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ABSTRACT Steady-state simulations The purpose of a steady-state
simulation is the study of the long-run behavior of the
This paper reviews statistical methods for analyzing output system of interest. A performance measure of a system is
data from computer simulations. First, it focuses on the called asteady-state parametéfit is a characteristic of the
estimation of steady-state system parameters. The estima-equilibrium distribution of an output stochastic process. An
tion techniques include the replication/deletion approach, example is the simulation of a continuously operating com-
the regenerative method, the batch means method, and themunication system where the objective is the computation
standardized time series method. Second, it reviews recentof the mean delay of a data packet.
statistical procedures to find the best system among a set Section 2 discusses methods for analyzing output from

of competing alternatives. terminating simulations. Section 3 reviews approaches for
removing bias due to initial conditions in steady-state simu-
1 INTRODUCTION lations. Section 4 presents techniques for point and interval

estimation of steady-state parameters. Section 5 reviews
The primary purpose of most simulation studies is the ap- recent methods for identifying the best system within a set
proximation of prescribed system parameters with the ob- of alternatives.
jective of identifying parameter values that optimize some
system performance measures. If some of the input pro- 2 FINITE-HORIZON SIMULATIONS
cesses driving a simulation are random, then the output data
are also random and runs of the simulation program only Suppose that we simulate a system untiloutput data
result inestimate®of system performance measures. Unfor- X3, Xo, ..., X, are collected with the objective of estimating
tunately, a simulation run does not usually produce indepen- u = E(X,), whereX, = %Z?:l X; is the sample mean.
dent, identically distributed (i.i.d.) observations; therefore For exampleX; may be the transit time of unitthrough a
“classical” statistical techniques are not directly applicable network of queues or the total time statibis busy during
to the analysis of simulation output. the ith hour. Clearly,X, is an unbiased estimator for.

A simulation study consists of several steps such as data Unfortunately, theX;'s are generally dependent random
collection, coding and verification, model validation, exper- variables making the estimation of \af,) a nontrivial
imental design, output data analysis, and implementation. problem. LetS? = (n — 1)"1Y""_(X; — X,,)? be the
This paper reviews (a) statistical methods for computing sample variance of the data. In many queueing systems
confidence intervals for system performance measures from the X;’s are correlated making,f/n a biased estimator of
output data and (b) statistical methods for determining the Var(X,). In particular, if theX;’s are positively correlated,
best system from a set of alternatives. one hasE(S,f/n) < Var(X,).

For output analysis, there are two types of simulations: To overcome this problem, we can rénindependent
Finite-horizon simulations. In this case the simulation  replications of the simulation. Assume that ruproduces
starts in a specific state and runs until a terminating event output dataX;i, ..., X;,. Then the “within-run” averages
occurs. The output process is not expected to achieve steady-
state behavior and any parameter estimated from the output 1<
will be transient in the sense that its value will depend upon Y, = n Z Xij
the initial conditions. An example is the simulation of a j=1
vehicle storage and distribution facility for a week.
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are ii.d. random variables, their sample me#p =
%Zle Y; is also an unbiased estimator pf and their
sample varianc#g = (k —1)~* 3F_, (¥; — ¥4)? is an un-
biased estimator of V&K ,,). If in addition k is sufficiently
large, an approximate 4 o confidence interval fop is

Yi £ ti11-a2v) VR /K

where1; , represents the-quantile of ther distribution
with d degrees of freedom.

Alexopoulos and Seila (1998, Section 7.2.2) review
sequential procedures for determining the number of repli-
cations required to estimaje with a fixed absolute or rel-
ative precision. The procedure for constructing a &
confidence interval foru with a small absolute error
|Yy — | < B is based on Chow and Robbins (1965).
It starts withkg > 5 runs and stops when the halfwidth

tk—l,l—a/Z\/vR/k < B. Law and Kelton (2000) describe
a method for obtaining an estimate whose relative error
satisfies P{Yy —ul/Ii] < ) = 1—a, witha < 0.15. The
method starts witthg > 10 runs and stops when the relative

halfwidth 7 _1.1-q/2Yx| =%/ V& /k drops belowy /(1+ ).
The method of replications can also be used for estimat-

@)

ing performance measures other than means. For example,

suppose that we want to estimate fiiguantile, say,, of

the average queue size in a single-server queueing system

during a fixed time window. We ruk independent replica-
tions, denote by; the average observed queue length during
replicationi, and letY(y) < Y2y < --- < Y be the order
statistics correspondlng to thg’s. Then a point estimate
for y, is &, = Yy if kp is an integer o€, = Y(xp+1))
otherwise (-] is the floor function). A confidence interval
for &, is described in Alexopoulos and Seila (1998, Section
7.3.2).

