
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds

SIMULATION-BASED ENGINEERING OF COMPLEX SYSTEMS USING EXTEND+MFG+OPEMCSS

John R. Clymer

Applied Research Center for Systems Science

California State University Fullerton
Fullerton, CA 92834, U.S.A.

ABSTRACT

A Complex Adaptive System (CAS) is a network of self-
organizing, intelligent agents that share knowledge and
adapt their operations in order to achieve overall system
goals. Three things are needed to understand, design, and
evaluate CAS. First, a mathematical model or way-of-
thinking about CAS, called Context-Sensitive Systems
(CSS) theory, is required to provide a solid foundation
upon which to represent and describe the kinds of interac-
tions that occur among the CAS agents during system op-
eration. Second, a graphical modeling language is required
that implements CSS theory in a way that enhances visu-
alization and understanding of CAS. Third, a systems de-
sign and evaluation tool is required that makes it easy to
apply CSS theory, expressed using a graphical modeling
language, to understand, design, and evaluate CAS. As an
example, an OpEMCSS model of two intelligent agents is
discussed that learn rules and maximize their average re-
ward in the prisoner’s dilemma game.

1 INTRODUCTION

Simulation has become, in the last few years, a mandatory
part of the systems engineering process, especially as ap-
plied to the engineering of Complex Adaptive Systems
(CAS). Large military, manufacturing, and transportation
systems are too complex and costly to be designed and
evaluated without the use of simulation. Business organiza-
tions are currently being re-engineered, and simulation is a
natural tool to design and evaluate them. The purpose of
this paper is to describe a modeling and simulation tool
called Operational Evaluation Modeling for Context Sensi-
tive Systems (OpEMCSS) that can explicitly describe the
kinds of interactions among system components and proc-
esses that occur during CAS operation.

Two kinds of systems engineering tools are typically
applied to support the engineering of complex systems and
the systems engineering process: (1) tools that automate
the system development process and produce a design cap-
ture database such as CORE (Buede 1999) and (2) tools
that are used for concept exploration and discovery such as
EXTEND+MFG+OpEMCSS (Clymer 1999, 2000, 2001).

A system development database tool is used for com-
plete automation of the systems engineering process from
design team entry of requirements until generation of the
systems specification documents occurs. Such a tool allows
a central design database to be accessed by members of a
design team and design description or decision-making in-
formation to be entered and shared. A design capture tool
can be used to map the functional model onto the system
architecture, and it can generate systems specification
documents. Limited modeling capability is provided to
check the consistency of a design; however, these tools are
not suitable for concept exploration of CAS.

A concept exploration tool allows rapid motion through
problem space to examine system design problems. It fa-
cilitates “out-of-the-box” thinking to discover the best sys-
tem concepts that solve system design problems without
focusing on a point design too soon. As each problem is
solved, the solution is entered into the system design data-
base. Thus, a system development database tool and a con-
cept exploration tool are complementary in their support of
the systems engineering process.

The OpEM methodology discussed in this paper has
been successfully applied during concept exploration, as
discussed above, in various CAS applications. For exam-
ple, pre-OpEMCSS studies of CAS are discussed in: (1) a
visual flying rules (VFR) air traffic control system where
the aircraft are intelligent agents (Clymer 1992a, 1995), (2)
a railroad system where the trains are the intelligent agents
(Clymer 1992b), (3) a sonar array system where the sonar
nodes are the intelligent agents (Clymer 1994, 2001), and
(4) a vehicle traffic grid where the traffic light controllers
are the intelligent agents (Clymer 1995, 1997, 2001). All of
these models have been re-implemented in OpEMCSS and
are available for your evaluation and experimentation.
OpEMCSS is a graphical Discrete Event Simulation (DES)
library that works with EXTEND+MFG, a relatively inex-
pensive yet powerful software product of Imagine That Inc

Clymer

located in San Jose, CA (“http:\\www.imaginethatinc
.com”). A free academic version of OpEMCSS is currently
available for download.

1.1 Complex Adaptive Systems

A CAS is a network of self-organizing, intelligent agents
that share knowledge and adapt their operations in order to
achieve overall system goals. For example, consider a dis-
tributed, vehicle traffic control network located in a large
city (Clymer 1997), mentioned above. Each major inter-
section has a vehicle traffic light control subsystem or con-
troller to determine traffic light timing. In this system, each
traffic light controller uses its perceptions about incoming
traffic flow to optimize light timing, minimizing local ve-
hicle waiting time. The result of each traffic light control-
ler adapting offset light timing to accommodate traffic flow
coming from other intersections is to minimize the average
waiting time in the entire network. Global minimization of
traffic waiting time results as a consequence of the emer-
gent behavior of this system, traffic light collaboration.

