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ABSTRACT

This paper reviews statistical methods for analyzing outp
data from computer simulations. First, it focuses on t
estimation of steady-state system parameters. The esti
tion techniques include the replication/deletion approac
the regenerative method, the batch means method, and
standardized time series method. Second, it reviews rec
statistical procedures to find the best system among a
of competing alternatives.

1 INTRODUCTION

The primary purpose of most simulation studies is the a
proximation of prescribed system parameters with the o
jective of identifying parameter values that optimize som
system performance measures. If some of the input p
cesses driving a simulation are random, then the output d
are also random and runs of the simulation program o
result inestimatesof system performance measures. Unfo
tunately, a simulation run does not usually produce indep
dent, identically distributed (i.i.d.) observations; therefo
“classical” statistical techniques are not directly applicab
to the analysis of simulation output.

A simulation study consists of several steps such as d
collection, coding and verification, model validation, expe
imental design, output data analysis, and implementati
This paper reviews (a) statistical methods for computi
confidence intervals for system performance measures fr
output data and (b) statistical methods for determining t
best system from a set of alternatives.

For output analysis, there are two types of simulation
Finite-horizon simulations. In this case the simulation
starts in a specific state and runs until a terminating ev
occurs. The output process is not expected to achieve ste
state behavior and any parameter estimated from the ou
will be transient in the sense that its value will depend up
the initial conditions. An example is the simulation of
vehicle storage and distribution facility for a week.
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Steady-state simulations. The purpose of a steady-state
simulation is the study of the long-run behavior of the
system of interest. A performance measure of a system
called asteady-state parameterif it is a characteristic of the
equilibrium distribution of an output stochastic process. An
example is the simulation of a continuously operating com
munication system where the objective is the computatio
of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from
terminating simulations. Section 3 reviews approaches fo
removing bias due to initial conditions in steady-state simu
lations. Section 4 presents techniques for point and interva
estimation of steady-state parameters. Section 5 review
recent methods for identifying the best system within a se
of alternatives.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system untiln output data
X1, X2, . . . , Xn are collected with the objective of estimating
µ = E(X̄n), whereX̄n = 1

n

∑n
i=1Xi is the sample mean.

For example,Xi may be the transit time of uniti through a
network of queues or the total time stationi is busy during
the ith hour. Clearly,X̄n is an unbiased estimator forµ.
Unfortunately, theXi ’s are generally dependent random
variables making the estimation of Var(X̄n) a nontrivial
problem. LetS2

n = (n − 1)−1∑n
i=1(Xi − X̄n)2 be the

sample variance of the data. In many queueing system
theXi ’s are correlated makingS2

n/n a biased estimator of
Var(X̄n). In particular, if theXi ’s are positively correlated,
one hasE(S2

n/n) < Var(X̄n).
To overcome this problem, we can runk independent

replications of the simulation. Assume that runi produces
output dataXi1, . . . , Xin. Then the “within-run” averages

Yi = 1

n

n∑
j=1

Xij
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are i.i.d. random variables, their sample meanȲk =
1
k

∑k
i=1 Yi is also an unbiased estimator ofµ, and their

sample variancêVR = (k− 1)−1∑k
i=1(Yi − Ȳk)2 is an un-

biased estimator of Var(X̄n). If in addition k is sufficiently
large, an approximate 1− α confidence interval forµ is

Ȳk ± tk−1,1−α/2
√
V̂R/k , (1)

where td,γ represents theγ -quantile of thet distribution
with d degrees of freedom.

Alexopoulos and Seila (1998, Section 7.2.2) revie
sequential procedures for determining the number of rep
cations required to estimateµ with a fixed absolute or rel-
ative precision. The procedure for constructing a 1− α
confidence interval forµ with a small absolute error
|Ȳk − µ| ≤ β is based on Chow and Robbins (1965)
It starts with k0 ≥ 5 runs and stops when the halfwidth

tk−1,1−α/2
√
V̂R/k ≤ β. Law and Kelton (2000) describe

a method for obtaining an estimate whose relative err
satisfies Pr(|Ȳk−µ|/|µ| ≤ γ ) ≥ 1−α, with α ≤ 0.15. The
method starts withk0 ≥ 10 runs and stops when the relative

halfwidth tk−1,1−α/2|Ȳk|−1
√
V̂R/k drops belowγ /(1+ γ ).

The method of replications can also be used for estima
ing performance measures other than means. For exam
suppose that we want to estimate thep-quantile, sayξp, of
the average queue size in a single-server queueing sys
during a fixed time window. We runk independent replica-
tions, denote byYi the average observed queue length durin
replicationi, and letY(1) < Y(2) < · · · < Y(k) be the order
statistics corresponding to theYi ’s. Then a point estimate
for yp is ξ̂p = Y(kp) if kp is an integer or̂ξp = Y(bkp+1c)
otherwise (b·c is the floor function). A confidence interval
for ξp is described in Alexopoulos and Seila (1998, Sectio
7.3.2).

