ continuous set, that i® c R”, then it may be ap-
of commercial software packages. Previous review of sim- Propriate to use a gradient based search method such as
stochastic approximation. If it is finite and fairly small, say

79



Olafsson and Kim

® = {61, 02, ..., 0, }, wherem < 30 then it is possible to
use ranking and selection methods, whereas if it is finite but
combinatorially large a metaheuristic may be appropriate.
Those and other methods are surveyed in the following
sections.

3 CONTINUOUS DECISION VARIABLES

We start by considering the situation where the underlying
variables are continuous, thatdsC R” is uncountable and
infinite. This is perhaps the most studied problem setting
in the research literature but we will only briefly consider
those here as our main focus is on discrete methods.

3.1 Stochastic Approximation
Stochastic approximation (SA) is the iterative process of

moving from one solution to another based on moving in
the direction an estimate of the gradient. This process is

i =1,2,..,n. The one-sided estimate requirest 1 si-
multaneous simulations of the performance measure, and
the two-sided estimate requires 8uch simulations, a con-
siderable computational effort when optimizing complex
systems.

The computational efficiency and convergence prop-
erties of SA can be dramatically improved with a direct
estimate of the gradient instead of finite differences and
a great deal of research has been devoted to developing
such methods. The most common types of approaches for
such direct estimation are perturbation analysis (Glasser-
man, 1991, Ho and Cao, 1991) and likelihood ratio (Glynn,
1989; Rubinstein, 1991, Rubinstein and Shapiro, 1993).

3.2 Other Methods
Although gradient search, and in particular those based on

stochastic approximation, appear to have received the most
attention in continuous simulation optimization literature,

analogous to the steepest descent gradient search in nonlineaseveral alternatives have been suggested. Here we will only

optimization, but as there is no analytical expression for the

objective function there is of course also no such expression

for the gradient.

In mathematical notation, the general step of a SA
algorithm proceeds as follows. L&t*) be the current
solution for the decision variables, the basic SA algorithm
is of the following form (for minimization):

g+ — 1 (9“‘) —aVf (9“‘))) .

Here V£ (6®) is an estimate of the gradienty is the
step size, andl is a projection onto the feasible region,
Im: R" — ©.

Extending back to the fundamental work of Robbins and
Monro (1951) and Kiefer and Wolfowitz (1952), stochas-
tic approximation has received a great deal of attention.

The asymptotic convergence of SA can be guaranteed un-

der certain conditions, which typically involve letting the
step size go to zero but at a sufficiently slow rate, e.g.
liMmg_ oo ax = 0 but Zk o = 00.

The simplest way to estimate the gradiény (9) =
[@f(el), @f(e,,)] is by looking at some small change
A6; € R in each of the decision variables and using the
finite differences, either one-sided

X(6; + AG;) — X(6)

VO = G

or two-sided

X0 + Ab;) — X6, — Ab;)
2A6;

Vo) =

)
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briefly mention a couple of these alternatives.

One such approach is the sample path method presented
by Gurkan et al. (1994). The basic idea here is to fix one
particular sample path, at which point the problem becomes
deterministic and the powerful machinery of mathematical
optimization can be applied directly. The method then
iteratively moves towards an optimal solution by considering
one sample path at time. Under certain conditions, this
approach can be shown to converge almost surely (Robinson,
1996).

Response surface methodology (RSM) is a well studied
statistical approach that attempts to find a functional rela-
tionship between the input variables and the output function.
This can be applied to simulation optimization with the out-
put function being the stochastic output of simulation model
(Kleijnen, 1998). More recently low cost response surface
methods have been proposed for simulation optimization
(Allen and Yu, 2000).

4 DISCRETE DECISION VARIABLES

When the feasible region is countable or countable finite

then the methods of the previous sections do not usually
apply, although a few efforts have been made to apply for

example SA to discrete problems. In this case, we need to
distinguish between problems where the feasible region is
small and a complete enumeration is possible and problems
where it is impossible to evaluate every alternative and

some search method must be included to determine which
solutions should be evaluated.
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4.1 Statistical Selection corresponding to the selected indifference zone (Matejcik
and Nelson, 1995; Nelson and Matejcik, 1995).

When the optimization involves selecting the best of a few Most of the statistical selection procedures mentioned

alternatives, that i® = {61, 02, ..., 6,,}, wherem is rel- above involve a two stage process where in the first stage the