Another feature of CAS is emergent patterns of behav-
ior that can actually be observed during system operation.
For example, as light timing control in the overall traffic
grid evolves in the way discussed above, a complex but
definite pattern in network operation, north-south red to
green transition timing, emerges out of an initial random
light pattern. The emergent behavior of the traffic grid
cannot be explained through an understanding of each con-
troller alone. Understanding only comes when we study
the interactions of the controllers as they adapt their be-
haviors in response to perceived information about incom-
ing traffic flow.

CAS are not, as yet, well understood; although, they
have been the subject of intensive research during the last
ten years by the Santa Fe Institute (Complexity Journal).
However, we do know that the ability of a CAS to achieve
the desired emergent behavior depends heavily on the right
knowledge being shared among the agents and correct de-
cision rules being applied (Clymer 1992a, 2001).

1.2 Needed to Understand CAS

Three things are needed to understand, design, and evalu-
ate CAS. First, a mathematical model or way-of-thinking
about CAS, called Context-Sensitive Systems (CSS) the-
ory, is required to provide a solid foundation upon which
to represent and describe the kinds of agent interactions
that occur among the CAS agents during system operation.
Second, a graphical modeling language is required that im-
plements CSS theory in a way that enhances visualization
and understanding of CAS. Third, a systems design and
evaluation tool is required that makes it easy to apply CSS
theory, expressed using such a graphical modeling lan-
guage, to understand, design, and evaluate CAS. Funda-
mental to understanding CAS are the agent interactions.

Three kinds of agent interactions are required to repre-
sent and describe CAS operation:

• SYNCHRONIZATION - One or more process in-

stances must wait while another process com-
pletes a task;

• RESOURCE CONTENTION - One or more
process instances must wait while another process
uses a resource; and

• COMMUNICATION AND ADAPTATION -
One process instance sends a message to another
process that is used to decide an action.

Figure 1 shows a functional flow model for a user job.

Figure 1: Functional Flow Model of a User-Job

A new job enters the system every 8 seconds. Each job

has a concurrent task A1 in parallel with tasks B and C.
When both tasks A1 and C complete execution, the parallel
process synchronizes and task A2 is executed.

Figure 2 shows a timeline of the arrival and execution
of three user jobs. Task A1 requires 10 seconds, task B-6
seconds, task C-7 seconds, and task A2-3 seconds. The
parallel vertical lines signify the split and assemble of task
A1 in parallel with tasks B and C.

Figure 2: Timeline of System Operation

For job 1, the top process waits in idle state I while task
C completes execution. This is an example of synchroniza-
tion. After job 2 arrives, task A1 must wait because re-
source A is busy with job 1. This is an example of resource
contention. When task A1 of job 2 completes, there is a
conflict concerning which task is allocated resource A next.

Clymer

Do we allocate resource A to task A2 of job 1 or to task A1
of job 3? This is an example of where the processes must
communicate and adapt in order to collaborate to improve
system effectiveness: minimum wait time and maximum
throughput. In this example, one decision policy could be to
allocate resource A to the task that has the most jobs waiting
or another policy could be to allocate resource A to the task
that has been waiting the longest.

1.3 Interacting Concurrent / Parallel Processes

What is an agent and what is a process? An agent is a
physical component of the system. A parallel process de-
scribes what an agent or collection of agents does: the se-
quential-concurrent execution of a set of related tasks such
as shown in Figure 2. A system can be modeled from the
point of view of each agent and what it does or from the
point of view of what the system does given the agents are
performing their tasks. An important point is that
OpEMCSS can model a system from either point of view.

