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ABSTRACT

The NORTA method for multivariate generation is a fast

where F; and F; are the distribution functions oX; and
Xj respectively.)
The philosophy of specifying marginals and correla-

general purpose method for generating samples of a randomtions to model dependent random variates is clearly an

vector with given marginal distributions and given product-
moment or rank correlation matrix. However, this method
has been shown to fail to work for sorfeasiblecorrelation
matrices. (A matrix is feasible if there exists a random vector
with the given marginal distributions and the matrix as the
correlation matrix.) We investigate how this feasibility

approximate one, since the joint distribution is not com-
pletely specified. However, almost all the methods that
have been suggested to model and generate from the full
joint-distribution suffer from some serious drawbacks, for
instance the enormous amount of information needed to
specify (and fit) the joint distribution, and the specific na-

problem behaves as the dimension of the random vector is ture of these methods that precludes an easy adaptation to

increased and find the problem to become acute rapidly.
We also find that a modified NORTA procedure, augmented
by a semidefinite program (SDP) that aims to generate a
correlation matrix “close” to the desired one, performs well
with increasing dimension.

1 INTRODUCTION

Cario and Nelson (1997) described the NORTA method
for generating random vectors with prescribed correlation
matrix. This method belongs to a family of methods avail-

able for multivariate generation that address the specific
problem of generating samples of a finite dimensional

cases where a joint distribution of a different nature is to be
modelled. These drawbacks make their use impractical for
a model of even moderate complexity. Hence, by aiming
for the simpler goal of matching only the marginal distri-
butions and the correlation matrix, one hopes to capture the
essence of the dependence between the components while
being able to work with easily implementable methods that
work well in higher dimensions.

Another argument in support of modelling random vec-
tors in this way involves the use of diffusion approximations
to model queueing systems. In many cases the limiting
diffusions depend only on the first two moments of the
input distributions. Therefore, there is some insensitivity

random vector such that the generated samples match ain performance measures computed from these models to

given set of marginal distributions for the individual com-

the exact form of the input distributions. In general then,

ponents, and some measure of dependence between themif a form of this insensitivity is present in a model, the

typically chosen to be either the product-moment or the
rank correlation matrix. (The product-moment correlation
matrix for a random vectoX = (Xq, ..., Xq) is the matrix
Yx = (Zx(, j):1<i,j <d) where

cov(Xj, Xj)

2x(, )= ————— 5.
x(.1) (varX; varX;)1/2

The rank correlation matrix is of the same form except that
now
- cov(Fi (Xi), Fj(Xj))
Ix(,]) = 173
(varF; (Xj) varF;j (Xj)) /
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approach discussed here for modelling random vectors is
quite reasonable.

The NORTA method involves a componentwise trans-
formation of a multivariate normal random vector, and cap-
italizes on the fact that multivariate normal random vectors
are easily generated; see e.g., Law and Kelton (2000), p. 480.
Cario and Nelson (1997) traced the roots of the method back
to Mardia (1970) who looked at bivariate distributions, and
to Li and Hammond (1975) who concentrated on the case
where all of the marginals have densities (with respect to
Lebesgue measure). Iman and Conover (1982) implemented
the same transformation procedure to induce a given rank
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correlation in the output. Their method is only approximate,
in that the output will have only very approximately the
desired rank correlation.

The NORTA method is a very efficient, easy to im-

plement general purpose generation method, and has seen

adaptations to various contexts. Clemen and Reilly (1999)
described how to use the NORTA procedure to induce a
desired rank correlation in the context of decision and risk
analysis. Lurie and Goldberg (1998) implemented a vari-
ant of the NORTA method for generating samples of a

with the prescribed marginals, and a correlation matrix that
is, at least approximately, the required correlation matrix.
In Ghosh and Henderson (2001b) we describe a semidefinite
programming approach that can assist in this regard.

