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val (CI) for ux is constructed at a certain confidence level
1— «, where O< o < 1. The CI foruyx should satisfy
two criteria: (a) its actual coverage probability is close to

means algorithm ASAP for steady-state simulation output the nominal level - «, and (b) it is narrow enough to be
analysis. ASAP2 operates as follows: the batch size is pro- informative.

gressively increased until the batch means pass the Shapiro- In the simulation analysis method of nonoverlapping
Wilk test for multivariate normality; and then ASAP2 de- batch means (NOBM), the sequence of simulation-generated
livers a correlation-adjusted confidence interval. The latter outputs{X; : j = 1,...,n} is divided into k adjacent
adjustment is based on an inverted Cornish-Fisher expansionnonoverlapping batches, each of size For simplicity, we

for the classical batch meansatio, where the terms of

assume that is a multiple of m so thatn = km. The

the expansion are estimated via a first-order autoregressivesample mean for thgth batch is

time series model of the batch means. ASAP2 is a se-

guential procedure designed to deliver a confidence interval
that satisfies a prespecified absolute or relative precision

requirement. When used in this way, ASAP2 compares fa-
vorably to ASAP and the well-known procedures ABATCH
and LBATCH with respect to close conformance to the
precision requirement as well as coverage probability and
mean and variance of the half-length of the final confidence
interval.

1 INTRODUCTION

In discrete-event simulation, we are often interested in es-
timating the steady-state meary of a stochastic output
process{X; : j > 1} generated by a single, though long,
simulation run. Assuming the target process is stationary
and given a time series of lengtHfrom this process, we see
that a natural estimator @fy is the sample mean, given by
X(n)=n"t Z';:l X ;. We also require some indication of
this estimator’s precision; and typically a confidence inter-
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2.

i=m(j—1+1

1
Yj(m)za X; fij:l,...,k;

and the grand mean of the individual batch means,
Y

=Y(m, k)= (1)

=1

k
Y Yim),
j=1

is used as an estimator fary (note that¥ (m, k) = X (n)).

We construct a Cl centered on an estimator like (1), where
in practice we may exclude some initial batches to eliminate
the effects of initialization bias.

If the batch sizen is sufficiently large so that the batch
means{Yj m):1<j< k} are approximately independent
and identically distributed (i.i.d.) normal random variables
with meanuy, then we can apply a classical result from
statistics (see, for example, Steiger and Wilson 1999, 2000,
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2001) to compute a confidence interval fek from the
batch means. The sample variance of kthbatch means
for batches of sizen is

k
1 _
Stk = 5 2 [¥itm) =Y, 0]
=1

If the original simulation-generated proces¥; : j =
1,...,n} is stationary and weakly dependent as specified,
for example, in Theorem 1 of Steiger and Wilson (2001),
then it follows that asn — oo with k fixed so thain — oo,

an asymptotically valid 100 — @)% confidence interval
for uyx is

Sm,k

N
wheret;_q /2 k1 denotes the & /2 quantile of Student’s
t-distribution withk — 1 degrees of freedom.

Sequential NOBM procedures address the problem of
determining the batch sizes,, and the number of batches,
that are required to satisfy approximately the assumptions
of independence and normality of the batch means. If these
assumptions are exactly satisfied, then we will obtain Cls
whose actual coverage probability is exactly equal to the
nominal coverage probability. In this paper we introduce
ASAP2, an improved variant of the ASAP algorithm (Steiger
and Wilson 1999, 2000, 2002) for analysis of steady-state
simulation output; and we compare the performance of
ASAP2 versus the original ASAP algorithm as well as the
widely used NOBM procedures ABATCH and LBATCH
(Fishman 1996; Fishman and Yarberry 1997; Fishman 1998).

The rest of this paper is organized as follows. A brief
overview of ASAP2is given in §2, and a detailed explanation
of the steps of ASAP2 is given in 83. Some of the results
of our performance evaluation of ASAP2 are presented in
84. Finally in 85 we summarize the main findings of this
work.