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulations

is the removal of theinitialization bias Suppose that
{X; : i = 1} is a discrete-time output stochastic process
from a single run of a steady-state simulation with initial
conditions (system statd) and assume that, as — oo,
Pr(X, < x|I) — Pr(X < x), whereX is the corresponding
steady-state random variable. The steady-state me@af) pf

is u = lim,_ o E(X,|I). The problem with the use of,

for a finite n is that E(X,|I) # u.

The most commonly used method for eliminating the
bias ofX,, identifies an indekandtruncateshe observations
X1,..., X;. Then the estimatoK,; = n~*Y /3 | X; is
generally less biased thaf, because the initial conditions
primarily affect data at the beginning of a run. Several
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procedures have been proposed for the detection of a cutoff
index [ (see Chance and Schruben 1992, Fishman 2001,
Gafarian et al. 1978, Goldsman et al. 1994, Kelton 1989,
Ockerman 1995, Schruben 1982, Schruben et al. 1983,
Wilson and Pritsker 1978ab).

The graphical procedure of Welch (1983) is popular
due to its simplicity and generality. This method uges
independent runs with thah run producing observations
Xi1, Xi2, ..., X; and computes the “across-runs” averages

[

k
, j=1,...,n.
kz ij
i=1

Then for a given time windowv, the procedure plots the
moving averages

w+l<j<n-—w

l<j=zw

2w+l Zm——w J+m

2]1

Xj(w) =
Wl—fjJrl Xj+m

againstj. If the plot is reasonably smooth, théis chosen

to be the value ofi beyond which the sequence of moving
averages converges. Otherwise, a different time window is
chosen and a new plot is drawn. The choicewofay be

a difficult problem for congested systems with output time
series having autocorrelation functions with very long tails
(see Alexopoulos and Seila 1998, Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state mean
w of a discrete-time output process. Analogous methods for
analyzing continuous-time processes are described in several
texts (Bratley, Fox, and Schrage 1987, Fishman 2001, Law
and Kelton 2000). The procegs;} is calledstationaryif the

joint distribution ofX; 1 ;;, Xy j,, ..., Xiyj is independent

ofi forallindicesj1, j2, ..., jrandallk > 1. If E(X;) = u,
Var(X;) < ooforalli, andthe CoX;, X;, ;) isindependent

of i, then{X;} is calledweakly stationary

4.1 The Replication/Deletion Approach

This approach runsindependent replications, each of length
[ +n observations, and discards the firsbservations from
each run. One then uses the i.i.d. sample means

I+n

2:&/

j=l+1

Yi(l,n) =
to compute the point estimate

Yi(, n) =

1 k
22 Vit
i=1
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and the approximate-2 « confidence interval fon having

the form
Yill,n) £ tx—1.1-a/2/ Ve(n, D/

where Vg (l, n) is the sample variance of thg(/, n)’s.

The method is simple and general, but involves the
choice of three parameters, n and k. Here are a few
points the user should aware of: (a) Amcreases for fixed
n, the “systematic” error in eack; (I, n) due to the initial
conditions decreases. (b) Asincreases for fixed, the
systematic and sampling errors (l,n) decrease. (c)
The systematic error in the sample meahd, n) cannot
be reduced by increasing the number of replicationgd)

For fixedn and under some mild moment conditions that
are satisfied by a variety of simulation output processes,
the confidence interval (2) is asymptotically valid only if
[/Ink — oo ask — oo (Fishman 2001). This means that as

(2)

one makes more runs in an attempt to compute a narrower

confidence interval, the truncation indéxmust increase
faster than Ik for the confidence interval to achieve the
nominal coverage. This requirement is hard to implement in
practice. (d) This method is also potentially wasteful of data
as the truncated portion is removed from each replication.

