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ABSTRACT

The NORTA method for multivariate generation is a fa
general purpose method for generating samples of a rand
vector with given marginal distributions and given produc
moment or rank correlation matrix. However, this metho
has been shown to fail to work for somefeasiblecorrelation
matrices. (A matrix is feasible if there exists a random vect
with the given marginal distributions and the matrix as th
correlation matrix.) We investigate how this feasibility
problem behaves as the dimension of the random vecto
increased and find the problem to become acute rapid
We also find that a modified NORTA procedure, augment
by a semidefinite program (SDP) that aims to generate
correlation matrix “close” to the desired one, performs we
with increasing dimension.

1 INTRODUCTION

Cario and Nelson (1997) described the NORTA metho
for generating random vectors with prescribed correlati
matrix. This method belongs to a family of methods ava
able for multivariate generation that address the spec
problem of generating samples of a finite dimension
random vector such that the generated samples matc
given set of marginal distributions for the individual com
ponents, and some measure of dependence between th
typically chosen to be either the product-moment or th
rank correlation matrix. (The product-moment correlatio
matrix for a random vectorX = (X1, . . . , Xd) is the matrix
6X = (6X(i , j ) : 1 ≤ i , j ≤ d) where

6X(i , j ) = cov(Xi , X j )

(varXi varX j )1/2 .

The rank correlation matrix is of the same form except th
now

6X(i , j ) = cov(Fi (Xi ), Fj (X j ))

(varFi (Xi ) varFj (X j ))1/2
,
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where Fi and Fj are the distribution functions ofXi and
X j respectively.)

The philosophy of specifying marginals and correla
tions to model dependent random variates is clearly
approximate one, since the joint distribution is not com
pletely specified. However, almost all the methods th
have been suggested to model and generate from the
joint-distribution suffer from some serious drawbacks, fo
instance the enormous amount of information needed
specify (and fit) the joint distribution, and the specific na
ture of these methods that precludes an easy adaptatio
cases where a joint distribution of a different nature is to b
modelled. These drawbacks make their use impractical
a model of even moderate complexity. Hence, by aimin
for the simpler goal of matching only the marginal distri
butions and the correlation matrix, one hopes to capture
essence of the dependence between the components w
being able to work with easily implementable methods th
work well in higher dimensions.

Another argument in support of modelling random vec
tors in this way involves the use of diffusion approximation
to model queueing systems. In many cases the limiti
diffusions depend only on the first two moments of th
input distributions. Therefore, there is some insensitivi
in performance measures computed from these models
the exact form of the input distributions. In general the
if a form of this insensitivity is present in a model, the
approach discussed here for modelling random vectors
quite reasonable.

The NORTA method involves a componentwise tran
formation of a multivariate normal random vector, and ca
italizes on the fact that multivariate normal random vecto
are easily generated; see e.g., Law and Kelton (2000), p. 4
Cario and Nelson (1997) traced the roots of the method ba
to Mardia (1970) who looked at bivariate distributions, an
to Li and Hammond (1975) who concentrated on the ca
where all of the marginals have densities (with respect
Lebesgue measure). Iman and Conover (1982) implemen
the same transformation procedure to induce a given ra
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correlation in the output. Their method is only approxima
in that the output will have only very approximately th
desired rank correlation.

The NORTA method is a very efficient, easy to im
plement general purpose generation method, and has
adaptations to various contexts. Clemen and Reilly (19
described how to use the NORTA procedure to induce
desired rank correlation in the context of decision and r
analysis. Lurie and Goldberg (1998) implemented a va
ant of the NORTA method for generating samples of
predetermined size. Henderson, Chiera, and Cooke (20
adapt the NORTA method to generate samples of depen
quasi-random numbers.

Due to its attactive properties, the NORTA procedu
when it works, is often the method of choice for generatin
random vectors with arbitrary marginals and any giv
feasible correlation matrix. It is thus natural to ask wheth
the NORTA procedure can matchany feasible correlation
matrix for a given set of marginals.