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulatio
is the removal of theinitialization bias. Suppose that
{Xi : i ≥ 1} is a discrete-time output stochastic proces
from a single run of a steady-state simulation with initia
conditions (system state)I and assume that, asn → ∞,
Pr(Xn ≤ x|I )→ Pr(X ≤ x), whereX is the corresponding
steady-state random variable. The steady-state mean of{Xi}
is µ = limn→∞ E(Xn|I ). The problem with the use of̄Xn
for a finite n is thatE(X̄n|I ) 6= µ.

The most commonly used method for eliminating th
bias ofX̄n identifies an indexl andtruncatesthe observations
X1, . . . , Xl . Then the estimator̄Xn,l = n−1∑n+l

i=l+1Xi is
generally less biased than̄Xn because the initial conditions
primarily affect data at the beginning of a run. Severa
i-
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procedures have been proposed for the detection of a cuto
index l (see Chance and Schruben 1992, Fishman 2001
Gafarian et al. 1978, Goldsman et al. 1994, Kelton 1989
Ockerman 1995, Schruben 1982, Schruben et al. 1983
Wilson and Pritsker 1978ab).

The graphical procedure of Welch (1983) is popular
due to its simplicity and generality. This method usesk
independent runs with theith run producing observations
Xi1, Xi2, . . . , Xin and computes the “across-runs” averages

X̄j = 1

k

k∑
i=1

Xij , j = 1, . . . , n.

Then for a given time windoww, the procedure plots the
moving averages

X̄j (w) =
{

1
2w+1

∑w
m=−w X̄j+m w + 1≤ j ≤ n− w

1
2j−1

∑j−1
m=−j+1 X̄j+m 1≤ j ≤ w

againstj . If the plot is reasonably smooth, thenl is chosen
to be the value ofj beyond which the sequence of moving
averages converges. Otherwise, a different time window i
chosen and a new plot is drawn. The choice ofw may be
a difficult problem for congested systems with output time
series having autocorrelation functions with very long tails
(see Alexopoulos and Seila 1998, Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state mea
µ of a discrete-time output process. Analogous methods fo
analyzing continuous-time processes are described in sever
texts (Bratley, Fox, and Schrage 1987, Fishman 2001, Law
and Kelton 2000). The process{Xi} is calledstationaryif the
joint distribution ofXi+j1, Xi+j2, . . . , Xi+jk is independent
of i for all indicesj1, j2, . . . , jk and allk ≥ 1. IfE(Xi) = µ,
Var(Xi) <∞ for all i, and the Cov(Xi,Xi+j ) is independent
of i, then{Xi} is calledweakly stationary.

4.1 The Replication/Deletion Approach

This approach runsk independent replications, each of length
l+n observations, and discards the firstl observations from
each run. One then uses the i.i.d. sample means

Yi(l, n) = 1

n

l+n∑
j=l+1

Xij

to compute the point estimate

Ȳk(l, n) = 1

k

k∑
i=1

Yi(l, n)
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and the approximate 1−α confidence interval forµ having
the form

Ȳk(l, n)± tk−1,1−α/2
√
V̂R(n, l)/k , (2)

whereV̂R(l, n) is the sample variance of theYi(l, n)’s.
The method is simple and general, but involves th

choice of three parameters,l, n and k. Here are a few
points the user should aware of: (a) Asl increases for fixed
n, the “systematic” error in eachYi(l, n) due to the initial
conditions decreases. (b) Asn increases for fixedl, the
systematic and sampling errors inYi(l, n) decrease. (c)
The systematic error in the sample meansYi(l, n) cannot
be reduced by increasing the number of replicationsk. (d)
For fixedn and under some mild moment conditions tha
are satisfied by a variety of simulation output processe
the confidence interval (2) is asymptotically valid only if
l/ ln k→∞ ask→∞ (Fishman 2001). This means that as
one makes more runs in an attempt to compute a narrow
confidence interval, the truncation indexl must increase
faster than lnk for the confidence interval to achieve the
nominal coverage. This requirement is hard to implement
practice. (d) This method is also potentially wasteful of dat
as the truncated portion is removed from each replicatio

The regenerative method (Section 4.2) and the bat
means method (Section 4.3) seek to overcome the aforem
tioned issues. Alexopoulos and Goldsman (2002) presen
thorough comparison between the replication/deletion a
proach and the batch means method.