Y(m, k) £ t1-a/24-1 (2

2 OVERVIEW OF ASAP2

ASAP2 requires the following user-supplied inputs:

1. a simulation-generated output procgss : j =
1,2,...,n} from which the steady-state expected
responseuy is to be estimated,;

a confidence coefficient specifying that the de-
sired confidence-interval coverage probability is
1—«;and

an absolute or relative precision requirement spec-
ifying the final confidence-interval half-length in
terms of (a) a maximum absolute half-lengit,

or (b) a maximum relative fraction* of the mag-
nitude of the final grand mean.
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ASAP2 delivers the following outputs:

1. anominal 100l — «)% confidence interval fom x

having the form

Y+ H where H<H* or H<r*Y|, (3)
provided no additional simulation-generated obser-
vations are required; or

a new total sample size to be supplied to the
algorithm.

If additional observations of the target process must be
generated by the user’s simulation model before a confidence
interval with the required precision can be delivered, then
ASAP2 must be called again with the additional data; and
this cycle of simulation followed by analysis may be repeated
several times before ASAP2 finally delivers a confidence
interval.

On each iteration of ASAP2, the algorithm operates
as follows. The simulation outputs are divided initially
into a fixed number of batches (hamety= 256 batches);
and batch means are computed. The first four batches are
discarded, and from the remainiaj= k — 4 = 252 batch
means, we select every other group of four adjacent batch
means to form a sample of 32 four-dimensional vectors
of batch means that will be tested for joint multivariate
normality. If the normality test is failed, then the batch
sizem is increased by a factor of/2 and the process is
repeated until the normality test is passed.

Upon acceptance of the hypothesis of joint multivari-
ate normality of the batch means, a Cl is constructed—
specifically, the correlation-adjusted CI (5) below based on
k' batch means for batches of size The correlation cor-
rection uses an inverted Cornish-Fisher expansion (Stuart
and Ord 1994) for the classical NOBM Studeratio

f Y k) —px.

Sm,k//\/P 7

and the terms of this expansion are estimated by fitting an
order-one autoregressive time-series model (Box, Jenkins
and Reinsel 1994) to the set #f retained batch means.
Based on this approach, a correlation-adjusted 1.8@&)%
confidence interval fopux is

(4)

Ko —1 K

— 124 K4
Y(m, k') £+ [(1+ >~ §> 21-a/2 + ﬂZ?—a/2:|

[Varly (m)]
Xy ——,
k/

where: z1_4/2 denotes the - «/2 quantile of the stan-
dard normal distributionix, and x4 respectively denote
estimators of the second and fourth cumulants of the

®)
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Retain old batch count
and compute new batch

size

Collect observations;
A compute batch-means Use new batch
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Fit AR(1) model to
o ) Yes batch means; compute
multivariate normality > inverted Cornish-Fisher

New batch
count > 15047

testat level & 7% expansion for #-ratio
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outcome for test is
fixed.

Deliver CI;
Stop

Figure 1: Flow Chart of ASAP2

ratio (4); VaTr[Y(m)] denotes an estimator of the variance or computing budget in some applications, such an initial
of the batch means; and all these statistics are based onsample size is usually easy and inexpensive to generate.
fitting an order-one autoregressive time-series model to the On each iteration of ASAP2 that requires a normality
(correlated) batch means procg®s(m) : j =5,...,k} as test, the batch means are organized into groups of four
detailed in §83.2-3.3 below. adjacent quantities so that every other group can be tested for
Subsequent iterations of ASAP2 that are performed to four-dimensional normality. Such an approach is tantamount
satisfy the user-specified precision requirement (if there is to assuming that when the batch size is sufficiently large so
one) do not repeat testing for multivariate normality of the that the batch means pass the test for multivariate normality,
overall set of batch means. These subsequent iterationsonly dependence between batch means out to lag three is
require additional sampling, computing the additional batch practically significant.
means, and reconstructing the ClI, again discarding the first To address the start-up problem, we exclude the first
four batches of the overall data set (consisting of all original group of four batches from the computation of overall
observations plus any additional observations required by statistics for the batch means; and in each normality test, we
ASAP2). Successive iterations of ASAP2 continue until the take aspacer(Fox, Goldsman, and Swain 1991) consisting
precision requirement is met. of a group of four ignored batch means between each
A flow chart of ASAP2 is depicted in Figure 1. In the  group that is to be tested for normality. Our computational
next section we provide complete details on the main steps experience with ASAP2 in a wide variety of applications

in the operation of ASAP2. has suggested that if the batch size is large enough for the
spacer-separated four-dimensional vectors of adjacent batch