For 2-dimensional random vectors, the NORTA meth
can match any feasible correlation matrix. This follows im
mediately from the characterizations in Whitt (1976). How
ever, this does not hold for dimensions 3 and greater. B
Li and Hammond (1975) and Lurie and Goldberg (199
postulate examples in 3 dimensions where the NORTA p
cedure might fail for feasible correlation matrices, but d
not establish that the counterexamples exist. In Ghosh
Henderson (2001a), Ghosh and Henderson (2001b), we
a computational procedure based on chessboard distr
tions to determine whether a given correlation matrix
feasible for the marginal distributions or not. Using th
procedure, we rigorously established that such counte
amples do exist. Let us call feasible correlation matric
that cannot be matched using the NORTA methodNORTA
defectivematrices.

Based on the numerical results obtained in Ghosh a
Henderson (2001b) we had also conjectured that this f
sibility problem might get steadily worse as the dimensi
increases, in the sense that the NORTA method would
increasingly likely to fail for feasible correlation matrice
as the dimension of the matrices grew. We investig
this aspect of the feasiblity problem further in this pap
We estimate, for each dimension, the probability that t
NORTA procedure fails to work for a feasible rank corr
lation matrix chosen uniformly from the set of all feasib
correlation matrices. Kurowicka and Cooke (2001) al
looked at this problem, but they work with a probabilit
distribution that is not uniform over the set of all feasib
correlation matrices. Our results confirm their finding th
the probability the NORTA procedure fails to work grow
rapidly with dimension.

Suppose we are willing to trade off accuracy for th
sake of the efficiency of the NORTA generation procedu
i.e., we wish to use NORTA to generate a random vec
n
)

)
t

d
e
-

-

-

with the prescribed marginals, and a correlation matrix tha
is, at least approximately, the required correlation matrix
In Ghosh and Henderson (2001b) we describe a semidefin
programming approach that can assist in this regard.

The proposed augmented NORTA method works in
exactly the same manner as the original method unless
NORTA defective matrix is encountered. For such a matrix
a semidefinite program is set up and solved, and the resu
are then used to modify the inputs given to the NORTA
generation step in the hope that the generated random vec
has a correlation matrix that is “close” to the desired one
(it has the same marginal distributions). The numerica
results in Ghosh and Henderson (2001b) indicate that th
is typically true for the 3-dimensional case. In this paper, we
examine higher dimensions, exploring how the augmente
NORTA method performs as the dimension increases. Th
results indicate that NORTA can typically get very close to
a target correlation matrix, even in very high dimensions
So in high dimensions, while NORTA is unlikely to be able
to exactly match a desired correlation matrix, it may be
able to match a correlation matrix that is very close to the
desired one.

The next section reviews the NORTA procedure and
indicates why some matrices may be NORTA defective
Section 3 studies how the NORTA feasibility problem affects
its performance as the dimension of the random vector
increased. Section 4 briefly describes the SDP augmentati
proposed in Ghosh and Henderson (2001b), and studi
how this augmented method performs in higher dimension
Finally, Section 5 summarizes the conclusions that we wer
able to draw from our studies.

2 THE NORTA PROCEDURE

Suppose that we wish to generate i.i.d. replicates of
random vectorX = (X1, . . . , Xd) with prescribed marginal
distributions

Fi (·) = P(Xi ≤ ·), i = 1, . . . , d,

and product-moment or rank correlation matrix

6X = 6X(i , j ), 1 ≤ i , j ≤ d.

If we assume6X to be feasible for the marginals, then
the NORTA method generates i.i.d. replicates ofX by the
following procedure.

1. Generate an IRd valued joint normal random vector
Z = (Z1, . . . , Zd) with mean vector 0 and covari-
ance matrix6Z = (6Z(i , j ) : 1 ≤ i , j ≤ d),
where6Z(i , i ) = 1 for i = 1, . . . , d.