The regenerative method (Section 4.2) and the batch
means method (Section 4.3) seek to overcome the aforemen-
tioned issues. Alexopoulos and Goldsman (2002) present a

thorough comparison between the replication/deletion ap-
proach and the batch means method.

4.2 The Regenerative Method

The regenerative method is difficult to apply in prac-
tice because the majority of simulations have either no
regenerative points or very long cycle lengths. Two classes
of systems this method has successfully been applied to
are inventory systems and highly reliable communications
systems with repairs.

4.3 The Batch Means Method

The method of batch means is frequently used to estimate
the steady-state mean or the VaxX,,) (for finite n) and
owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that the
dataXy, ..., X, are from a weakly stationary process with
lim, o nVar(X,) = 02 < oo (02 is called the vari-
ance parameter of the procegs;}). Then split the data
into k batches, each consisting éf observations. (As-
sumen = kb.) Theith batch consists of the observations
Xi-1p+1, X(i—1b+2, - --» Xip, fOri =1,2, ..., k, and the
ith batch mears given by

b
1
Yih) = - Z;Xa_l)bﬂu
=

For fixed m, let 02 = Var(X,). Since the batch
means process$Y;(b),i > 1} is also weakly stationary,
some algebra yields

2
(o}

no? — bo?
—n b} ©)

2
boy

This method assumes the identification of time indices at Asaresultp—bz/k approximatesn2 with error that diminishes

which the procesgX;} probabilistically starts overand

as firstn — oo and thenb — oo with b/n — 0. Equiv-

uses these regeneration epochs for obtaining i.i.d. random alently, the correlation among the batch means diminishes

variables which can be used for computing point and interval
estimates for the mean. The method was proposed by

Crane and lglehart (1974ab, 1975) and Fishman (1973,
More precisely, assume that there are (random)

1974).
time indices 1< T3 < T» < --- such that the portion
{X1, +j, j = 0} has the same distribution for eaclnd is
independent of the portion prior to tin#. The portion of

the process between two successive regeneration epochs is

called acycle LetY; = Z]T":*}lfl XjandZ, =T —T;
fori =1,2,... and assume thak(Z;) < oo. Then the
meanu is given byu = E(Y1)/E(Z1).

Now suppose that one simulates the procéXs)
over n cycles and collects the observatiofs, ..., Y,
and Z1,...,Z,. Thenj = Y,/Z, is a strongly con-
sistent estimator ofc. Furthermore, confidence intervals
for u can be constructed by using the random variables
Y; —uZ;,i =1,...,n and the central limit theorem (see
Iglehart 1975).
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ash andn approach infinity withb/n — 0.
To use the last limiting property, one forms the grand
batch mean

Xi‘l

k
= PRAO!

i=1

)

©(b) =

estimatesnb2 by the sample variance of the batch means

R 1 & B}
Vpn, k) = = 3 (Yi(b) = X%,
i=1

and computes the following approximate-kx confidence
interval for u:

)_(n + tk—l,l—oz/Z\/ VB (n,k)/k.

(4)
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The main problem with the application of the batch
means method in practice is the choice of the batchisize

The literature contains several batch selection approaches

for fixed sample size; see Conway (1963), Law and Car-
son (1979), Mechanic and McKay (1966), and Schriber

and Andrews (1979). Schmeiser (1982) reviews the above
procedures and concludes that selecting between 10 and
30 batches should suffice for most simulation experiments.

The major drawback of these methods is their inability to
yield a consistent variance estimator.

4.4 Consistent Estimation
Batch Means Methods

These methods assume that a central limit theorem holds

JiZn — 1) -5 6oN(@©0,1) asn— oo (5)
and aim at constructing a consistent estimatow{r(con-
verging in probability '[0002O asn — oo) and an asymptoti-
cally valid confidence interval for. Here N (0, 1) denotes
the standard normal distribution.

Chien et al. (1997) considered stationary processes and,
under quite general moment and sample path conditions,

showed that as both k — oo, MSEbV,(b)] — 0. Notice

that mean squared error consistency differs from consistency.

The limiting result (5) is implied under the following two
assumptions, whergVv (¢), t > 0} is the standard Brownian
motion process (see Billingsley 1968).

Assumption of Weak Approximation (AWA).

n(Xy—n) d

— W(n) asn — oo.