A parallel process is defined as the collection of all
possible sequences of system states and events that repre-
sent the operation of a system or organization. For exam-
ple, suppose that three processes describe a system where
the weapon (WPN) process is in the “PreFire Evaluation”
state, the Fire Control System (FCS) process is in the
“Tracking” state, and the Launcher (LNCH) process is in
the “Aim” state. When the LNCH process goes to the
“Ready” state, a message is sent to the WPN process, that
has been waiting, which causes a transition of the WPN
process to the “Fire” state. Each system state of a parallel
process model includes the discrete state of each parallel
sub-process. For example, FCS Tracking, LNCH Ready,
and WPN Fire describe one particular system state for the
three process model discussed above. Thus, discrete states
represent periods of time where either (1) each functional
activity or task is being performed by a resource(s) or (2)
each functional activity or task is waiting for a specified
logical condition to be satisfied (message received) before
it can continue, as discussed above. Also part of the sys-
tem-state may include zero or more state variables for each
sub-process. State variables have values that identify con-
ditions, other than what functional activity or task is cur-
rently being performed, such as parameters that are used to
control execution of the process. For example, a state vari-
able of the launcher process is how many weapons are re-
Figure 3: Four Kinds
maining in the magazine. Events define points in time
where a change of system state occurs.

1.4 Paper Overview

The paper first provides an overview of the OpEM graphi-
cal language, that is a graphical expression of interacting
concurrent processes such as shown in Figure 2, and the
OpEMCSS library blocks, that implement the OpEM lan-
guage. These are described as a basis for simulation-based
engineering of complex adaptive systems. A simulation of
the prisoner’s dilemma, that is built using these blocks, is
discussed as an example. This model describes a co-
evolutionary CAS where each agent adapts its decision-
making rules to achieve its goals. The agents discover that
collaboration leads to the maximum payoff (Axelrod
1984). The paper concludes with a summary procedure that
describes how OpEMCSS is used during the simulation-
based engineering (design and evaluation) of complex
adaptive systems as a concept exploration tool and a dis-
cussion of future research.

2 OPEM DIRECTED GRAPH LANGUAGE

Use of the OpEM directed graph language to develop a
model and analyze a problem requires an in-depth under-
standing of the parallel process language. In this section,
each language element is defined and rules for combining
elements to form processes are provided.

2.1.1 System State.

A parallel process is the set of all sequences of system
states and events that represent system operation. The sys-
tem state is the discrete state of each process instance and
the value of each state variable. Discrete states of parallel
processes represent periods of time and are circles on a di-
rected graph. There are four kinds of discrete states: (1) re-
action time, (2) wait, (3) semi-continuous, and (4) idle.
State symbols are shown in Figure 3 below.

A reaction time state represents the length of time a re-
source is performing a particular functional activity or task.
Often a random variable generator computes a reaction
time. Data to determine the distribution of the random
variable may be determined by field observation or ex A
wait state represents the time a system component waits for
 of Discrete States

Clymer

a logical condition to be satisfied in order to perform a
functional activity or task. Logic that activates the event
may be in the event itself or elsewhere. If in the event it-
self, the state itself is identified with the logic on the graph.
If ‘passivated’, awaiting external logic to be satisfied the
event following the wait state is identified as a direct exe-
cution path. Events are depicted as “< >“ in a model. The
two kinds of wait states are shown in Figure 4.

Figure 4: Two Kinds of Wait States

If the logic is located internally, logic usually is tested
at each discrete time in the simulated sequence of states
and events until it is satisfied. Logic can involve values of
both discrete and continuous state variables. In a detailed
model it is sometimes necessary to compute values of state
variables prior to testing logic.

A more efficient technique, from the point of view of
computer time required, is to use the ‘passivated’ event ap-
proach. Logic is checked by another process instance only
when necessary and the wait event is executed by this
process instance, using a direct execution path, when this
logic is satisfied.

Figure 5: A Semi-Continuous State

A semi-continuous state approximates the continuous

behavior of a detailed model of system operation. State
variables associated with this kind of state are updated re-
peatedly with a constant time step to model a process that
varies continuously. In contrast, discrete time events occur
at irregular time intervals. Combined discrete event and
continuous processes often occur in hardware-in-the-loop
simulations. A semi-continuous state is shown in Figure 5.

A semi-continuous state is indicated by square brack-
ets around the state name inside the circle. A detailed
model that updates state variables is a part of the logic as-
sociated with the event following the state. The logic de-
cides when the continuous process ends.

An idle state represents a period of time a sub-process
is waiting for one or more other sub-processes to be com-
pleted before an assemble event can occur. Some of these
sub-processes may be duplicated into multiple process in-
stances. An assemble event combines one or more sub-
processes and process instances into a single sub-process.
The idle state will be discussed further in the context of the
assemble event.

2.1.2 State Variables.

State variables represent data, knowledge facts used in in-
ferencing, process control variables, entity position and ve-
locity, and many other useful model attributes. In general,
they represent process conditions other than the discrete
states discussed above.