Ghosh and Henderson

a

ti

ha

n

s
is

a

t
h
e

.
io
s

-

ns

a

sly
r
lop
1b)
e
a

-
es,
rate
nal
u-
A.
e

n,

.

al

the
d
ill
set
on

in
ur

et
A
and
x.

n
he
st”
he
2. Compute the vectorX = (X1, . . . , Xd) via

Xi = F−1
i (8(Zi )), (1)

for i = 1, . . . , d, where8 is the distribution func-
tion of a standard normal random variable, and

F−1
i (u) = inf {x : Fi (x) ≥ u}. (2)

The vectorX generated by this procedure will have
the prescribed marginal distributions. To see this, note th
eachZi has a standard normal distribution, so that8(Zi )

is uniformly distributed on(0, 1), and soF−1
i (8(Zi )) will

have the required marginal distribution.
The covariance matrix6Z should be chosen, in a pre-

processing phase, so that it induces the prescribed correla
matrix 6X on X. However, there is no general closed form
expression that gives6Z in terms of6X. Indeed, determin-
ing the right6Z is the most difficult step in implementing
the NORTA method.

Each component of6X has been shown to depend
only on the corresponding component of6Z. As in Cario
and Nelson (1997), we can defineci j (z) = 6X(i , j ) to
represent the correlation betweenXi and X j as a function
of the correlationz betweenZi and Z j , when Xi and X j

are generated as in (1). Cario and Nelson (1997) show t
under certain very mild conditionsci j (·) is a non-decreasing,
continuous function. This result helps us perform an efficie
numerical search for a value3Z(i , j ) that solves

ci j (3Z(i , j )) = 6X(i , j ). (3)

Hence a numerical estimate3Z of 6Z can be determined by
solving a number of one-dimensional root-finding problem
Unless stated otherwise, we assume that a solution ex
for (3).

Henderson, Chiera, and Cooke (2000) also show th
under stronger assumptions the value ofz in (3) is uniquely
determined by6X(i , j ). They infer from this that if their
assumptions hold and if NORTAcan work, then itwill .

The matrix3Z is constructed in a way that does no
necessarily ensure that it is positive semidefinite. It mig
indeed turn out to be indefinite, in which case it cannot b
a valid covariance matrix for a joint normal distribution
Can this happen, i.e., can there exist a feasible correlat
matrix that, under exact numerical estimation in (3), give
an indefinite3Z?

Li and Hammond (1975) postulated the following coun
terexample. SupposeX = (X1, X2, X3) is a random vector
with uniform (0, 1] marginals, and correlation matrix

6X =

 1 −0.4 0.2

−0.4 1 0.8
0.2 0.8 1


 .
t
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For this special case of uniform marginals, the equatio
(3) can be solved analytically as (Kruskal 1958)

3Z(i , j ) = 2 sin
(π

6
6X(i , j )

)
. (4)

The unique solution3Z for the given6X turns out to be
indefinite.

This counterexample is of course valid only if such
uniform random vectorX exists. Li and Hammond (1975)
did not show this, and no general purpose method previou
existed to determine the feasibility of a correlation matrix fo
a given set of marginals. We have since been able to deve
a computational procedure in Ghosh and Henderson (200
that can determine, foralmostany (in a Lebesgue measur
sense) given correlation matrix, whether it is feasible for
given set of marginal distributions or not.

Applying this algorithm to the Li and Hammond exam
ple gives a construction of the random vector, so that it do
indeed, exist. In Ghosh and Henderson (2001b) we gene
a number of such feasible matrices for three-dimensio
uniform random vectors that are NORTA defective. The n
merical results suggest a structure to the failure of NORT
To explain this observation more carefully we need som
notation.

Suppose that the marginal distributionsF1, . . . , Fd have
densities with bounded support, and are fixed. We ca
with an abuse of notation, view ad × d correlation matrix
as an element ofd(d − 1)/2 dimensional vector space
This follows because there ared(d − 1)/2 elements above
the diagonal, the matrix is symmetric, and the diagon
elements are equal to 1. Let� denote the set of feasible
correlation matrices. (Under the assumptions made on
marginals, the results hold identically for both rank an
product-moment correlations, and hence no distinction w
be made between them.) We view this set as a sub
of d(d − 1)/2 dimensional space. Ghosh and Henders
(2001b) prove that in this setting� is nonempty, convex,
closed and full-dimensional.