Ooo

Assumption of Strong Approximation (ASA). There exists
a constant € (0, 1/2] and a finite random variablé such
that, with probability one,

(X, — 1) — o W(n)| < Ccn'’?* asn - .

The ASA is not restrictive as it holds under relatively weak

The FNB rule along with AWA imply that, as — oo,
X, BN u and

Xn_ﬂ d

—_—— —> [{-1
Ve, k)/k

(see Glynn and Iglehart 1990). Hence, (4) is an asymptot-
ically valid confidence interval fop. Unfortunately, the
FNB rule has two major limitations (see Fishman 1996, pp.
544-545): (a) Sinck, Vg(n, k) is not a consistent estimator
of 0020, the confidence interval (4) tends to be wider than
the interval a consistent estimation method would produce.
(b) Statistical fluctuations in the halfwidth of the confidence
interval (4) do not diminish relative to statistical fluctuation
in the sample mean.

The limitations of the FNB rule can be removed by
simultaneously increasing the batch size and the number
of batches. Indeed, assume that ASA holds and consider
batch sizes of the form, = [n?], 6 € (1 — 24, 1). Then

asn — 0o, X, —% “w, bV (n, kn) =5 0020, and

X —
Zy, = e
Y, Ve, kn)/ kn

(see Damerdji 1994). The last display implies that

)_(n + <l-aj2y vB(l’l, kn)/ kn

(zy is the y-quantile of the standard normal distribution)
is an asymptotically valid + « confidence interval foy.
In particular, the Square Root (SQRT) rule (Chien 1989)
that usesd = 1/2 (b, = |/nl, kn = [/n]) is valid if
1/4 < A < 1/2. Notice that the last inequality is violated
by processes having high autocorrelatidtig(close to zero).
Unfortunately, in practice the SQRT rule tends to seriously
underestimate the V&x,) for small-to-moderate sample
sizesn.

With the contrasts between the FNB and SQRT rules
in mind, Fishman and Yarberry (1997) proposed two pro-

4, N@©, 1) (6)

assumptions for a variety of stochastic processes including cedures that dynamically shift between the two rules. Both
Markov chains, regenerative processes and certain queueingprocedures perform “interim reviews” and compute confi-

systems (see Damerdji 1994). The constans closer to
1/2 for processes having little autocorrelation, while it is
closer to zero for processes with high autocorrelation.

4.5 Batching Rules

Equation (3) suggests that fixing the number of batches

and letting the batch size grow as— oo ensures that
abz/k — o2. This motivates the Fixed Number of Batches
(FNB) rule that sets the number of batchescand uses
batch sized, = |n/k| asn increases.
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dence intervals at times; ~ n12=1,1 = 1,2,.... The
correlation test for the batch means is based on von Neu-
mann'’s statistic

S S (Yi(bn) = Yi—1(bn))?
25K (Yi(ba) — X)?

Cn, ky) =1—

(see von Neumann 1941ab).

The LBATCH Procedure. At time ny, if the hypothesis

test detects autocorrelation between the batch means, the
batching for the next review is determined by the FNB rule.
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If the test fails to detect correlation, all future reviews omit with substantially better coverage at the expense of larger

the test and employ the SQRT rule. and more variable halfwidths.

The ABATCH Procedure. If at time n; von Neumann'’s

test detects correlation between the batch means, the next4.5.1 Overlapping Batch Means

review employs the FNB rule. If the test fails to detect

correlation, the next review employs the SQRT rule. An interesting variation of the traditional batch means
Both procedures yield random sequences of batch sizes. method is the method afverlappingbatch means (OBM)

Under relatively mild assumptions, these sequences imply proposed by Meketon and Schmeiser (1984). For given

convergence results analogous to (6). The respective algo- batch sizeb, this method uses alt — b + 1 overlapping

rithms requireO (n) time andO(log, n) space, where is batches to estimate and VacX,). The first batch consists

the desired sample size (see Alexopoulos et al. 1997 and of observationsXy, ..., X;, the second batch consists of