The proposed augmented NORTA method works in
exactly the same manner as the original method unless a
NORTA defective matrix is encountered. For such a matrix,

a semidefinite program is set up and solved, and the results
are then used to modify the inputs given to the NORTA
generation step in the hope that the generated random vector

predetermined size. Henderson, Chiera, and Cooke (2000) has a correlation matrix that is “close” to the desired one
adapt the NORTA method to generate samples of dependent(it has the same marginal distributions). The numerical

guasi-random numbers.

Due to its attactive properties, the NORTA procedure,
when it worksis often the method of choice for generating
random vectors with arbitrary marginals and any given
feasible correlation matrix. It is thus natural to ask whether
the NORTA procedure can mateny feasible correlation
matrix for a given set of marginals.

For 2-dimensional random vectors, the NORTA method
can match any feasible correlation matrix. This follows im-
mediately from the characterizations in Whitt (1976). How-
ever, this does not hold for dimensions 3 and greater. Both
Li and Hammond (1975) and Lurie and Goldberg (1998)
postulate examples in 3 dimensions where the NORTA pro-
cedure might fail for feasible correlation matrices, but do

results in Ghosh and Henderson (2001b) indicate that this
is typically true for the 3-dimensional case. In this paper, we
examine higher dimensions, exploring how the augmented
NORTA method performs as the dimension increases. The
results indicate that NORTA can typically get very close to
a target correlation matrix, even in very high dimensions.
So in high dimensions, while NORTA is unlikely to be able
to exactly match a desired correlation matrix, it may be
able to match a correlation matrix that is very close to the
desired one.

The next section reviews the NORTA procedure and
indicates why some matrices may be NORTA defective.
Section 3 studies how the NORTA feasibility problem affects
its performance as the dimension of the random vector is

not establish that the counterexamples exist. In Ghosh and increased. Section 4 briefly describes the SDP augmentation
Henderson (2001a), Ghosh and Henderson (2001b), we give proposed in Ghosh and Henderson (2001b), and studies
a computational procedure based on chessboard distribu-how this augmented method performs in higher dimensions.
tions to determine whether a given correlation matrix is Finally, Section 5 summarizes the conclusions that we were
feasible for the marginal distributions or not. Using this able to draw from our studies.

procedure, we rigorously established that such counterex-

amples do exist. Let us call feasible correlation matrices
that cannot be matched using the NORTA metiN@IRTA
defectivematrices.

Based on the numerical results obtained in Ghosh and random vectoX = (Xq, ..
Henderson (2001b) we had also conjectured that this fea-

sibility problem might get steadily worse as the dimension

increases, in the sense that the NORTA method would be

increasingly likely to fail for feasible correlation matrices
as the dimension of the matrices grew. We investigate
this aspect of the feasiblity problem further in this paper.
We estimate, for each dimension, the probability that the
NORTA procedure fails to work for a feasible rank corre-
lation matrix chosen uniformly from the set of all feasible
correlation matrices. Kurowicka and Cooke (2001) also
looked at this problem, but they work with a probability
distribution that is not uniform over the set of all feasible
correlation matrices. Our results confirm their finding that
the probability the NORTA procedure fails to work grows
rapidly with dimension.

Suppose we are willing to trade off accuracy for the
sake of the efficiency of the NORTA generation procedure,
i.e., we wish to use NORTA to generate a random vector
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2 THE NORTA PROCEDURE

Suppose that we wish to generate i.i.d. replicates of a
., Xg) with prescribed marginal
distributions

F|(') = P(XI S ')7i = 17"'1d7
and product-moment or rank correlation matrix
Ix =Xx(, ), 1<i,j<d

If we assumeXx to be feasible for the marginals, then
the NORTA method generates i.i.d. replicatesxoby the
following procedure.