3 DETAILED STEPS OF ASAP2 means to pass the normality test, then the corresponding
spacer also provides a reasonable start-up period (statistics

3.1 Testing Batch Means for Normality clearing time) for eliminating the effects of initialization

bias. Letk; = k1 — 4 = 252 denote the initial number of
ASAP2 begins on iteration 1 with a user-specified initial batch means retained for confidence-interval construction

batch sizen; (by defaultm1 = 16), requiring data fok; = from which we calculate the sample mean and variance
256 initial batches. The results of extensive experimentation
show that ASAP2 performs well with this initial batch size . ka
and batch count, even for processes that are highly dependent Y(my, ky) = ki/ Y;(m1)
or whose marginal distributions exhibit marked departures 1j=s
from normality.  While a total ofny = kymg = 4,096 k1
observations may exceed the user’s precision requirement gnd Sril.,k’l _ k/—l—l Z [¥;(m1) — V(ma, k,l)]z’
j=5
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respectively. (To simplify the subsequent notation, through-

We computeZ, = (yT—)TA L(y,—y)fore =1,2,...,g;

out the rest of this paper we define aggregate batch statisticsand we sort these auxiliary quantities in ascending order to

like Y (m1, ki) and S;il o o exclude the first four batches
L

from the entire data set accumulated so far.)

The k] retained batch meand’;(m1) : j =5, ..., k1}
are tested for multivariate normality by constructing 32
four-dimensional vectorgy, : £ = 1,...,32} as depicted
in the following layout:

Y5(my), Ye(my), Y7(m1), Yg(ma),
Ist (4x1) vectory;
Yo(m1), Y10(m1), Y11(m1), Y12(m1),

ignored spacer

Y13(my), Y14(m1), Y15(m1), Y1e(m1),

2nd (4x1) vector y, (6)
Y17(m1), Y18(m1), Y19(m1), Yoo(m1),

ignored spacer

Yo53(m1), Yos4(m1), Yoss(my), Yosg(ma) .
32nd (4x1) vector y3p

We apply the Shapiro-Wilk test for multivariate nor-
mality (Malkovich and Afifi 1973) to the resulting data set
{y, : £ =1,...,32. Although normality of each four-
dimensional random vectoy, is not sufficient to ensure
joint normality of all k; = 252 batch means (Stuart and
Ord 1994, Exercise 15.20), our computational experience
strongly suggests that this approach to testing for joint nor-
mality of the batch means has sufficient power to be effective
in practical applications of ASAP and ASAP2 (Steiger 1999;
Steiger and Wilson 1999, 2000, 2002).

Given a random sampléy, : ¢ 1,...,g} of ¢g-
dimensional response vectors, we perform the Shapiro-Wilk
test for multivariate normality as follows. First we compute
the sample statistics

8 8
y=21) ye and A=) (e -y -9
(=1 =1

Throughout the rest of this section, we assume that the
random matrixA is nonsingular with probability one. This
property can be ensured, for example, by a mild technical
requirement detailed by Tew and Wilson (1992, p. 91),
provided the replication courg > ¢; and since we take

g = 32 andg = 4 in ASAP2, with probability one we
can identify the observation’ € {y; : ¢ =1,2,..., g} for
which

o' -9TAY -y = max {6 -9TA Ny - D).
=1,..,¢
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obtain the corresponding order statisti€g) < Zp) < ---

< Z. Let{Be: £ =12 ..., g} denote the associated
coefficients of the univariate Shapiro-Wilk statistic for a
random sample of size (see Royston 1982a, 1982b). The
null hypothesis of multinormal responsgg} is rejected at
the level of significancé (0 < § < 1) if the multivariate
Shapiro-Wilk statistic,

v [Ziapzo)
yr-9TA- Lyt -9’

satisfiesW* < wj(q, g), the 10@1 — §)% quantile of the
null distribution of W*. (The null distribution ofW* is the
c.d.f. Fy=(-) of (7) when this statistic is based on a random
sample of sizeg taken from ag-dimensional nonsingular
normal distribution.)