Returning to the discussion above, we found that
3 dimensions, NORTA defective matrices tended to occ
near the boundary of�. Moreover, the indefinite correlation
matrices3Z determined for the joint normal distribution
from (3) seemed to lie close to (but outside of) the s
of symmetric positive semidefinite matrices. So NORT
defective matrices tended to occur near the boundary,
they were never too distant from a NORTA feasible matri

3 NORTA IN HIGHER DIMENSIONS

As mentioned above, NORTA appears to fail most ofte
when the correlation matrix is close to the boundary of t
set�. Now, in a sense that can be made precise, “mo
points in certain sets in high dimensions lie close to t
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boundary. For example, consider the interior of the un
hypercube[−1

2, 1
2]d in IRd represented by the hypercube

[−1−ε
2 , 1−ε

2 ]d. The ratio of the volumes of the interior and
the whole set is then(1 − ε)d, which decreases rapidly to
0 asd increases.

This suggests that feasible matrices within the set�

may become increasingly likely to be NORTA defective a
the dimension of the problem increases, so that the feasibl
problem that NORTA faces becomes increasingly acute
the dimension increases.

We investigate this dimensionality aspect of the NORTA
feasiblity problem in the context of generating samples of
uniform random vector, i.e., a random vector with uniform
(0, 1] marginal distributions. This case has special signifi
cance to the NORTA method because, by construction, th
method has to generate a uniform random vector as the fi
(intermediary) step. Furthermore, the rank correlation ma
trix of a NORTA generated vector with continuous margina
distributions coincides with the product moment correlatio
matrix for the intermediate uniform random vector.

This special case also has two advantages. First, t
functionci j is explicitly known; see (4). Hence any feasible
correlation matrix for a uniform random vector can be easil
tested for NORTA feasibility.

Second, it has recently been established (Kurowicka an
Cooke 2001) that the set of all feasible correlation matrice
for uniform marginals, say�, coincides with the set of all
symmetric positive semidefinite matrices with ones on th
diagonal. Thus the problem of estimating the probabilit
of NORTA infeasibility reduces to the following algorithm.

1. Let n ≥ 1 be given.
2. Let 6X(1), . . . , 6X(n) be an i.i.d. sample chosen

uniformly from

� = {6 : 6 = 6T ,6 � 0, 6i i = 1 ∀i }.

3. For eachi = 1, . . . , n let 3Z(i ) be obtained from
6X(i ) using the componentwise relation (4).

4. Estimate the probability of NORTA infeasibility
by the proportion of matrices in{3Z(i ) : i =
1, . . . , n} that are not positive semidefinite.

(The matrix inequalityA � 0 signifies a constraint that the
matrix A be positive semidefinite.)

Note that in estimating the probability of NORTA in-
feasibility we have had to choose a probability distribution
on �. The uniform distribution (with respect to Lebesgue
measure) is a natural choice, and is the one we prefer
work with. Kurowicka and Cooke (2001) also give esti-
mates for the probability of NORTA feasibility but they use
a different distribution on�.
his
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3.1 Sampling Uniformly from �

Our first attempt at estimating the probability of NORTA
infeasibility was to combine two well-known methods i
simulation estimation: importance sampling and ratio e
timation. We used importance sampling on the hypercu

[−1, 1] d(d−1)
2 (� is a strict subset of this hypercube) to choos

correlation vectors from�. We then used ratio estimation
(see, e.g., Henderson (2001)) to estimate the probability
NORTA infeasibility. The estimator of the probability o
NORTA infeasibility was therefore of the form

∑n
i=1[I (6X(i ) � 0,3Z(i ) 6� 0) 2−d

φ(6X(i )) ]∑n
i=1[I (6X(i ) � 0) 2−d

φ(6X(i )) ]
,

where the matrices6X(i ) were chosen independently with
density φ from the hypercube[−1, 1]d. We chose the
densityφ in a heuristic fashion.