4.2 The Regenerative Method

This method assumes the identification of time indices
which the process{Xi} probabilistically starts over and
uses these regeneration epochs for obtaining i.i.d. rando
variables which can be used for computing point and interv
estimates for the meanµ. The method was proposed by
Crane and Iglehart (1974ab, 1975) and Fishman (197
1974). More precisely, assume that there are (random
time indices 1≤ T1 < T2 < · · · such that the portion
{XTi + j, j ≥ 0} has the same distribution for eachi and is
independent of the portion prior to timeTi . The portion of
the process between two successive regeneration epoch
called acycle. Let Yi = ∑Ti+1−1

j=Ti Xj andZi = Ti+1 − Ti
for i = 1,2, . . . and assume thatE(Zi) < ∞. Then the
meanµ is given byµ = E(Y1)/E(Z1).

Now suppose that one simulates the process{Xi}
over n cycles and collects the observationsY1, . . . , Yn
and Z1, . . . , Zn. Then µ̂ = Ȳn/Z̄n is a strongly con-
sistent estimator ofµ. Furthermore, confidence intervals
for µ can be constructed by using the random variable
Yi − µZi, i = 1, . . . , n and the central limit theorem (see
Iglehart 1975).
,
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The regenerative method is difficult to apply in prac
tice because the majority of simulations have either n
regenerative points or very long cycle lengths. Two class
of systems this method has successfully been applied
are inventory systems and highly reliable communication
systems with repairs.

4.3 The Batch Means Method

The method of batch means is frequently used to estima
the steady-state meanµ or the Var(X̄n) (for finite n) and
owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that th
dataX1, . . . , Xn are from a weakly stationary process with
limn→∞ nVar(X̄n) = σ 2∞ < ∞ (σ 2∞ is called the vari-
ance parameter of the process{Xi}). Then split the data
into k batches, each consisting ofb observations. (As-
sumen = kb.) The ith batch consists of the observation
X(i−1)b+1, X(i−1)b+2, . . . , Xib, for i = 1,2, . . . , k, and the
ith batch meanis given by

Yi(b) = 1

b

b∑
j=1

X(i−1)b+j .

For fixed m, let σ 2
m = Var(X̄m). Since the batch

means process{Yi(b), i ≥ 1} is also weakly stationary,
some algebra yields

σ 2
n =

σ 2
b

k

(
1+ nσ

2
n − bσ 2

b

bσ 2
b

)
. (3)

As a result,σ 2
b /k approximatesσ 2

n with error that diminishes
as firstn→ ∞ and thenb → ∞ with b/n→ 0. Equiv-
alently, the correlation among the batch means diminish
asb andn approach infinity withb/n→ 0.

To use the last limiting property, one forms the gran
batch mean

X̄n = Ȳk(b) = 1

k

k∑
i=1

Yi(b),

estimatesσ 2
b by the sample variance of the batch means

V̂B(n, k) = 1

k − 1

k∑
i=1

(Yi(b)− X̄n)2,

and computes the following approximate 1− α confidence
interval forµ:

X̄n ± tk−1,1−α/2
√
V̂B(n, k)/k . (4)
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The main problem with the application of the batc
means method in practice is the choice of the batch sizeb.
The literature contains several batch selection approac
for fixed sample size; see Conway (1963), Law and C
son (1979), Mechanic and McKay (1966), and Schrib
and Andrews (1979). Schmeiser (1982) reviews the abo
procedures and concludes that selecting between 10
30 batches should suffice for most simulation experimen
The major drawback of these methods is their inability
yield a consistent variance estimator.

4.4 Consistent Estimation
Batch Means Methods

These methods assume that a central limit theorem hol

√
n(X̄n − µ) d−→ σ∞N(0,1) asn→∞ (5)

and aim at constructing a consistent estimator forσ 2∞ (con-
verging in probability toσ 2∞ asn→∞) and an asymptoti-
cally valid confidence interval forµ. HereN(0,1) denotes
the standard normal distribution.

Chien et al. (1997) considered stationary processes a
under quite general moment and sample path conditio
showed that as bothb, k→∞, MSE[bV̂k(b)] → 0. Notice
that mean squared error consistency differs from consisten

The limiting result (5) is implied under the following two
assumptions, where{W(t), t ≥ 0} is the standard Brownian
motion process (see Billingsley 1968).
Assumption of Weak Approximation (AWA) .

n(X̄n − µ)
σ∞

d−→ W(n) asn→∞.

Assumption of Strong Approximation (ASA). There exists
a constantλ ∈ (0,1/2] and a finite random variableC such
that, with probability one,

|n(X̄n − µ)− σ∞W(n)| ≤ Cn1/2−λ asn→∞.