On theith iteration of ASAP2 fori = 1,2, ..., we let
k; andm; respectively denote the batch count and the batch
size. An additional iteration of ASAP2 will be required
if the multivariate Shapiro-Wilk test yields a significant
result (that is, the 32 four-dimensional vectors of batch
means (6) fail the multivariate normality test) at the level
of significances;, where

(7

5 = &1 exp[—w(i - 1)2] for i=12..., (8
with §; = 0.10 andw = 0.18421. If the test statisti¢V*
computed from (7) on iteration corresponds to ®#-value
Fw+«(W}) < &, then on iteration + 1 the batch size and

batch count are respectively taken to be

Mmit1 = [«/Esz and ki1 = k; 9)

so that the total required sample sizenjs1 = m;1ki+1;

and thus the user must provide the additional simulation
response$X; : j =n;+1n; +2, ..., niy1} before exe-
cuting iterationi + 1 of ASAP2.

The scheme (6)—(9) is specifically designed so that
ASAP2 avoids the excessive variability in the final sample
size and confidence-interval half-length that we have some-
times observed with ASAP. Display (8) implies that for
i=12,...,6, the significance level for the multivariate
normality test has the following values: 0.10, 0.083, 0.048,
0.019, 0.0052, and 0.001; and on each iteratidseyond
the sixth,s; declines by at least an order of magnitude.

3.2 Building an AR(1) Model for Dependent Normal
Batch Means

If the batch means pass the test for joint multivariate nor-
mality, then we seek to adjust the classical batch means Cl
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(2) by taking into account the deviation of the distribution series model. For an AR(1) process (10), the covariance at
of the classical NOBM-ratio (4) from the desired Student's  lag ¢ is given by Co{¥;, ¥¢4,] = (p|1‘1|ga2 (1— ¢?), for
t-distribution withk” — 1 degrees of freedom. Our adjust- 4 =0, +1, +2, ... . Thus if (10) is an adequate model of
ment is based on an inverted Cornish-Fisher expansion for the batch means process for batches of sizand if o1

(4) that involves the first four cumulants of (4). In the next ands, denote the usual maximum likelihood estimates of
section, we develop expressions for the first four cumulants ¢, and o, respectively (Box, Jenkins, and Reinsel 1994,

of (4) in terms of VafY (m)] and Vaf Y (m, k) ]. To com- Chapter 7), then the estimated covariances in (11) are
pute sample estimators of Var(m)] and Vaf Y (m, k') ], we

fit an order-one autoregressive (that is, AR(1)) time series . al‘q‘ >

model (Box, Jenkins, and Reinsel 1994) to the sequence  Ym(9) = 1_512% for ¢q=0+1,£2,.... (12)

of batch meangY;(m) : j = 5,...,k}. (In this section
we suppress the indexof the current iteration of ASAP2  gee Steiger (1999) for complete details on the time series
to simplify the notation; no confusion can result from this  gstimation techniques used in ASAP2.

simplification since the iteration index remains the same

throughout the discussion.) For the batch means variance 3 3 confidence Interval for Dependent Batch Means
estimatorVar[Y (m)], we take the usual maximum likeli-

hood estimator of the variance of the fitted AR(1) process p this section, we formulate an adjustment to the usual Cl
(see Chapter 7 of Box, Jenkins, and Reinsel 1994); and (2) that accounts for dependency between the batch means.

for the grand mean variance estimattm[_Y(m, K], we The adjustment is based on the first four cumulants of the
derive a similar statistic based on the estimated covariances ;g,,al¢-ratio (4) on which the classical confidence interval

between all relevant batch means expressed in terms of the ) js puilt. To simplify the discussion, we let
maximum likelihood estimators of the parameters of the
fitted AR(1) process. - , >