2.1.3 Events.

Events signify changes in system-state, and are represented
by directed line segments connecting the states in a di-
rected graph model (Figure 6). Near the center of the line
segment is a pair of brackets “< >.” Below these brackets
is the event name, a short description of the event. To the
left of the brackets is the ‘occurrence path’ that connects
the event to the prior state. To the right is the ‘action path’
that connects the event to the following state. As discussed
above, an event represents a change in one or more sub-
process dimensions of the system state vector. Event action
implements state vector dimension changes, controls proc-
ess flow, directly executes events in other sub-processes,
and collects simulation report data.

Figure 6: Events are shown as Directed Line Segments

Figure 7 shows an exit event from a wait state. The
event has two alternate occurrence paths. Path 1 has logic
specified and path 2 is a direct execution path from another
event. An event may have alternate action paths as well.

Figure 7: A Wait State Event having Alternate Occurrence
Paths

Figure 8 shows an event having two action paths.

Only one path can occur each time that the preceding event
is executed. ACTION1, associated with either path, is
executed first, then logic chooses the action to perform. In

Clymer

the example shown, if LOGIC is true action two is per-
formed, otherwise action three occurs.

Figure 8: An Event that has two Action Paths

Two parallel vertical lines to the right of the brackets

“< >“ indicate a split event (Figure 9). Action one, preced-
ing both parallel paths, is performed first. The sub-process
then splits into two parallel sub-processes, both action two
and three being performed.

Figure 9: A Split Event

Multiple process instances can occur two ways: (1) a
split event creates multiple sub-processes and process in-
stances as discussed above or (2) a generator process can
create process instances and directly execute each process
start.

An assemble event (Figure 10) has two parallel verti-
cal lines preceding the brackets “< >.” Assemble logic is
specified to the left of the brackets next to the parallel
lines. The numbers below each occurrence path to the left
of the parallel double lines are path numbers that define the
path that has been completed.

Figure 10: An Assemble Event

When a sub-process ends, assemble logic is tested.

The path number associated with the occurrence path de-
termines that the process that has been completed. The
event “<5>“ occurs only when the assemble logic is satis-
fied. An example of assemble logic is (1 * 2 * 3). The * is
a logical AND. This means that subprocess paths one and

two and three must be completed before these processes
are assembled. Another example logic is ((1 * 2) + 3)
which means that subprocess paths one and two or three
must complete before these processes assemble since the +
is a logical OR.

When assemble event “<5>“ occurs, the three sub-
processes and associated process instances are destroyed
and a single subprocess continues. In comparison, assem-
ble logic that includes a logical OR is very difficult for
Petri nets to model because some process instances must
be found and destroyed. However, the OpEMCSS assem-
ble block can model OR logic easily and automatically de-
stroys the required sub-process process instances.

3 OPEMCSS LIBRARY BLOCKS

The basic OpEMCSS blocks are organized by categories:

1. Begin Event, End Event, and Evolutionary Algo-
rithm blocks that define a system process instance
(EXTEND calls these “runs”);

2. Split Action and Assemble Event that define the
begin and end of concurrent (parallel) processes;

3. Global Reaction Time Event, Reaction Time
Event, and Wait Until Event that model the time
spent in a discrete state;

4. Alternate Action, Classifier Event Action, Con-
text-Sensitive Event Action, Event Action, Global
Event Action, Initialize Event Action, Input Event
Action, Local Event Action, Message Event Ac-
tion, and Reward Event Action that perform event
actions; and

5. Executive Block that sequences events in simu-
lated time and Context-Sensitive Priority that up-
dates the priority of each process instance at each
event.

The OpEMCSS blocks used in the Prisoner’s Dilemma
model are discussed in this section. A more complete de-
scription of all the OpEMCSS blocks is found in (Clymer
1999, 2000, 2001).

The Begin Event block (label in Figure 11 is “Begin
Games”) generates an initial process instance item and ini-
tializes its attributes to start a simulation run. In EXTEND
attributes are of the form “AttributeName = Numerical-
Value” are used to implement the OpEM language state
variables discussed in the previous section.

The End Event block (label in Figure 11 is “End
Games”) deletes the final process instance item of a simu-
lation run. This block can obtain parameter values from up
to five blocks. These values are accumulated to produce
an average value for each selected parameter based on a
sample of simulation runs.