This method of estimation worked well in lower dimen
sions but we found that it became excessively slow as
dimension increased. Indeed, it took more than two da
to generate on the order of a thousand samples of posi
definite matrices even for a dimension as low asd = 12.
Clearly, a better sampling technique was needed.

Investing some further thought into the problem led u
to construct a method that samplesexactlyfrom the uniform
(in a Lebesgue measure sense) distribution on the set�.
This method starts with the one-dimensional matrix [1] an
then “grows out” the matrix to the dimension desired b
successively adding an extra row (and the correspond
mirrored column) chosen from an appropriate distributio
To be more precise the method is as follows.

1. Let 6 be the 1× 1 matrix 1.
2. For i = 2, . . . , d

(a) Let U be a column vector in IRi−1 chosen,
independently of all else, from distributionϕi

say.

(b) Set

6 =
[

6 U
UT 1

]
.

(c) Next i .

The distributionsϕi are conditional distributions that
depend on the partial matrix6 constructed thus far. We
do not specify them further here.

This method has two key advantages over the first o
First, sampling fromϕi can be reduced to the problem o
sampling from a univariate beta distribution, a very wel
studied problem for which efficient algorithms are availab
(see Law and Kelton 2000, p. 453-458). Consequently t
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method scales very well with dimension. In our study w
were able to generate samples consisting of many thousa
of matrices up to dimensiond = 25 in a matter of hours.

Second, this method does not involve a ratio-estimat
step, which means that the estimation is more straightforw
to implement. For a given sample size, we also found
results to be more accurate.

We used the exact sampling approach to estimate
probability of NORTA infeasibility for various dimensions
Our results are given in Figure 1, where the probabil
is plotted against dimension. The plot establishes that
feasiblity problem rapidly becomes acute as the dimens
increases. As seen from the results, the probability o
matrix being NORTA defective is almost 1 even in as lo
a dimension as seventeen.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dimension

P
ro

ba
bi

lit
y

Probability of NORTA defectiveness

Figure 1: Probability of NORTA infeasibility, based on sam
pling 15,000 matrices uniformly from� in each dimension.
Also shown are 95% confidence intervals.

4 FIXING NORTA

To recoup, we previously noted that NORTA defective m
trices appear to lie close to the boundary of the set�. The
reason matrices are NORTA defective is that the correlat
matrix3Z determined for the joint normal distribution turn
out to be indefinite, and hence infeasible. Moreover, t
results from the previous section confirm our intuition th
since most points in a set lie near the boundary in hig
dimensions, the NORTA infeasibility problem grows wit
dimension.

However, we also observed that the indefinite matric
3Z lie very close to the set of feasible correlation matric
for joint normal random vectors (i.e., the set of positiv
semidefinite matrices with ones on the diagonal). This
to the suggestion in Ghosh and Henderson (2001b) that
ds
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setup stage of NORTA be augmented with an SDP that
used, if3Z turns out indefinite, to find a matrix6Z that
is “close” to 3Z and is positive semidefinite. The matrix
6Z is then used within the NORTA method.

Why is this approach reasonable? In Theorem 2 o
Cario and Nelson (1997) it is shown that under a certa
moment condition, the output correlation matrix is a con
tinuous function of the input covariance matrix6Z used
in the NORTA procedure. So if6Z is “close” to 3Z,
then we can expect the correlation matrix of the NORTA
generated random vectors to be close to the desired ma
6X. The moment condition always holds when we ar
attempting to match rank correlations, and we can expec
to hold almost invariably when matching product-momen
correlations. Therefore, it is eminently reasonable to tr
and minimize some measure of distancer (3Z,6Z) say,
between3Z and6Z.

The SDP falls under the broad class of matrix completio
problems; see Alfakih and Wolkowicz (2000), or Johnso
(1990). For this case, given3Z as data, we wish to choose
a symmetric matrix6Z to

minimize r (6Z,3Z)

subject to 6Z � 0, (5)

6Z(i , i ) = 1.