1. Generate an Rvalued joint normal random vector

Z = (Z1,...,Zq¢) with mean vector 0 and covari-

ance matrixXz = (Zz@,j) : 1 <i,j < d),
whereXz(,i)=1fori =1,...,d.
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2. Compute the vectoX = (Xg, ..., Xq) via
Xi = F i@z, 1)
fori =1,...,d, whered is the distribution func-

tion of a standard normal random variable, and

Flu) = inf{x: F(x) > u}. 2)

The vectorX generated by this procedure will have
the prescribed marginal distributions. To see this, note that
eachZ; has a standard normal distribution, so tkdatz;)
is uniformly distributed on0, 1), and soFfl((b(Zi)) will
have the required marginal distribution.

The covariance matrixXz should be chosen, in a pre-
processing phase, so thatitinduces the prescribed correlation
matrix ¥x on X. However, there is no general closed form
expression that givesz in terms ofXx. Indeed, determin-
ing the rightXz is the most difficult step in implementing
the NORTA method.

Each component ofEx has been shown to depend
only on the corresponding component®$. As in Cario
and Nelson (1997), we can defirmg (z2) = Xx(, j) to
represent the correlation betweiin and X; as a function
of the correlatiorz betweenZ; and Z;j, when X; and X
are generated as in (1). Cario and Nelson (1997) show that
under certain very mild conditiorty (-) is a non-decreasing,
continuous function. This result helps us perform an efficient
numerical search for a valugz(i, j) that solves

Cij (Az(, ) = Zx(, ). (3
Hence a numerical estimate; of £z can be determined by
solving a number of one-dimensional root-finding problems.
Unless stated otherwise, we assume that a solution exists
for (3).

Henderson, Chiera, and Cooke (2000) also show that
under stronger assumptions the value af (3) is uniquely
determined byXx (i, j). They infer from this that if their
assumptions hold and if NORT&an work, then itwill.

The matrix Az is constructed in a way that does not
necessarily ensure that it is positive semidefinite. It might
indeed turn out to be indefinite, in which case it cannot be
a valid covariance matrix for a joint normal distribution.
Can this happen, i.e., can there exist a feasible correlation
matrix that, under exact numerical estimation in (3), gives
an indefiniteA z?

Li and Hammond (1975) postulated the following coun-
terexample. Supposé = (X1, Xz, X3) is a random vector
with uniform (0, 1] marginals, and correlation matrix

1 -04 02
¥x=| -04 1 08
02 08 1
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For this special case of uniform marginals, the equations
(3) can be solved analytically as (Kruskal 1958)

Az, }) = 25in<%2x(i, j)). @)
The unique solutiom z for the givenXx turns out to be
indefinite.

This counterexample is of course valid only if such a
uniform random vectoX exists. Li and Hammond (1975)
did not show this, and no general purpose method previously
existed to determine the feasibility of a correlation matrix for
a given set of marginals. We have since been able to develop
a computational procedure in Ghosh and Henderson (2001b)
that can determine, falmostany (in a Lebesgue measure
sense) given correlation matrix, whether it is feasible for a
given set of marginal distributions or not.

Applying this algorithm to the Li and Hammond exam-
ple gives a construction of the random vector, so that it does,
indeed, exist. In Ghosh and Henderson (2001b) we generate
a number of such feasible matrices for three-dimensional
uniform random vectors that are NORTA defective. The nu-
merical results suggest a structure to the failure of NORTA.
To explain this observation more carefully we need some
notation.

Suppose that the marginal distributidfs . . ., Fg have
densities with bounded support, and are fixed. We can,
with an abuse of notation, viewa x d correlation matrix
as an element ofi(d — 1)/2 dimensional vector space.
This follows because there adéd — 1)/2 elements above
the diagonal, the matrix is symmetric, and the diagonal
elements are equal to 1. L& denote the set of feasible
correlation matrices. (Under the assumptions made on the
marginals, the results hold identically for both rank and
product-moment correlations, and hence no distinction will
be made between them.) We view this set as a subset
of d(d — 1)/2 dimensional space. Ghosh and Henderson
(2001b) prove that in this settin@ is nonempty, convex,
closed and full-dimensional.