Yarberry 1993). Although like complexities are known for  X», ..., Xp+1, etc. The OBM estimator of. is

static fixed batch size algorithms, the dynamic setting of the

LBATCH and ABATCH procedures offers an important ad- _ 1 n—b+1

ditional advantage not present in the static approach. As the Yo = n—br1 Z Yi(b),
analysis evolves with increasing sample path length, it allows i=1

a user to assess how well the estimated variance of the sample

mean stabilizes. This assessment is essential to gauge theWhere

quality of the confidence interval for the sample mean. The b1

LABATCH.2 implementation is the only computer package Y;(b) = 1 Z X;, i=1....n—b+1
that automatically generates the data for this assessment. C, b =

FORTRAN and SIMSCRIPT 1.5 codes of LABATCH.2 can
be downloaded via anonymous ftp from the sitettp:
/lwww.or.unc.edu/"gfish/labatch.2.html> .

An alternative sequential method has been proposed by
Steiger and Wilson (2001, 2002a) and Steiger et al. (2002b).
The _associated ASAP and ASAPZ software packages (ac- aiors. (b) Asymptotically (a8, b — oo andb/n — 0),
_ce_SS|bIe from the S|te<http://www.l_e.ncsu.eqw . the OBM variance estimato¥, and the non-overlapping
jwilson> ) can perform sequential sampling subject to batch means variance estimatd = V(1. k) have the
absolute or relative precision criteria. ASAP starts with 96 expectation, but \@fo)/Var(Vs) — 2/3 (Meketon
patches, discards the. first two batches, and progrqssively and Schmeiser 1984). (c) The behavior of (V&) appears
increases the batch size (by a factor of rougfg) unti to be less sensitive to the choice of the batch size than the

eith_er the last 94 batch means pass von Neumann’'s test yanavior of VatV) (Song and Schmeiser 1995, Table 1).
for mdeplende_nce or vectors_ of.spaced bgtch means pass(d) If {X;} satisfies ASA andb,} is a sequence of batches
the Shapiro-Wilk test for multivariate normality (Malkovich | - — 1n%],0 € (1—24, 1) andb2/n — 0 asn — oo

n — 1 ’ n 1

and Afifi 1973). In the latter case, the procedure delivers N s oas. o
a correlation adjusted confidence interval based on an in- then (Damerdji 1994p, Vo — o5,

verted Cornish-Fisher expansion whose terms are estimated Welch (1987) noted that both tradltllonal batch means
via an ARMA time series model of the batch means. If the and overlapping batch means are special cases of spectral

resulting confidence interval meets the underlying precision estimation at frequency 0 and, more importantly, suggested

requirement, the method ends; otherwise, it estimates the thzt Ot\_/erlapﬁmg batcfh meansbykljelg r:1ear-c.)t[?1t.|mal vﬁngntc(;
additional number of batches that the user must collect. '9UCHON When one forms sub-batches within €ach batc

The ASAP2 algorithm differs from ASAP in that it starts and applies _the me_thod _to_ the sub-batches. For example,
with 256 batches and disregards the von Neumann test. A s O,f size 64 is spl|.t into 4 sub-batphes and the first
comparison between the LABATCH.2 and ASAP/ASAP2 (0verlapping) baich consists of observatiolis . .., Xes,
methods is in order: The LABATCH.2 methodology aims the second consists of observatiatigz, .. ., Xso, etc.

at computing a (strongly) consistent estimator&ﬁg along

with an asymptotically valid confidence interval for the pro-
cess mean. On the other hand, ASAP/ASAP2 do not yield
consistent estimators fmozo; instead they aim at computing
valid confidence intervals for the mean with specified preci-
sion. At small sample sizes, they take advantage of the fact - -
that the batch means achieve multivariate normality prior T, (1) = M
to becoming independent to compute confidence intervals Ooon/N
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are the respective batch means. Vet be the sample vari-
ance of theY;(b)’s. The following list contains properties
of the estimator¥, and Vy: (&) The OBM estimator is
a weighted average of non-overlapping batch means esti-

4.6 The Standardized Time Series Method

This method was proposed by Schruben (1983). The stan-
dardized time series is defined by