The metricr (·, ·) can be chosen as desired. In particula
choosing either theL1 metric

r (A, B) =
∑
i> j

|Ai j − Bi j |

or the L∞ metric

r (A, B) = max
i> j

|Ai j − Bi j |

makes the minimization problem an SDP-constrained pro
lem with a linear objective function. Efficient algorithms,
and public domain codes implementing them, are ava
able for solving semidefinite problems of this type; se
Wolkowicz, Saigal, and Vandenberghe (2000).

The SDP framework allows us to include preference
on how the search for6Z is performed. For example, we
can require that for some(i , j ), 6Z(i , j ) ≥ 3Z(i , j ), or
that the value3Z(i , j ) change by at mostδ > 0.

Numerical studies conducted in Ghosh and Henders
(2001b) indicate that in 3 dimensions this SDP augmentatio
yields NORTA generated random vectors with correlatio
matrices that are close to the desired ones. One mig
then ask whether this remains the case as the dimens
increases.

We use a setting identical to that used in Section 3 fo
this study, and our measure of performance is the expect
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L1 distance that we have to move from the desired correlat
matrix to reach a NORTA feasible one. This means th
the minimization problem (5) is solved withr (·, ·) as the
L1 metric and no additional constraints are added.
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Average of correpsonding L∞ distances

Figure 2: Performance of the SDP-augmented NORTA
higher dimensions. 15,000 matrices were generated
formly from � and the semidefinite program, withr taken
as theL1 distance, solved for the NORTA defective case
The solid line gives the expectedL1 distance with 95%
confidence intervals as marked, with the average taken o
over NORTA defective matrices. The dotted line gives t
corresponding expected distance as measured in theL∞
metric.

Figure 2 plots the results. We see that the expectedL1
distance increases as the dimensiond increases at what migh
be perceived as a linear rate, although one could reason
argue for a superlinear rate. If the rate of increase is ind
linear then, since there ared(d − 1)/2 matrix entries above
the diagonal, theaveragechange per entry is (eventually
decreasing with dimension. Of course, it is possible tha
small number of entries change by a large amount. TheL∞
distance is also shown, and we see that indeed, at least
entry is changed by an increasing amount as the dimen
increases.

It might be preferable from a modelling standpoint
instead minimize theL∞ distance, so that one tries to min
imize the maximum deviation from the target correlation
The results in this case are shown in Table 1.

We see that the expectedL∞ distance appears to remai
constant at around 0.005 or even decrease with dimensio

One might also attempt a hybrid of theL1 and L∞
approaches, perhaps by minimizing theL1 distance subject
to an upper bound on theL∞ distance.
n
t
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.

Table 1: The SDP-augmented NORTA in higher dimension
For each dimension, 15,000 matrices were generated u
formly from � and the semidefinite program, withr taken
as theL∞ distance, solved for NORTA defective matrices
The second column gives the number of NORTA defecti
matrices encountered. The third column gives the po
estimate, taken as an average only over the NORTA def
tive matrices, and not over all 15,000 matrices. The fin
column gives the halfwidth of 95% confidence intervals.

d ND L∞ CI
3 524 0.0057 0.0004
4 1640 0.0053 0.0002
5 3271 0.0049 0.0001
6 4961 0.0045 0.0001
7 6988 0.0043 0.0001
8 8826 0.00414 0.00005
9 10428 0.00404 0.00004

Thus, the SDP-augmented NORTA problem perform
well on average even in higher dimensions. It genera
random vectors with correlation matrices which are clo
to the desired ones, while keeping changes to the individ
correlations within reasonable limits.

5 CONCLUSIONS

We have empirically reached the following conclusions:

• The feasibility problem that the NORTA proce
dure faces becomes steadily worse with dimensio
NORTA fails in the vast majority of cases even i
as low a dimension as seventeen.

• The NORTA procedure, when augmented with th
SDP optimization of Section 4, can generate sam
ples with the required marginal distributions, an
a correlation matrix that is a close approximatio
to the one desired, and the approximation rema
accurate as the dimension increases.

An added bonus is the exact sampling procedure
Section 3.1 which can be generalized to sample uniform
from the set of all positive semidefinite matrices with d
agonals fixed at specific values. We are presently worki
on refining this procedure and plan to publish the resu
elsewhere.
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