Returning to the discussion above, we found that in
3 dimensions, NORTA defective matrices tended to occur
near the boundary @¢. Moreover, the indefinite correlation
matricesAz determined for the joint normal distribution
from (3) seemed to lie close to (but outside of) the set
of symmetric positive semidefinite matrices. So NORTA
defective matrices tended to occur near the boundary, and

they were never too distant from a NORTA feasible matrix.

3 NORTA IN HIGHER DIMENSIONS

As mentioned above, NORTA appears to fail most often
when the correlation matrix is close to the boundary of the

setQ. Now, in a sense that can be made precise, “most”
points in certain sets in high dimensions lie close to the
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boundary. For example, consider the interior of the unit 3.1 Sampling Uniformly from

hypercube[—%, %]d in RY represented by the hypercube

[_1;26, 1;2€]d_ The ratio of the volumes of the interior and  Our first attempt at estimating the probability of NORTA
the whole set is theil — )9, which decreases rapidly to  infeasibility was to combine two well-known methods in
0 asd increases. simulation estimation: importance sampling and ratio es-

This suggests that feasible matrices within the et~ timation. We used importance sampling on the hypercube
may become increasingly likely to be NORTA defective as [—1, 1] G (s a strict subset of this hypercube)to choose
the dimension of the problem increases, so that the feasiblity correlation vectors fronf2. We then used ratio estimation
problem that NORTA faces becomes increasingly acute as (see, e.g., Henderson (2001)) to estimate the probability of
the dimension increases. NORTA infeasibility. The estimator of the probability of

We investigate this dimensionality aspect of the NORTA NORTA infeasibility was therefore of the form
feasiblity problem in the context of generating samples of a

. . . . . . —d
uniform raqdom vector, i.e., a rgndom vector Wlth un!for.m S (Ex() =0, Az(i) # o)m]
(0, 1] marginal distributions. This case has special signifi- = - > ,
cance to the NORTA method because, by construction, the 2zl (Ex(i) = 0)7¢(2x(i))]

method has to generate a uniform random vector as the first ) ] ) )
(intermediary) step. Furthermore, the rank correlation ma- Where the matriceZx (i) were chosendlndependently with
trix of a NORTA generated vector with continuous marginal density ¢ from the hypercubg—1,1]°. We chose the

distributions coincides with the product moment correlation density¢ in a heuristic fashion. _ _

This special case also has two advantages. First, the Sions but we found that it became excessively slow as the

functionc;j is explicitly known; see (4). Hence any feasible dimension increased. Indeed, it took more than two days
correlation matrix for a uniform random vector can be easily 0 generate on the order of a thousand samples of positive
tested for NORTA feasibility. definite matrices even for a dimension as lowdas 12.
Second, it has recently been established (Kurowicka and Clearly, a better sampling technique was needed.
Cooke 2001) that the set of all feasible correlation matrices Investing some further thought into the problem led us
for uniform marginals, saf2, coincides with the set of all  t0 constructa method that sampéesctlyfrom the uniform
symmetric positive semidefinite matrices with ones on the (in @ Lebesgue measure sense) distribution on theQset
diagonal. Thus the problem of estimating the probability This method starts with the one-dimensional matrix [1] and

of NORTA infeasibility reduces to the following algorithm. ~ then “grows out” the matrix to the dimension desired by
successively adding an extra row (and the corresponding

1. Letn > 1 be given. mirrored column) chosen from an appropriate distribution.
2. LetEx(1),..., Tx(n) be an i.i.d. sample chosen To be more precise the method is as follows.

uniformly from
1. LetX be the 1x 1 matrix 1.