O<t<1
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and, under some mild assumptions (e.g., strict stationarity 4.8 Multivariate Estimation
and ¢-mixing),
Frequently, the output from a single simulation run is used
(V1 (Xn — 1), 00Ty 4 (0o W (1), 0 B), for estimating several system parameters. The estimators of
these parameters are typically correlated. As an example,
where {B() : + > 0} is the standard Brownian bridge consider the average customer delays at two stations_ on
process defined bg(r) = W(r) — tW (L), 0<r < 1. a path _of a queueing network. I.n general, Bon_ferrom’s_
A — fol s B(t)dt is the area undeB, then the inequality can be used for compuqng a C(_)nservatlve confi-
dence coefficient for a set of confidence intervals. Indeed,

identity E(A%) = 05,/12 implies tha,, can be estimated suppose thatD; is a 1— « confidence interval for the

by multiplying an estimator of£(A%) by 12. Schruben’s

method splits the datas, ..., X, into k (contiguous) parameteqs;, i =1,...,m. Then
batches, each of size Then for sufficiently large: the m
random variables Prn (i € Di}] =1~ Z“i'
b i=1
Ai = Z[(” +D/2 - j1Xi-np+j, =100k This result can have serious implications asroe 10

j=1 andwo; = 0.10 the r.h.s. of the above inequality is equal to

0. If the overall confidence level must be at leastd, then

the o;'s can be chosen so that;" ; «; = «. Multivariate
estimation methods are described in Charnes (1989, 1990,
1991) and Chen and Seila (1987).

become approximately i.i.d. normal and an estimator of
E(A%) is

k
— 1
2y — 2
E(A%) = 03 bk iél A7

Hence an (approximate)-1« confidence interval fop is

5 RANKING AND SELECTION METHODS

Simulation is performed not only to assess the performance
B - N . of a single system, but also to compare a number of alterna-
Ye £tk 1-a/2y/ Vr/n; Vi = 12E(A?). tives. One can argue that simulation almost always involves
comparisons because even when a system is simulated to
The standardized time series method has asymptotic ad- access its feasibility, the performance will be compared to
vantages over the batch means method (see Goldsman anch minimum standard. There exist at least four classes of
Schruben 1984). However, in practice it can require pro- comparison problems that arise in simulation: determining
hibitively long runs as noted by Sargent, etal. (1992). Some which alternative configurations have similar performance,
useful theoretical foundations of the method are given in comparing all systems to a standard, comparing alternatives
Glynn and Iglehart (1990). Also, Damerdji (1994) shows to a default, and selecting the best system. By “best” we
that under ASA in Section 4.3, batching sequences with mean the system with a maximum performance measure,
b, = [n], 6 € (1—2x, 1), yield asymptotically consistent  assumed to be the expectation of a random variable, such
estimators for the process variancg. Additional develop- as throughput or delay time. Goldsman and Nelson (1998)
ments on the method, as well as other estimators based onreviewed procedures for each class of the above comparison
the standardized time series, are contained in Alexopoulos problems. In this section, we review recent procedures to
et al. (2001), Goldsman et al. (1990) and Goldsman and find the best system among a relatively large number of
Schruben (1984, 1990). simulated systems, say more than 20 systems.

4.7 Quantile Estimation 5.1 Background

A variety of methods have been proposed for estimating Many classical procedures assume that the output data gen-

guantiles of steady-state data (see Iglehart 1976, Moore erated by each system are i.i.d. and normally distributed.

1980, Seila 1982ab, Heidelberger and Lewis 1984). The However, raw data from within a single run are generally

methods differ in the way the variance of the sample quantile dependent and not quite normal. As suggested in Sections

is estimated. It should be mentioned that quantile estimation 2, 4.1, and 4.3, this can be overcome by using either within-

is a harder problem than the estimation of steady-state means.run sample means or batch means from sufficiently large
batches as basic observations. Issues related to comparisons
with regard to steady-state measures will be discussed in
Section 5.2.
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5.1.1 Notation “maybe-best” group and a “clearly-not-best” group. Nelson
et al. (2001) proposed a subset selection procedure that

The goal is to compare: systems via simulation and find  handles unknown and unequal variances and new procedures

the best system (with the largest expected performance), that combine subset selection algorithms with two-stage 1Z

guaranteeing a correct selection with probability at least algorithms. Also, Kim and Nelson (2001) proposed a fully

1— . LetY;; denote thejth observation from systern sequential procedure where the systems in contention are