The ASA is not restrictive as it holds under relatively wea
assumptions for a variety of stochastic processes includ
Markov chains, regenerative processes and certain queu
systems (see Damerdji 1994). The constantλ is closer to
1/2 for processes having little autocorrelation, while it
closer to zero for processes with high autocorrelation.

4.5 Batching Rules

Equation (3) suggests that fixing the number of batch
and letting the batch size grow asn → ∞ ensures that
σ 2
b /k→ σ 2

n . This motivates the Fixed Number of Batche
(FNB) rule that sets the number of batches atk and uses
batch sizesbn = bn/kc asn increases.
es
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The FNB rule along with AWA imply that, asn→∞,

X̄n
p−→ µ and

X̄n − µ√
V̂B(n, k)/k

d−→ tk−1

(see Glynn and Iglehart 1990). Hence, (4) is an asymptot
ically valid confidence interval forµ. Unfortunately, the
FNB rule has two major limitations (see Fishman 1996, pp.
544–545): (a) SincebnV̂B(n, k) is not a consistent estimator
of σ 2∞, the confidence interval (4) tends to be wider than
the interval a consistent estimation method would produce
(b) Statistical fluctuations in the halfwidth of the confidence
interval (4) do not diminish relative to statistical fluctuation
in the sample mean.

The limitations of the FNB rule can be removed by
simultaneously increasing the batch size and the numbe
of batches. Indeed, assume that ASA holds and conside
batch sizes of the formbn = bnθc, θ ∈ (1− 2λ,1). Then
asn→∞, X̄n

a.s.−→ µ, bnV̂B(n, kn)
a.s.−→ σ 2∞, and

Zkn =
X̄n − µ√

V̂B(n, kn)/kn

d−→ N(0,1) (6)

(see Damerdji 1994). The last display implies that

X̄n ± z1−α/2
√
V̂B(n, kn)/kn

(zγ is the γ -quantile of the standard normal distribution)
is an asymptotically valid 1− α confidence interval forµ.
In particular, the Square Root (SQRT) rule (Chien 1989)
that usesθ = 1/2 (bn = b√nc, kn = b√nc) is valid if
1/4 < λ < 1/2. Notice that the last inequality is violated
by processes having high autocorrelation (λ is close to zero).
Unfortunately, in practice the SQRT rule tends to seriously
underestimate the Var(X̄n) for small-to-moderate sample
sizesn.

With the contrasts between the FNB and SQRT rules
in mind, Fishman and Yarberry (1997) proposed two pro-
cedures that dynamically shift between the two rules. Both
procedures perform “interim reviews” and compute confi-
dence intervals at timesnl ≈ n12l−1, l = 1,2, . . .. The
correlation test for the batch means is based on von Neu
mann’s statistic

C(n, kn) = 1−
∑k
i=2(Yi(bn)− Yi−1(bn))

2

2
∑k
i=1(Yi(bn)− X̄n)2

(see von Neumann 1941ab).
The LBATCH Procedure. At time nl , if the hypothesis
test detects autocorrelation between the batch means, th
batching for the next review is determined by the FNB rule.
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If the test fails to detect correlation, all future reviews om
the test and employ the SQRT rule.
The ABATCH Procedure. If at time nl von Neumann’s
test detects correlation between the batch means, the
review employs the FNB rule. If the test fails to dete
correlation, the next review employs the SQRT rule.

Both procedures yield random sequences of batch siz
Under relatively mild assumptions, these sequences im
convergence results analogous to (6). The respective a
rithms requireO(n) time andO(log2 n) space, wheren is
the desired sample size (see Alexopoulos et al. 1997
Yarberry 1993). Although like complexities are known fo
static fixed batch size algorithms, the dynamic setting of t
LBATCH and ABATCH procedures offers an important ad
ditional advantage not present in the static approach. As
analysis evolves with increasing sample path length, it allo
a user to assess how well the estimated variance of the sam
mean stabilizes. This assessment is essential to gauge
quality of the confidence interval for the sample mean. T
LABATCH.2 implementation is the only computer packag
that automatically generates the data for this assessmen
FORTRAN and SIMSCRIPT II.5 codes of LABATCH.2 can
be downloaded via anonymous ftp from the site<http:
//www.or.unc.edu/˜gfish/labatch.2.html> .