The Split Action and Assemble Event blocks, working
in pairs, allow sub-processes and process instances at the

Clymer

Figure 11: The Prisoner’s Dilemma Model
same level in the system process to be synchronized ac-
cording to a user supplied logic equation. Split Action and
Assemble Event blocks allow a process instance to come
into existence and operate concurrently with other process
instances for a period of time, ceasing to exist when as-
semble logic is satisfied. In an object-oriented model of a
system, variable numbers of objects come into existence,
exist for a time, then go out of existence (Rumbaugh
1991). An OpEMCSS process diagram, including one to
three split-assemble levels, is similar to an OMT model in
that each OpEMCSS sub-process diagram can define a
variable number of duplicated process instances as dis-
cussed above. This contrasts with basic timed Petri net
models that require a diagram to be duplicated for each
process instance.

The Reaction Time Event block (labels in Figure 11 are
“Agent X Decides”) has a Gamma distributed reaction time
specified in the block dialog, and it is used to simulate a
reaction state as shown in Figure 3. Event actions permit-
ted using this block are modifications of up to two global
process instance item attributes, using the “+=“ operation,
and one local process instance item attribute based on an
equation.

A Local Event Action block allows process instance at-
tributes (OpEM state variables) of the process instance
item passing through the block to be modified. If “Accu-
mulate” is set true in the block dialog, the block accumu-
lates process instance items (deletes them) passing through
the block until the last one is received, which is sent to the
output connector. Thus process instance items created by a
generator process that complete their state-event sequence
can depart rather than being stored in an Assemble Event
block. This allows the model to run much faster if many
processes are created.

Classifier Event Action blocks each contain a forward
chaining, inference engine that is used to transform process
instance attributes, for an item passing through the block,
into other process instance attributes that represent rule ac-
tions. If several different actions are implied by the input
process instance attributes (i.e., several rules are eligible to
fire in a context), the best action is selected based on either
the maximum BID value or a probability. The BID is a
function of rule strength, specificity, and condition support
such that a more specific rule has a higher BID. The rule
selection probability is strictly a function of rule strength.
Probability of rule selection is used mainly for rule learn-
ing, but the maximum BID can be used both during learn-
ing and once all rules have been determined.

Rule induction begins with a subset of the most general
rules as the initial knowledge base such that each possible
value for the rule condition fact is covered. The classifier
block uses these rules to make decisions and the reward
block evaluates the quality of each decision, sending a pay-
off to the classifier block. The classifier uses the payoff to
reward or punish the rules. The result is that rule strength in-
creases for good rules and decreases for bad rules.

The rule induction algorithm randomly selects rules for
modification, from the current set of rules that cover deci-

Clymer

sion situation S, based on situational ambiguity. Situational
ambiguity is high when all eligible rules specifying alterna-
tive decisions for a situation S compete and becomes low
when one rule dominates. Rule induction for situation S
stops when one rule dominates, allowing rule learning to
focus on other situations that still have high ambiguity.

The induction operators that can be applied are “change
a fact value” in the selected rule, “add a new fact” to the
rule, and “delete an old fact” from the rule. These operators
are applied to either the condition or action of a rule based
on a probability. Another probability is used to decide
whether to change a rule fact or add / delete a fact. Given
add / delete is selected, a probability function is used to se-
lect either add or delete. Initially, this probability function is
zero and then increases exponentially, as rules are modified,
until a maximum value of 0.9 is reached. The result is that
rule induction initially focuses on the most general rules at
the top of rule hypothesis network but eventually generates
more specific rules further down the rule network.

In summary, the search for the best rules is guided by
situational ambiguity and proceeds from the top to the bot-
tom of the rule hypothesis network. The result is that a de-
fault hierarchy of rules that can make all decisions cor-
rectly is found.

Alternate Action blocks allow one of three alternate
transition paths to be selected, after an event has occurred,
based on a decision equation. The DECISION value can
equal 1, 2, or 3, which specifies the top, middle, or bottom
output connector of the block; respectively. The decision
equation can be a function of up to eight attributes, speci-
fied in the block dialog.

An OpEMCSS Executive block sequences events in
simulated time. A Context-Sensitive Priority Block com-
putes a priority for each process instance item at each dis-
crete time based on an equation and prints process identifier,
discrete state, and state variable values for each process in-
stance at the end of each discrete time. The Executive and
Context-Sensitive Priority Block work together to print a
state trace, if selected, at each event in simulated time.