Q={2:2=3",2>0, %=1 Vi}. 2. Fori=2....d
€)) LetU be a column vector in R chosen,
3. Foreach =1,...,nlet Az(i) be obtained from independently of all else, from distributian
¥x (1) using the componentwise relation (4). say.
4. Estimate the probability of NORTA infeasibility
. X . A (b)  Set
by the proportion of matrices ifAz(@{) : i =
1,...,n} that are not positive semidefinite. > U
5= [ oY } .
(The matrix inequalityA > O signifies a constraint that the
matrix A be positive semidefinite.) (c)  Nexti.
Note that in estimating the probability of NORTA in-
feasibility we have had to choose a probability distribution The distributionsy; are conditional distributions that

on Q. The uniform distribution (with respect to Lebesgue depend on the partial matriX constructed thus far. We
measure) is a natural choice, and is the one we prefer to do not specify them further here.

work with. Kurowicka and Cooke (2001) also give esti-  This method has two key advantages over the first one.
mates for the probability of NORTA feasibility but they use ~ First, sampling fromy; can be reduced to the problem of
a different distribution ort2. sampling from a univariate beta distribution, a very well-

studied problem for which efficient algorithms are available
(see Law and Kelton 2000, p. 453-458). Consequently this
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method scales very well with dimension. In our study we

setup stage of NORTA be augmented with an SDP that is

were able to generate samples consisting of many thousandsused, if Az turns out indefinite, to find a matriXz that

of matrices up to dimensiod = 25 in a matter of hours.

Second, this method does not involve a ratio-estimation
step, which means that the estimation is more straightforward
to implement. For a given sample size, we also found the
results to be more accurate.

We used the exact sampling approach to estimate the
probability of NORTA infeasibility for various dimensions.
Our results are given in Figure 1, where the probability
is plotted against dimension. The plot establishes that the
feasiblity problem rapidly becomes acute as the dimension
increases. As seen from the results, the probability of a
matrix being NORTA defective is almost 1 even in as low
a dimension as seventeen.

141

—— Probability of NORTA defectiveness
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Probability
=)
)

T

o
=)
T

0 I I I I ]
10 15 20 25

Dimension

Figure 1: Probability of NORTA infeasibility, based on sam-
pling 15,000 matrices uniformly froif2 in each dimension.
Also shown are 95% confidence intervals.

4  FIXING NORTA

To recoup, we previously noted that NORTA defective ma-
trices appear to lie close to the boundary of thegeiThe
reason matrices are NORTA defective is that the correlation
matrix A z determined for the joint normal distribution turns
out to be indefinite, and hence infeasible. Moreover, the
results from the previous section confirm our intuition that
since most points in a set lie near the boundary in higher
dimensions, the NORTA infeasibility problem grows with
dimension.

However, we also observed that the indefinite matrices
Az lie very close to the set of feasible correlation matrices
for joint normal random vectors (i.e., the set of positive
semidefinite matrices with ones on the diagonal). This led

is “close” to Az and is positive semidefinite. The matrix
Yz is then used within the NORTA method.

Why is this approach reasonable? In Theorem 2 of
Cario and Nelson (1997) it is shown that under a certain
moment condition, the output correlation matrix is a con-
tinuous function of the input covariance matixz used
in the NORTA procedure. So iz is “close” to Az,
then we can expect the correlation matrix of the NORTA
generated random vectors to be close to the desired matrix
¥x. The moment condition always holds when we are
attempting to match rank correlations, and we can expect it
to hold almost invariably when matching product-moment
correlations. Therefore, it is eminently reasonable to try
and minimize some measure of distande\z, Xz) say,
betweenAz and Xz.

The SDP falls under the broad class of matrix completion
problems; see Alfakih and Wolkowicz (2000), or Johnson
(1990). For this case, givefdz as data, we wish to choose
a symmetric matrixzz to

minimize  r(Zz, Az)
subjectto Xz >0, (5)
Yz(>,i)=1

The metria (-, -) canbe chosen as desired. In particular,
choosing either thé.; metric

r(A B) =Y |Aj — Bjl

i> ]
or the Lo metric

r (A, B) = max|Ajj — Bjj|
i>]

makes the minimization problem an SDP-constrained prob-
lem with a linear objective function. Efficient algorithms,
and public domain codes implementing them, are avail-
able for solving semidefinite problems of this type; see
Wolkowicz, Saigal, and Vandenberghe (2000).