An alternative sequential method has been proposed
Steiger and Wilson (2001, 2002a) and Steiger et al. (2002
The associated ASAP and ASAP2 software packages (
cessible from the site<http://www.ie.ncsu.edu/
jwilson> ) can perform sequential sampling subject
absolute or relative precision criteria. ASAP starts with 9
batches, discards the first two batches, and progressiv
increases the batch size (by a factor of roughly

√
2) until

either the last 94 batch means pass von Neumann’s
for independence or vectors of spaced batch means p
the Shapiro-Wilk test for multivariate normality (Malkovich
and Afifi 1973). In the latter case, the procedure delive
a correlation adjusted confidence interval based on an
verted Cornish-Fisher expansion whose terms are estima
via an ARMA time series model of the batch means. If th
resulting confidence interval meets the underlying precis
requirement, the method ends; otherwise, it estimates
additional number of batches that the user must colle
The ASAP2 algorithm differs from ASAP in that it starts
with 256 batches and disregards the von Neumann test
comparison between the LABATCH.2 and ASAP/ASAP
methods is in order: The LABATCH.2 methodology aim
at computing a (strongly) consistent estimator forσ 2∞ along
with an asymptotically valid confidence interval for the pro
cess mean. On the other hand, ASAP/ASAP2 do not yi
consistent estimators forσ 2∞; instead they aim at computing
valid confidence intervals for the mean with specified pre
sion. At small sample sizes, they take advantage of the f
that the batch means achieve multivariate normality pr
to becoming independent to compute confidence interv
xt
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with substantially better coverage at the expense of large
and more variable halfwidths.

4.5.1 Overlapping Batch Means

An interesting variation of the traditional batch means
method is the method ofoverlappingbatch means (OBM)
proposed by Meketon and Schmeiser (1984). For give
batch sizeb, this method uses alln − b + 1 overlapping
batches to estimateµ and Var(X̄n). The first batch consists
of observationsX1, . . . , Xb, the second batch consists of
X2, . . . , Xb+1, etc. The OBM estimator ofµ is

ȲO = 1

n− b + 1

n−b+1∑
i=1

Yi(b),

where

Yi(b) = 1

b

i+b−1∑
j=i

Xj , i = 1, . . . , n− b + 1

are the respective batch means. LetV̂O be the sample vari-
ance of theYi(b)’s. The following list contains properties
of the estimatorsȲO and V̂O : (a) The OBM estimator is
a weighted average of non-overlapping batch means es
mators. (b) Asymptotically (asn, b→∞ andb/n→ 0),
the OBM variance estimator̂VO and the non-overlapping
batch means variance estimatorV̂B ≡ V̂B(n, k) have the
same expectation, but Var(V̂O)/Var(V̂B)→ 2/3 (Meketon
and Schmeiser 1984). (c) The behavior of Var(V̂O) appears
to be less sensitive to the choice of the batch size than th
behavior of Var(V̂B) (Song and Schmeiser 1995, Table 1).
(d) If {Xi} satisfies ASA and{bn} is a sequence of batches
with bn = bnθc, θ ∈ (1−2λ,1) andb2

n/n→ 0 asn→∞,

then (Damerdji 1994)bnV̂O
a.s.−→ σ 2∞.

Welch (1987) noted that both traditional batch mean
and overlapping batch means are special cases of spect
estimation at frequency 0 and, more importantly, suggeste
that overlapping batch means yield near-optimal varianc
reduction when one forms sub-batches within each batc
and applies the method to the sub-batches. For examp
a batch of size 64 is split into 4 sub-batches and the firs
(overlapping) batch consists of observationsX1, . . . , X64,
the second consists of observationsX17, . . . , X80, etc.

4.6 The Standardized Time Series Method

This method was proposed by Schruben (1983). The sta
dardized time series is defined by

Tn(t) = bntc(X̄n − X̄bntc)
σ∞
√
n

, 0 ≤ t ≤ 1
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and, under some mild assumptions (e.g., strict stationari
andφ-mixing),

(
√
n(X̄n − µ), σ∞Tn) d−→ (σ∞W(1), σ∞B),

where {B(t) : t ≥ 0} is the standard Brownian bridge
process defined byB(t) = W(t)− tW(1), 0≤ t ≤ 1.

If A = ∫ 1
0 σ∞B(t) dt is the area underB, then the

identityE(A2) = σ 2∞/12 implies thatσ 2∞ can be estimated
by multiplying an estimator ofE(A2) by 12. Schruben’s
method splits the dataX1, . . . , Xn into k (contiguous)
batches, each of sizeb. Then for sufficiently largen the
random variables

Ai =
b∑
j=1

[(n+ 1)/2− j ]X(i−1)b+j , i = 1, . . . , k

become approximately i.i.d. normal and an estimator o
E(A2) is

̂E(A2) = 1

(b3− b)k
k∑
i=1

A2
i .

Hence an (approximate) 1− α confidence interval forµ is

Ȳk ± tk,1−α/2
√
V̂T /n; V̂T = 12 ̂E(A2).