An important feature of the OpEMCCS graphical simu-
lation language is that a sub-process diagram can describe
one or more process instances without having to duplicate
the sub-process diagram for each one. This is especially
important when modeling systems where the number of an
object is variable in simulated time and changes as the
model executes.

4 PRISONER’S DILEMMA

The Prisoner’s Dilemma model (Axelrod 1984) is shown
in Figure 11, and it is comprised of the OpEMCSS library
blocks discussed in the previous section. How the blocks
work together to simulate a system is discussed in this
section.

The ExecutiveS block, in the upper left-hand corner,
controls the sequence of events in the model, and updates
agent position if motion blocks are included. Next to the
ExecutiveS block is a Context-Sensitive Priority block that
can update the priority of each process instance currently
in the model at every discrete time. This block also works
with the ExecutiveS block to produce the state-trace when
the model is in trace mode.

The first block in the model is the Begin Event block
that creates a process instance item, a record that is passed
from block to block to model process flow. The Begin
Event block initializes some state variables, called attrib-
utes in EXTEND, that are of the form “AttributeName =
NumericalValue.” Attributes “Agent1” and Agent2” are
initialized to one, and they are used to define the current
play of each agent (1-cooperate, 2-defect). Attributes
“Past1” and Past2” are initialized to one, and they are used
to define the past play of each agent (1-cooperate, 2-
defect). Initialized to zero are two counters, “Agt1Totals”
and “Agt2Totals,” that are used to accumulate the total
payoff of each agent in the game. The attribute “Count-
Games” is initialized to zero, and the attribute “Max-
Games” is initialized to the maximum number of games for
a simulation run.

The Begin Event block passes the process instance item
to an Event Occurrence (3) block that increments the at-
tribute “CountGames” and that provides for multiple paths
into the Split Action block that follows.

The Split Action block receives a single item and splits
the sequential process into two concurrent process in-
stances where each process instance represents an intelli-
gent agent playing the game. The top and bottom sub-
process diagrams shown in Figure 11 consist of a Reaction
Time Event block followed by a Local Event Action block,
a Classifier Event Action block, and a Memory Event Ac-
tion block. The Reaction Time Event block represents a
period of time spent in a discrete state. The following Lo-
cal Event Action block sets “PastX” to remember the
agent’s previous play. The initial rules used by agent1 are
as follows:

Rule1:IF
 Agent2=Cooperate,
THEN
 Agent1=Defect,CF=50%

Rule2:IF
 Agent2=Defect,
THEN
 Agent1=Cooperate,CF=50%

The rules used by agent2 are similar. Attributes “Past1”
and “Past2” are also allowed as conditions in the rules. The
Classifier Event Action blocks in both sub-processes have
been set up for rule learning discussed below. The parallel
sub-processes both connect to an Assemble Event block
that produces a single process instance as its output. The
Memory Event Action blocks, that are placed before and

Clymer

after the assemble, store and retrieve attributes in a global
memory named “Dilemma.”

Following the Memory Event Action block that re-
trieves attributes for both agents, two Local Event Action
blocks use the rules of the prisoner’s dilemma game to de-
termine each agents reward based on current play and then
accumulates the total reward for each agent. The Reward
Event Action block computes the payoff for each of the
Classifier Event Action blocks

The classifier blocks always converge to the following
rules for agent 1. Agent 2 rules are similar.

Rule1:IF
 Agent2=Defect,
THEN
 Agent1=Cooperate, CF=53.877%

Rule2:IF
 Agent1=Defect,
THEN
 Agent1=Defect, CF=25.877%

Rule3:IF
 Agent1=Defect,
THEN
 Agent1=Cooperate, CF=50.455%

Rule4:IF
 Agent1=Cooperate AND
 Agent2=Cooperate,
THEN
 Agent1=Cooperate, CF=100%

Therefore, the agents start out playing the “zero sum

game” strategy that is win-lose, defined by the initial rules,
and end up playing a win-win rule strategy that maximizes
their total reward. However, it is interesting that if one
agent is locked into the “zero sum game” strategy of win-
lose through its reward payoff equation and the other
agent’s strategy remains win-win, the heterogeneous
agents can only adapt to a win-win rule strategy if the rule-
learning rate is balanced. If both agents play the “zero sum
game” strategy of win-lose due to their reward payoff
equations, the game converges to lose-lose.