(i=12,...,m). We assume thal;;’s are either within- compared after every observation until only one system

run averages for systeimnor batch means from a single  survives. Procedures presented in Nelson et al. (2001) and

sufficiently long run after accounting for the elimination Kim and Nelson (2001) have been shown to be efficient

of the initialization bias. Thus it will always be assumed when hundreds of systems are compared.

that the outputs from systein(Y;1, Y;2,...) are i.i.d. and

normally distributed. See Alexopoulos and Seila (1998) and 5.1.3 Common Random Numbers

Goldsman and Nelson (1998) for the plausibility of such

assumptions. Many procedures require the assumption that systems are
simulated independently. This can be achieved by assigning
5.1.2 Indifference Zone Approaches different streams of pseudo-random numbers to the simu-

lation of each system. Alternatively, if the same random
In stochastic simulation, it is impossible to find the true number streams are assigned to each simulation, then under
best with certainty; so many procedures employ the Indif- fairly general conditions this induces positive correlation
ference Zone (1Z) approach as a good compromise. The among the competitors and decreases the variance of the
IZ approach attempts to find a system whose mean is at difference in observed avarage performances between two
least a user-specified amount better than the means for thesystems. This technique is called Common Random Num-
other systems while guaranteeing a “correct selection” with bers (CRN). Although CRN makes statistical procedures
high probability. The user-specified amounis called the more complicated when there are more than two systems,
indifference zone parameter and it is interpreted as a practi- under appropriate statistical procedures CRN makes compar-
cally significant difference worth detecting. Goldsman and ison sharper, meaning spending less number of observations
Nelson (1998) and Law and Kelton (2000) present 1Z-based to find the best. The procedure of Nelson and Matejcik
procedures that have been proven to be useful. The text of (1995) extended Rinott’s procedure (1978), which is known
Bechhofer et al. (1995) provides a comprehensive review as one of the simplest and most popular IZ procedures.
of 1Z procedures. The problem is that IZ procedures be- Their procedure works in conjunction with CRN under a
come inefficient when the number of alternatives is large. special structure of the variance-covariance matrix, called
This is because these procedures are developed under thesphericity. However, it is not appropriate for a large number
Least Favorable Configuration (LFC) condition. LFC is the of systems as the sphericity assumption is often violated.
configuration considered as the most difficult to resolve. Below we review two recent procedures: the Sub-
Therefore, if a procedure guarantees at leastdl proba- set+Rinott procedure due to Nelson et al. (2001) and
bility of correct selection under LFC, it will do so for all  the KA procedure due to Kim and Nelson (2001).
other configurations. The Slippage Configuration (SC) is Both procedures employ the 1Z approach where basic
known to be the LFC in most procedures. Under SC, the observations are either within-run sample means or batch
expected performances of all other systems are assumed tomeans, and utilize screening to gain efficiency in the
be exactlys smaller than that of the best so all inferior case of many systems. The Subset+Rinott procedure
systems are equally close to the best. As IZ procedures aredoes not use CRN (thus it requires systems to be sim-
developed under the assumption that all inferior systems ulated independently) while tHéN procedure allows CRN.
are close to the best, they become conservative when the
number of systems is larger than 20. Procedure Subset + Rinott

To overcome this inefficiency of IZ approaches, one

can introduce screening. When the number of systems is 1. Specify the overall desired probability of correct

large, the performance measures for the systems are likely selection 1- «, the 1Z parametes, a common
to spread out. Thus, after obtaining some observations, we initial sample size from each systeks > 2, and
may identify clearly inferior systems with high probability the initial number of competing systems

and then stop sampling from those inferior systems. If Further, set

many systems can be eliminated early, one can save a

lot of observations making the procedures more efficient. t=t

1
Gupta (1965) and Gupta and Huang (1976) proposed single- ko=11-(-a/m=t

stage subset selection procedures that divide systems into a
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and obtain Rinott’'s constarit = h(kg, m, 1 — «)
from the tables in Wilcox (1984) or Bechhoffer et
al. (1995).

2. Takekg observations from each system. Calculate
the first-stage sample meaﬁ,él) = Z’;"Zl Yii/ko
and marginal sample variances

fori=12,...,m.
3. Subset SelectiorCalculate the quantity

1/2
§2 4 §?
Wi =t (l_ﬁ
ko

for all i # ¢. Form the screening subsét con-
taining every alternativé such that 1< i < m
and

vP =70 — (Wi —8)" foralle#i.