The standardized time series method has asymptotic a
vantages over the batch means method (see Goldsman
Schruben 1984). However, in practice it can require pro
hibitively long runs as noted by Sargent, et al. (1992). Som
useful theoretical foundations of the method are given i
Glynn and Iglehart (1990). Also, Damerdji (1994) shows
that under ASA in Section 4.3, batching sequences wit
bn = bnθc, θ ∈ (1−2λ,1), yield asymptotically consistent
estimators for the process varianceσ 2∞. Additional develop-
ments on the method, as well as other estimators based
the standardized time series, are contained in Alexopoul
et al. (2001), Goldsman et al. (1990) and Goldsman an
Schruben (1984, 1990).

4.7 Quantile Estimation

A variety of methods have been proposed for estimatin
quantiles of steady-state data (see Iglehart 1976, Moo
1980, Seila 1982ab, Heidelberger and Lewis 1984). Th
methods differ in the way the variance of the sample quanti
is estimated. It should be mentioned that quantile estimatio
is a harder problem than the estimation of steady-state mea
in
y

-
nd

n
s

e
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4.8 Multivariate Estimation

Frequently, the output from a single simulation run is use
for estimating several system parameters. The estimators
these parameters are typically correlated. As an examp
consider the average customer delays at two stations
a path of a queueing network. In general, Bonferroni
inequality can be used for computing a conservative con
dence coefficient for a set of confidence intervals. Indee
suppose thatDi is a 1− α confidence interval for the
parameterµi , i = 1, . . . , m. Then

Pr
[∩mi=1{µi ∈ Di}

] ≥ 1−
m∑
i=1

αi .

This result can have serious implications as form = 10
andαi = 0.10 the r.h.s. of the above inequality is equal t
0. If the overall confidence level must be at least 1−α, then
the αi ’s can be chosen so that

∑m
i=1 αi = α. Multivariate

estimation methods are described in Charnes (1989, 19
1991) and Chen and Seila (1987).

5 RANKING AND SELECTION METHODS

Simulation is performed not only to assess the performan
of a single system, but also to compare a number of altern
tives. One can argue that simulation almost always involv
comparisons because even when a system is simulated
access its feasibility, the performance will be compared
a minimum standard. There exist at least four classes
comparison problems that arise in simulation: determinin
which alternative configurations have similar performanc
comparing all systems to a standard, comparing alternativ
to a default, and selecting the best system. By “best” w
mean the system with a maximum performance measu
assumed to be the expectation of a random variable, su
as throughput or delay time. Goldsman and Nelson (199
reviewed procedures for each class of the above comparis
problems. In this section, we review recent procedures
find the best system among a relatively large number
simulated systems, say more than 20 systems.

5.1 Background

Many classical procedures assume that the output data g
erated by each system are i.i.d. and normally distribute
However, raw data from within a single run are generall
dependent and not quite normal. As suggested in Sectio
2, 4.1, and 4.3, this can be overcome by using either withi
run sample means or batch means from sufficiently lar
batches as basic observations. Issues related to comparis
with regard to steady-state measures will be discussed
Section 5.2.
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5.1.1 Notation

The goal is to comparem systems via simulation and find
the best system (with the largest expected performanc
guaranteeing a correct selection with probability at lea
1− α. Let Yij denote thej th observation from systemi
(i = 1,2, . . . , m). We assume thatYij ’s are either within-
run averages for systemi or batch means from a single
sufficiently long run after accounting for the elimination
of the initialization bias. Thus it will always be assume
that the outputs from systemi (Yi1, Yi2, . . .) are i.i.d. and
normally distributed. See Alexopoulos and Seila (1998) an
Goldsman and Nelson (1998) for the plausibility of suc
assumptions.

5.1.2 Indifference Zone Approaches

In stochastic simulation, it is impossible to find the tru
best with certainty; so many procedures employ the Ind
ference Zone (IZ) approach as a good compromise. T
IZ approach attempts to find a system whose mean is
least a user-specified amount better than the means for
other systems while guaranteeing a “correct selection” wi
high probability. The user-specified amountδ is called the
indifference zone parameter and it is interpreted as a prac
cally significant difference worth detecting. Goldsman an
Nelson (1998) and Law and Kelton (2000) present IZ-bas
procedures that have been proven to be useful. The text
Bechhofer et al. (1995) provides a comprehensive revie
of IZ procedures. The problem is that IZ procedures b
come inefficient when the number of alternatives is larg
This is because these procedures are developed under
Least Favorable Configuration (LFC) condition. LFC is th
configuration considered as the most difficult to resolv
Therefore, if a procedure guarantees at least 1− α proba-
bility of correct selection under LFC, it will do so for all
other configurations. The Slippage Configuration (SC)
known to be the LFC in most procedures. Under SC, th
expected performances of all other systems are assume
be exactlyδ smaller than that of the best so all inferior
systems are equally close to the best. As IZ procedures
developed under the assumption that all inferior system
are close to the best, they become conservative when
number of systems is larger than 20.