If you watch the model operate, you will observe that
before the rules converge to complete cooperation (rule 4
above), the agents play a “tit-for-tat” strategy (Axelrod
1984). The rules are: 1) if you cooperate then I cooperate
and 2) if you defect then I punish you and defect, cooperat-
ing with you at a later time. The “tit for tat” strategy is
implemented by rules one through three above.
5 SUMMARY AND FUTURE RESEARCH

OpEMCSS model development in support of systems de-
sign and evaluation of complex systems usually applies the
following steps:

1. Define the system to be evaluated and describe
system operational scenarios. This step produces
system scenario diagrams that describe the inter-
actions between the system and its environments.

2. Define missions of the system, mission objectives,
and measures of effectiveness for each mission.
This step defines system effectiveness and per-
formance parameters to be estimated by the model
and specifies the model scoreboard.

3. Define objectives for study of the system. What
questions a model must answer dictates model
details.

4. List functional activities or tasks that when per-
formed will achieve each mission objective. Iden-
tify hard and soft constraints on how tasks can be
performed.

5. Subdivide functional activities into periods of
time represented by process instance states where:
(a) an activity is being performed by a resource
and (b) an activity is waiting for a logical condi-
tion to be satisfied.

6. Group purely sequential states, representing ac-
tivities, into the same processes and states that can
be performed concurrently into separate proc-
esses. Always allow for maximum permissible
parallelism: activity states are sequential only if
they must be done that way.

7. Develop time-lines (see Figure 2) of concurrent
states that describe system operation and assist
visualization of system operation. Show process
states on the time-line and indicate when one
process sends a message to another process or
process synchronization occurs.

8. Develop a directed graph model diagram on the
computer screen. Start with placement and connec-
tion of the OpEMCSS blocks then add state vari-
ables, using block dialogs, to model interactions
and physical details. State sequences are visualized
from the time-line then generalized to place and
connect the OpEMCSS blocks to model all cases.

9. Generate event-state traces or time-lines to verify
and validate the model and modify the directed
graph model diagram until satisfied.

10. Operate simulation program to gain an under-
standing of the problem space and to evaluate
alternative solution concepts and system designs.

In multi-agent systems, the fundamental design prob-

lem is always for each agent to discover what critical set of

Clymer

features is required in order to collaborate and for each
agent to learn a set of rules that use these features to make
the proper decision in each situation. The goal is that the
performance for the whole system is optimized.

Figure 12 shows a model of a single agent. In multi-
agent system, agents communicate and share knowledge in
order to achieve overall system objectives. Agents have
two kinds of inputs and two kinds of outputs. One kind of
input comes from sensors that produce a continuous stream
of raw data. Raw data must be transformed into a set of
features that describe everything the agent perceives that
might be useful to make decisions. Features measure as-
pects of the raw data that may relate to various possible
goals the system may have. However, for a specific goal
only a subset of features are useful in making a decision.
The feature extraction block transforms a very large set of
generally useful features into a small set of specific fea-
tures that support a minimal set of decision-making rules.
Another kind of input is messages from other agents. Mes-
sages and decision features are both used to make deci-
sions. Agent outputs are messages sent (self messages
change agent state) and actions that change the environ-
ment. Environmental changes are often perceived by agent
sensors and can also be a form of input message.

The evaluator block produces learning feedback for the
classifier block and the feature extraction block. Local and
global MOEs and MOPs are used to determine the learning
feedback for the classifier and the feature extraction
blocks.

The feature extraction block uses its learning feedback
to guide an evolutionary search for the best transformation
from a large set of general features to a much smaller set of
specific features. The goal here is to minimize decision
ambiguity, which results when decision features are not

Figure 12: Single Agent Model
capable of an unambiguous decision, and to minimize the
total number of rules required.

The classifier system block is capable of two kinds of
rule learning. In Stimulus-Response (SR) learning, the
classifier system learns the best decision for each situation
presented by the environment. If the decision is correct, a
rule is rewarded. If a decision is not correct, a rule is pun-
ished. Other eligible rules not selected to decide receive a
penalty. This approach results in a default hierarchy (a col-
lection of general to specific rules that specify the correct
action). A default hierarchy can be effective even when all
decision feature facts are not known. The classifier may
still be able to decide correctly.

The second type of learning is called Reinforcement
Learning (RL). In RL the classifier system learns a set of
rules that maximizes the total payoff from a sequence of
decisions; indeed, RL can be shown to be equivalent to dy-
namic programming. The OpEMCSS classifier system
block uses profit sharing with penalty to reward rules.
Each time a rule receives a reward or punishment, it is
shared with all previous rules in the decision sequence.
However, rules that initially received a negative reward
(punishment) do not share later in profit sharing.