atively small, then it may be possible to evaluate every mean and the variance of each solution is estimated and those
solution and compare the performance. In the determin- estimates used to determine how many more simulations
istic context this would be straightforward, but since the are needed to make the desired selection. In implementing
performance must be estimated based on the stochastic sim-such methods a key issue is how much effort to put into
ulation output some further analysis is heeded to compare the first stage. If it is too little an inaccurate estimate may
alternative solutions. Numerous different approaches have prescribe much more simulation in the second stage than is
been developed to address this problem, including subset really needed and vice versa too much effort in the first stage
selection, indifference-zone ranking and selection (R&S), may spend more simulation time on each solution than was
multiple comparisons procedures (MCP), and decision the- needed. More recently there has been considerable effort
oretic methods. devoted to developing sequential procedures that solve this
Subset selection or screening does not attempt to find the problem and these methods have been found to perform very
optimal solution but simply to reduce the feasible region favorably to the sequential procedures (Kim and Nelson,
to a (small) subset of solutions. Early work developed 2001; Chen et al., 1997).
techniques that apply when the simulation output is normal A completely different approach to selecting the best
with common variance and the same number of simulation system is the decision theoretic framework of Chick and
observations are used for each solution (Gupta, 1956; 1965). Inoue (1999, 2000) that uses Baysian analysis to develop both
These assumptions are rarely satisfied for simulation outputs two-stage and sequential statistical selection procedures.
and although many methods are quite robust with respect
to the normality assumption, the assumption of common 4.2 Random Search
variance is quite restrictive and new techniques have been
developed that do not require this assumption (Nelson et When it is not possible to evaluate every solution using
al., 2001). a statistical selection procedure, some procedure must be
The subset selection procedures do not find a single used to determine which solutions are to be considered and
best (optimal) solution, but this can be accomplished using simulated. This is most often some type of a random search
R&S methods. The most common approach is to define approach.
an indifference zoné& for the performance and develop Random search typically involves an iterative process
a procedure that selects a solution with performance that where in each iteration the search progresses to a new
is within § units of the optimal performance with a given (possibly better) solution in the neighborhood of the current
probability, that is, if6* is the optimal solution and is solution.

the selection solution then
0. Select and initial solutio®©® and simulate its

Prob[|£(6) — £(6%)| < 8] > 1—a, performancex (§?). Setk = 0.

1. Select a candidate solutie¥ from the neighbor-
where 1— « is the desired probability. To achieve this hood N (6¥)) of the current solution and simulate
guarantee, a two-stage procedure that prescribes how many its performanceX (6¢).
simulation estimates are needed for each alternative is com- 2. If the candidate“ satisfies the acceptance crite-
monly applied (Dudewicz and Dalal, 1975; Rinott, 1978). rion based on the simulated performance, then let
A discussion of alternative indifference-zone procedure can 0*+D = 9®; otherwise le*+D = ®).
be found in standard simulation texts such as Law and 3. Ifstopping criterion is satisfied terminate the search;
Kelton (2000). As they have complimentary functions, a otherwise letk = k + 1 and go back to Step 1.

natural approach is to combine subset selection for screen- )
ing with R&S for selection of a specific solution (Nelson The various random search methods that have been proposed

et al., 2001). in the literature can be though of as specifying the neigh-
' borhood structure, how to select a candidate, the acceptance

Another approach to selecting the best solution are %' ; ah
criterion, and the stopping criterion.

MCPs that calculate simultaneous confidence intervals for
f@) — f@©", i =1,..,m, wheref* is as before the
optimal solution (Hochberg and Tamhane, 1987). These

procedures are actually closely related tothe R&S procedures o ] ]
as indifference-zone procedures can automatically provide Various metaheuristics have been suggested for simulation

such confidence intervals with the width of the interval ©OPtimization. Such methods include genetic algorithms,
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simulated annealing, tabu search, and neural networks. Al-
though these methods are generally designed for combi-
natorial optimization in the deterministic context and may

Thus, in thek-th iteration, a pointt® is actually a set
of solutions and the neighbors 6fX) are constructed by
operating on these solutions jointly. The most common

not have guaranteed convergence, they have been quitesuch operators are cross-over and mutation. The cross-over

successful when applied to simulation optimization.

Simulated annealing (SA) can be though of within
the framework of the random search describe above and
can be adapted for simulation optimization (Haddock and
Mittenhall, 1992). Starting with an initial solution, SA
moves from one solution to the next, hopefully converging
on the global optimum. All such random search methods
may, however, get stuck at a locally optimal solution, and SA
attempts to rectify this by accepting inferior solutions with
certain probability and thus allowing the search to escape
local optima. Thus, the main innovation of the SA approach
is in Step two of the generic algorithm, where in th¢h
iteration a randomly selected candidateis accepted with
the probability (assuming a minimization problem):

11
L(9)<L(6®)
e Ty ,

L©®) <L (0W)
Prob [Acceptd] = e
otherwise.

In other words, the candidate solution is always accepted
if it is better but it is also sometimes accepted even if it is

inferior. The probability of accepting the inferior candidate

is higher if the difference in performance is small, and

it is higher if the constanfy, called the temperature, is

operation typically takes two solutions from the #éP

that have relatively good performance and combine them
to make two new solutions. This is meant to resemble an
evolutionary process where two fit individuals are allowed
to reproduce to generate offspring that resemble the parents.
The mutation operator, on the other hand, takes a single
high performing solution and alters it slightly. From this
it should be clear that the main innovative contribution of
GA when placed in the context of general random search
is a novel construction of a neighborhood based on natural
selection principals.