To overcome this inefficiency of IZ approaches, on
can introduce screening. When the number of systems
large, the performance measures for the systems are lik
to spread out. Thus, after obtaining some observations,
may identify clearly inferior systems with high probability
and then stop sampling from those inferior systems.
many systems can be eliminated early, one can save
lot of observations making the procedures more efficien
Gupta (1965) and Gupta and Huang (1976) proposed sing
stage subset selection procedures that divide systems in
),
t

d

-
e
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h
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d
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w
-
.
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“maybe-best” group and a “clearly-not-best” group. Nelso
et al. (2001) proposed a subset selection procedure th
handles unknown and unequal variances and new procedu
that combine subset selection algorithms with two-stage
algorithms. Also, Kim and Nelson (2001) proposed a fully
sequential procedure where the systems in contention a
compared after every observation until only one syste
survives. Procedures presented in Nelson et al. (2001) a
Kim and Nelson (2001) have been shown to be efficien
when hundreds of systems are compared.

5.1.3 Common Random Numbers

Many procedures require the assumption that systems
simulated independently. This can be achieved by assigni
different streams of pseudo-random numbers to the sim
lation of each system. Alternatively, if the same random
number streams are assigned to each simulation, then un
fairly general conditions this induces positive correlation
among the competitors and decreases the variance of
difference in observed avarage performances between t
systems. This technique is called Common Random Num
bers (CRN). Although CRN makes statistical procedure
more complicated when there are more than two system
under appropriate statistical procedures CRN makes comp
ison sharper, meaning spending less number of observatio
to find the best. The procedure of Nelson and Matejci
(1995) extended Rinott’s procedure (1978), which is know
as one of the simplest and most popular IZ procedure
Their procedure works in conjunction with CRN under a
special structure of the variance-covariance matrix, calle
sphericity. However, it is not appropriate for a large numbe
of systems as the sphericity assumption is often violated

Below we review two recent procedures: the Sub
set+Rinott procedure due to Nelson et al. (2001) an
the KN procedure due to Kim and Nelson (2001)
Both procedures employ the IZ approach where bas
observations are either within-run sample means or bat
means, and utilize screening to gain efficiency in th
case of many systems. The Subset+Rinott procedu
does not use CRN (thus it requires systems to be sim
ulated independently) while theKN procedure allows CRN.

Procedure Subset + Rinott

1. Specify the overall desired probability of correc
selection 1− α, the IZ parameterδ, a common
initial sample size from each systemk0 ≥ 2, and
the initial number of competing systemsm.
Further, set

t = t
k0−1,1−(1−α/2) 1

m−1
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and obtain Rinott’s constanth = h(k0, m,1− α)
from the tables in Wilcox (1984) or Bechhoffer e
al. (1995).

2. Takek0 observations from each system. Calcula
the first-stage sample meansȲ (1)i =

∑k0
j=1 Yij /k0

and marginal sample variances

S2
i =

1

k0 − 1

k0∑
j=1

(Yij − Ȳ (1)i )2,

for i = 1,2, . . . , m.
3. Subset Selection.Calculate the quantity

Wi` = t
(
S2
i + S2

`

k0

)1/2

for all i 6= `. Form the screening subsetI , con-
taining every alternativei such that 1≤ i ≤ m

and

Ȳ
(1)
i ≥ Ȳ (1)` − (Wi` − δ)+ for all ` 6= i.

4. If |I | = 1, then stop and return the system inI
as the best. Otherwise, for alli ∈ I , compute the
second-stage sample sizes

Ki = max
{
k0, d(hSi/δ)2e

}
,

whered·e is the ceiling function.
5. TakeKi − k0 additional observations from all sys

temsi ∈ I .
6. Compute the overall sample means̄̄Yi =∑Ki

j=1 Yij /Ki for all i ∈ I . Select the system

with the largest ¯̄Yi as best.

Nelson et al. (2001) showed that any screening p
cedure and any two-stage procedure that satisfy cer
conditions can be combined while guaranteeing the ove
probability of correct selection. The Subset+Rinott pr
cedure can handle a relatively large number of systems
several systems can be screened out after the first stage.
procedure requires running all systems at the same time,
this is sometimes difficult. Nelson et al. (2001) provide
revised version of the Subset+Rinott procedure, the Gro
Screening procedure in which one can avoid simulating
the systems simultaneously. Under the Group-Screen
procedure,

• the set of systems is divided into several grou
of any size, and

• the groups are visited one at a time with the proc
dure being performed completely for each grou
-
in
ll

s
his
ut

-
ll
g

-

If the group size is 1, then we can simulate system
one by one as we would under Rinott’s procedure. Wh
a group containing a good system is visited early in th
procedures, a lot of savings can occur as the good syst
can eliminate many inferior systems. On the other hand, t
Group-Screening procedure could be no better than Rino
procedure if a good system is visited at the end. Thus t
efficacy of the Group-Screening procedure depends on
ability to find a good system early in the procedures. Boes
et al. (2002) extended the Group-Screening procedure
the general optimization area. Now we present a proced
that allows CRN.