The SDP framework allows us to include preferences
on how the search foEz is performed. For example, we
can require that for somé, j), z(, j) > Az(, j), or
that the valueA z(i, j) change by at most > 0.

Numerical studies conducted in Ghosh and Henderson
(2001b) indicate that in 3 dimensions this SDP augmentation
yields NORTA generated random vectors with correlation
matrices that are close to the desired ones. One might
then ask whether this remains the case as the dimension
increases.

We use a setting identical to that used in Section 3 for

to the suggestion in Ghosh and Henderson (2001b) that the this study, and our measure of performance is the expected

267



Ghosh and Henderson

L, distance that we have to move from the desired correlation Table 1: The SDP-augmented NORTA in higher dimensions.
matrix to reach a NORTA feasible one. This means that For each dimension, 15,000 matrices were generated uni-
the minimization problem (5) is solved with(-, -) as the formly from @ and the semidefinite program, withtaken

L1 metric and no additional constraints are added. as thel o, distance, solved for NORTA defective matrices.
The second column gives the number of NORTA defective
matrices encountered. The third column gives the point

0.09

—Average L, distances moved
— Average of correpsonding L,, distances estimate, taken as an average only over the NORTA defec-
008y tive matrices, and not over all 15,000 matrices. The final
oo column gives the halfwidth of 95% confidence intervals.
oo d ND Lo Cl
. 3 524 0.0057  0.0004
5o0s 4 1640 0.0053 0.0002
° 5 3271 0.0049 0.0001
004 6 4961 0.0045 0.0001
7 6988 0.0043 0.0001
008 8 8826 0.00414 0.00005
oo 9 10428 0.00404 0.00004
00t p 5 6 7 s 9
Dimension Thus, the SDP-augmented NORTA problem performs

well on average even in higher dimensions. It generates
Figure 2: Performance of the SDP-augmented NORTA in random vectors with correlation matrices which are close
higher dimensions. 15,000 matrices were generated uni- to the desired ones, while keeping changes to the individual
formly from © and the semidefinite program, withtaken correlations within reasonable limits.
as thelL; distance, solved for the NORTA defective cases.
The solid line gives the expectdd; distance with 95% 5 CONCLUSIONS
confidence intervals as marked, with the average taken only
over NORTA defective matrices. The dotted line gives the We have empirically reached the following conclusions:
corresponding expected distance as measured irLthe

metric. e The feasibility problem that the NORTA proce-
dure faces becomes steadily worse with dimension.
Figure 2 plots the results. We see that the expetted NORTA fails in the vast majority of cases even in
distance increases as the dimensiamcreases at what might as low a dimension as seventeen. _
be perceived as a linear rate, although one could reasonably ~ *  The NORTA procedure, when augmented with the
argue for a superlinear rate. If the rate of increase is indeed SDP optimization of Section 4, can generate sam-
linear then, since there acd — 1) /2 matrix entries above ples with the required marginal distributions, and
the diagonal, theveragechange per entry is (eventually) a correlation matrix that is a close approximation
decreasing with dimension. Of course, it is possible that a to the one desired, and the approximation remains
small number of entries change by a large amount. The accurate as the dimension increases.

distance is also shown, and we see that indeed, at least one ] ]
entry is changed by an increasing amount as the dimension ~ An added bonus is the exact sampling procedure of
increases. Section 3.1 which can be generalized to sample uniformly
It might be preferable from a modelling standpoint to from the _set of all po_s_itive semidefinite matrices with d_i—
instead minimize thé o, distance, so that one tries to min-  2gonals fixed at specific values. We are presently working
imize the maximum deviation from the target correlations. ©N refining this procedure and plan to publish the results
The results in this case are shown in Table 1. elsewhere.
We see that the expectéd, distance appears to remain
constant at around.005 or even decrease with dimension. ACKNOWLEDGMENTS
One might also attempt a hybrid of tHe; and Lo

approaches, perhaps by minimizing the distance subject This research was partially supported by National Science
to an upper bound on the., distance. Foundation Grant Number DMI 9984717.
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