Current research is to model a network of communicat-
ing agents, as shown in Figure 12, performing feature ex-
traction and both SR and RL learning. For example, consider
a manufacturing process where there are N tasks and M
workstations to perform each task. Certain quality features
are measured before the product leaves each workstation. An
intelligent agent evaluates these features and decides pass,
fail, or rework. After the last production task has been com-
pleted, additional tests are performed to determine overall
quality and production yield. The production decision se-
quence is rewarded or punished based on overall quality and

Clymer

yield using profit sharing. Using computer simulation, can
the individual agents learn a set of rules that will optimize
overall quality and production yield?

REFERENCES

Axelrod, R.M., 1984. The Evolution of Cooperation, New
York, NY: Basic Books, Inc.

Buede, D.M., 1999. The Engineering Design of Systems:
Models and Methods, Wiley-Interscience.

Clymer, J. R., 1990. Systems Analysis Using Simulation
and Markov Models, Englewood Cliffs, NJ: Prentice-
Hall Inc.

Clymer, J. R., P.D. Corey, and J. Gardner, 1992. Discrete
Event Fuzzy Airport Control, IEEE Transactions on
Systems, Man, and Cybernetics, 22 (2): 343-351.

Clymer, J. R., D. J. Cheng, and D. Hernandez, 1992.
Induction of Decision Making Rules for Context
Sensitive Systems, Simulation, San Diego, CA: The
Society of Computer Simulation International, 59 (3):
198-206.

Clymer, J. R., P. D. Corey, and H. Bandukwala, 1994. In-
duction of Classification Rules From Noisy Sonar Fea-
tures, Simulation, San Diego, CA: The Society of
Computer Simulation International, 62 (4): 256-267.

Clymer, J. R., 1995. Induction of Fuzzy Rules for Air Traf-
fic Control, IN Proceedings-1995 IEEE International
Conference on Systems, Man, and Cybernetics, Van-
couver, British Columbia, Canada, October 22-25,
1995, pages 1495-1502.

Clymer, J. R., 1997. Expansionist/Context-Sensitive Meth-
odology: Engineering of Complex Adaptive Systems,
IEEE Transactions on Aerospace and Electronic Sys-
tems, 33 (2): 686-695.

Clymer, J. R., 1999. Simulation-Based Engineering of
Complex Adaptive Systems, Simulation, San Diego,
CA: The Society of Computer Simulation Interna-
tional, 72 (4): 250-260.

Clymer, J.R., 2000. Optimizing Production Work Flow Us-
ing OpEMCSS, IN Proceedings of the 2000 Winter
Simulation Conference, ed. J.A. Joines, R.R. Barton,
K. Kang, and P.A. Fishwich, 1305-1314, Piscataway,
New Jersy: Institute of Electrical and Electronic Engi-
neers.

Clymer, J.R., 2001. Simulation-Based Engineering Of
Complex Systems, Placentia, CA: John R. Clymer &
Associates.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, 1991. Object-oriented Modeling and De-
sign, Englewood Cliffs, NJ: Prentice-Hall Inc.
AUTHOR BIOGRAPHY

JOHN R. CLYMER is a professor of electrical engineering
at California State University Fullerton (CSUF) and consults
in the area of systems engineering, simulation, and artificial
intelligence. In addition to consulting, he presents intensive
short courses at various locations around the United States
and abroad. He received his Ph.D. from Arizona State Uni-
versity in 1971. His teaching assignments have included
computer engineering, system control, continuous systems
simulation, operational analysis and DES simulation, opti-
mization and mathematical programming, and artificial in-
telligence (fuzzy logic and control, neural networks, and ex-
pert systems). His current research interests are focused in
the area of intelligent, complex adaptive systems, applying
integrated simulation, artificial intelligence, and evolution-
ary programming methods to study such systems. He is a
founding member of the Applied Research Center for Sys-
tems Science (ARCSS) at CSUF. He is a member of IEEE,
SCS, and INCOSE. His Email and website addresses are
<jclymer@fullerton.edu> and
<http://www.ecs.fullerton.edu/~jclymer>.

mailto:jclymer@fullerton.edu
http://www.ecs.fullerton.edu/~jclymer

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 147
	02: 148
	03: 149
	04: 150
	05: 151
	06: 152
	07: 153
	08: 154
	09: 155
	10: 156