The KN procedure is fully sequential because it
takes only a single basic observation from each alternat
still in contention at each stage. Also, if there exists
clear evidence that a system is inferior, then it will b
eliminated from our consideration immediately — unlik
the Subset+Rinott procedure, where elimination occu
only after the first stage. As theKN procedure accounts
for CRN and has more chances to detect inferior system
it is expected to be more efficient than the Subset+Rin
procedure. Kim and Nelson (2001) showed that theKN
procedure is uniformly superior to two-stage procedur
with or without screening and its superiority is mor
noticeable as the number of systems increases.

ProcedureKN

1. Setup.Select confidence level 1−α, IZ parameter
δ and first stage sample sizek0 ≥ 2. Set

η = 1

2

[(
2α

m− 1

)−2/(k0−1)

− 1

]
.

2. Initialization. Let I = {1,2, . . . , m} be the set of
systems still in contention, and leth2 = 2η(k0−1).
Obtaink0 observationsYij (j = 1,2, . . . , k0) from
each systemi (i = 1,2, . . . , m) and let Ȳi (k) =
k−1∑k

j=1 Yij denote the sample mean of the firs
k observations from systemi.
For all i 6= ` compute

S2
i`

= 1
k0−1

∑k0
j=1

(
Yij − Y j̀ −

[
Ȳi (k0)− Ȳ`(k0)

])2
,

the sample variance of the difference between t
sample means for systemsi and`. Let

Ki` =
⌊
h2S2

i`

δ2

⌋
andKi = max

`6=i Ki`.

HereKi+1 is the maximum number of observation
that can be taken from systemi.
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If k0 > maxi Ki , then stop and select the system
with the largestȲi (k0) as the best.
Otherwise, setr = k0 and go toScreening.

3. Screening.Set Iold = I . Let

I =
{
i : i ∈ Iold and

Ȳi (r) ≥ Ȳ`(r)−Wi`(r),∀` ∈ Iold, ` 6= i} ,
where

Wi`(r) = max

{
0,
δ

2r

(
h2S2

i`

δ2 − r
)}

.

Notice that thecontinuation regionWi`(r), shrinks
monotonically as the number of replicationsr in-
creases.

4. Stopping Rule.If |I | = 1, then stop and select the
system whose index is inI as the best.
Otherwise, take one additional observationYi,r+1
from each systemi ∈ I and setr = r + 1.
If r = maxi Ki+1, then stop and select the syste
whose index is inI and has the largest̄Yi(r) as
the best. Otherwise, go toScreening.
(Notice that the stopping rule can also be|I | =
s > 1 if it is desired to find a subset containin
the best, rather than the single best.)

TheKN procedure requires simulation of all system
simultaneously. This requirement has become less restric
due to the development of faster computers and para
computing environments.

5.2 Finding the Best in Steady-State
Simulations

The procedures presented in the previous subsections ca
applied to steady-state simulation as is if one is willing
use within-run sample means or batch means. However
discussed in Section 4.1, the replication/deletion approa
is usually inefficient. Nakayama (1995) presented sing
stage multiple-comparison procedures, and Damerdji a
Nakayama (1999) developed two-stage multiple-comparis
procedures to select the best system for steady-state
ulation. These procedures use batch means from a sin
sufficiently long run for each system as basic observatio
The batch means method lessens the loss of data comp
to the replication/deletion approach, but it can still be inef
cient in fully sequential type procedures as elimination on
occurs between large batches; see Goldsman et al. (2
2001). The last two references proposed three procedu
that take a single replication from each system and us
single observation as a basic observation. One is a two-st
ve
el
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procedure based on Rinott’s procedure and the others a
the extension ofKN procedure to steady-state simulation

5.3 Closing Comments

Some researchers have considered completely different a
proaches from than IZ approach. Chen et al. (1997) pro
posed a procedure to find a system that maximizes th
probability of correct selection under a budget constrain
Chick (1997) and Chick and Inoue (2001ab) approache
this problem from a decision-theoretic point of view. Chick
and Inoue (2001ab) and Inoue et al. (1999) showed th
their Bayes procedures work fairly well when hundreds o
systems are compared.
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