Another random search metaheuristic is the nested parti-
tions (NP) method of Shi and Olafsson (1997). This method
takes a global approach to simulation optimization and gen-
erates iterative partitions of the entire feasible region. That
is, in the k-th iteration there is some subsetk) C ©
that is considered the most promising(Q) = ©®), and the
method attempts to narrow the search be looking at subsets
oi(k) Co(k),i =1,2,..., M of this region while simul-
taneously also looking at the surrounding regn o (k).
Thus, it focuses the computational effort while simultane-
ously maintaining a global perspective. If one of the subsets,
sayo; (k), is found to be best this becomes the most promis-
ing region in the next iterationo((k + 1) = o7(k)), but if

high. Usually, this temperature is allowed to decrease as the the surrounding region is found to be best the method back-
search progresses, the idea being that after a while no bigtracks ¢ (k + 1) = o(k — 1)). In terms of the general

moves up hill should be allowed and eventually no moves

should be made to an inferior solution. However, in the

context of simulation optimization there are indications that

a constant temperature search may work as well or better
(Alrefaei and Andradottir, 1998).

Tabu search can also be placed within the framework
of general random search (Glover and Laguna, 1997). One
of the unique features of this approach is a restriction of the
neighborhooav (6(®) of the current solution® as certain
solutions are made tabu. Specifically, solutions are tabu if
they require the reverse move of a recently made move,
which forces the search to continue when it might otherwise
get stuck at a local optimum. Although maintaining a list
of tabu moves may be considered the main feature of the
method, it has numerous other properties. This includes
for example long term memory that allows the search to
restart at a previously found good solution with a new list
of tabu moves that forces a different search direction from
this good starting point. More details on using tabu search
for simulation optimization can be found in Glover, Kelly,
and Laguna (1999) and April et al. (2001).

Genetic algorithms (GA) and other evolutionary meth-
ods are again similar to the generic random search but work
with a population of solution rather than a single solution.
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random search framework, each pdifft thus corresponds

to a subsetr (k) and the neighbors are either subsets con-
structed according to a specified partitioning method or the
subset that was partitioned to create):

N <9<k) _ U(k)> = {01(k), ... oy (k), © \ & (k)} .

Eventually, the subset become singletons and by assuring
that the correct move is made with a given probability in
each iteration, it is possible to guarantee that when this
happens a sufficiently good solution has been found with
a satisfactory high probability (Olafsson, 1999; Olafsson
and Kim, 2001). Statistical selection methods, such as
those reviewed in Section 4.1, can be used to determine
the amount of sampling needed from each region to assure
a proper selection in each iteration. Specifically, given an
indifference zoné and a probability of eventually selecting

a singleton that has performance witfianits of the optimal
performance is given, the probability by which the correct
selection in each iteration must be made is calculated. Given
this probability the statistical selection procedure is used
to prescribe how many solutions are sampled from each of
the subregions and the surrounding region.
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The methods described in this section have all been the goal of the optimization from finding the optimal solution
successfully applied to industrial problems, and many have to finding a ‘good enough’ solution with a given probability,
been incorporated into standard simulation software pack- a goal that may be more reasonable in practice. Similar goal
ages. This issue of simulation optimization in practice will softening is also part of the ordinal optimization paradigm

be discussed next. (Ho et al.,, 1992; Ho et al.,, 2000). Finally, using the
nested partitions framework, metaheuristics such as GA
5 SIMULATION OPTIMIZATION IN PRACTICE and tabu search can be incorporated to speed the search,

while simultaneously retaining the performance guarantees

Recently there has been considerable research focused onOlafsson and Kim, 2001). For much more discussion on
how to combine simulation and optimization in practice (Fu simulation optimization theory and practice see Fu (2002).
et al., 2000; April et al., 2001; Olafsson and Kim, 2001;
Fu, 2002). Although simulation optimization has been an 6 CONCLUSION
active area of research for considerable length of time, then
except for statistical selection methods that simply compare Simulation optimization is an active field of research and
all alternatives, optimization packages have only been in- is also increasingly being used in practical simulation ap-
corporated into commercial simulation software in the last plications and being incorporated into simulation software
decade. Examples of such optimization packages include tools. In this tutorial we have given a broad overview of
ProModel's SimRunner (Harrel and Price, 2000) and Au- simulation optimization but with an emphasis on problems
toMod’s AutoStat (Bitron, 2000) that use evolutionary and with discrete decision variables.
genetic algorithms, SIMUL8's OPTIMIZ that uses neural As should be apparent, there is still somewhat of a
networks, and OptQuest package, which works with simula- gap between the academic work on simulation optimization,
tion software that includes Arena and Crystal Ball, and uses which historically has focused on gradient-based approaches
scatter search, tabu search, and neural networks (Glover,and convergence proofs, and practical implementations of
Kelly, and Laguna, 1999). simulation optimization, which primarily implement meta-

As one can see from the examples above, commercial heuristics. This difference has, however, been widely rec-
simulation optimization packages that do search in addi- ognized and we have indicated some new effort in bridging
tion to comparison of solutions are currently dominated by the gap.
metaheuristic approaches. Thus, in simulation optimization
practice, such methods appear to take precedence over otheREFERENCES
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