4. If |I| = 1, then stop and return the systemiin
as the best. Otherwise, for dlle 7, compute the
second-stage sample sizes

Ki = max|ko, [(h5i/8)21},

where[-] is the ceiling function.

5. TakeK; — ko additional observations from all sys-
temsi € I. _

6. Compute the overall sample meang =
Zf;l Yij/K; for all i € I. Select the system
with the largesty; as best.

If the group size is 1, then we can simulate systems
one by one as we would under Rinott’s procedure. When
a group containing a good system is visited early in the
procedures, a lot of savings can occur as the good system
can eliminate many inferior systems. On the other hand, the
Group-Screening procedure could be no better than Rinott’s
procedure if a good system is visited at the end. Thus the
efficacy of the Group-Screening procedure depends on the
ability to find a good system early in the procedures. Boesel
et al. (2002) extended the Group-Screening procedure to
the general optimization area. Now we present a procedure
that allows CRN.

The KN procedure isfully sequential because it
takes only a single basic observation from each alternative
still in contention at each stage. Also, if there exists a
clear evidence that a system is inferior, then it will be
eliminated from our consideration immediately — unlike
the Subset+Rinott procedure, where elimination occurs
only after the first stage. As th€A procedure accounts
for CRN and has more chances to detect inferior systems,
it is expected to be more efficient than the Subset+Rinott
procedure. Kim and Nelson (2001) showed that A&
procedure is uniformly superior to two-stage procedures
with or without screening and its superiority is more
noticeable as the number of systems increases.

Procedure KN

1. Setup.Select confidence leveld«, IZ parameter
8 and first stage sample sizg > 2. Set

1 2q \ ~%/o=D)
n== —1].
2 (m — 1)

2. Initialization. Let I = {1, 2, ..., m} be the set of
systems still in contention, and let = 2i(ko—1).
Obtainkg observations;; (j = 1,2, ..., ko) from

Nelson et al. (2001) showed that any screening pro-
cedure and any two-stage procedure that satisfy certain
conditions can be combined while guaranteeing the overall
probability of correct selection. The Subset+Rinott pro-
cedure can handle a relatively large number of systems as
several systems can be screened out after the first stage. This
procedure requires running all systems at the same time, but
this is sometimes difficult. Nelson et al. (2001) provide a
revised version of the Subset+Rinott procedure, the Group-
Screening procedure in which one can avoid simulating all
the systems simultaneously. Under the Group-Screening
procedure,

» the set of systems is divided into several groups
of any size, and

» the groups are visited one at a time with the proce-
dure being performed completely for each group.
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each systemi (i = 1,2,...,m) and letY; (k) =
Kkt Z’;Zl Y;; denote the sample mean of the first
k observations from systein

For all i # ¢ compute

S%
1
= oo X (Y — Yy — [Fitko) — Yo ko)])?,

the sample variance of the difference between the
sample means for systemsand¢. Let

h?Ss?
Kiy = it | and K; = maxKj,.
82 UAi

HereK;+1 is the maximum number of observations
that can be taken from systeim
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If ko > max K;, then stop and select the system procedure based on Rinott’s procedure and the others are

with the largesty; (ko) as the best. the extension ofCA procedure to steady-state simulation.
Otherwise, set = kg and go toScreening
3. Screening.Set/%d = /. Let 5.3 Closing Comments
I = {i i e 199 and Some researchers have considered completely different ap-
_ _ proaches from than 1Z approach. Chen et al. (1997) pro-
Yi(r) = Yo(r) — Wig(r), V€ € 199, ¢ £ i}, posed a procedure to find a system that maximizes the
probability of correct selection under a budget constraint.
where Chick (1997) and Chick and Inoue (2001ab) approached
52 this problem from a decision-theoretic point of view. Chick
Wie(r) = max{o, Kl (ﬂ _r>}. and Inoue (2001ab) and Inoue et al. (1999) showed that
2r 82 their Bayes procedures work fairly well when hundreds of

systems are compared.
Notice that thecontinuation regiorW;¢ (), shrinks

monotonically as the number of replicationsn- REFERENCES
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