If the batch means pass the test for multivariate normality ‘/P[ Yom, k) — “’X] D= S
detailed in §3.1, then an AR(1) process is fitted to the Na[ym)] Var[ Y (m)]
set of k¥’ = 252 batch means. This is based on all our
previous computational experience with the original ASAP respectively denote the numerator and denominator of the
algorithm (Steiger 1999; Steiger and Wilson 1999, 2000, t-ratio (4) based oit’ batch means for batches of size
2002). Generally, however, identification and estimation of To compute the moments of (4), we make the following
autoregressive—time series models should be based on at leaskey assumptions.
50 and preferably 100 or more observations (Box, Jenkins, o o
and Reinsel 1994, p. 17); and this is one of the reasons that A1 The batch means have a joint multivariate normal

(13)

ASAP2 requires an initial batch count of 256. Adapting the distribution. _
notation in Box, Jenkins, and Reinsel (1994) to the notation A2:  As defined in (13), the numeratdf and denomi-
used here. we Ietl?j a=Yjm)—px:j=5 k) nator D of the z-ratio (4) are independent.

: 4 = Yi(m) - : N _ _ A . _
denote the corresponding deviations from the steady-state A3:  The squared d2enom|t1atdb) of the s-ratio (4) is
meanux. The ¢th observation of an AR(1) process can be distributed asyg_,/ (k" — 1).

expressed as Note that if A holds and the batch means are independent,

then A and Ag follow immediately. The basis for Ais
(10) ; o :

ASAP2’s test for multivariate normality; moreover, some
whee ¢ is the auioregressive paraeter andis an  hESIeloland experinentlevidenc o e easonabieress
independent normal “shock” with mean zero and variance 2 e . 7!

o2 P and in Figures 9-10 of Steiger and Wilson (2001).

ar . _ ~ Exploiting assumptions A-A3, we first derive expres-
The estimators of V@ (m)] = Var(¥,] and the other sions for the first four cumulants;, «2, «3, andkg4 of the

\p;::f\r?n(%e;cs/)o]ftheAR(l) model (10) are then used to estimate NOBM :-ratio (4). From A—Ag it follows that

Y~[:¢1Yg_1+ag for =212 ...,

Vo1 kp, =0 for p =1,3 andk’ > 5, (14)
v / 1 lg1\ ~ Iy v /
@Y k)] =~ ¥ (1— —,) Su@. (1) R - NVa Yo K]
Ko k 2= avanrmy k=4 (19

2 /a2 V /
wherey,,(¢) denotes the estimated lageovariance of the K4 = 2(K) (k" — 1)<Var [Y(m’ k)]
batch meangY;(m) : j =5, ..., k} based on the fitted time (k' — 32(k' — 5)Var’[Y (m)]
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for k¥’ > 6. (16)
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See Steiger (1999) or Steiger and Wilson (2002) for a detailed
justification of (14)—(16). In terms of these cumulants,
we obtain the following adjusted 10D— «)% confidence
interval for px:

_ S
Y(m, k') + h’(zlfa/z)m—];’j,

e

K3

where h'(z1-a/2) = </<1 - €>

K2 —

2

17)

1 kg 53

- =+ —>Zl—a/2

1
+<+ 8 " 36

2
K3 o K4 K3
T2 (2—4 - E)

The result (17) is obtained from the inverted Cornish-Fisher
expansion (6.56) of Stuart and Ord (1994) based on a
standard normal density.

Exploiting our approximations for the first four cumu-
lants of ther-ratio (4) based on (14)—(16), we compute
the final confidence interval delivered by ASAP2 as fol-
lows. In the expressions (15) and (16) for and k4, we
replace the quantities Viaf(m)] and Vaf Y (m, k') | by the
corresponding variance estimato/lz?r[Y (m)] = 7,,(0) and
Var[ Y (m, k) ] that are respectively obtained from relations
(12) and (11) by fitting an AR(1) process to the batch
means{Y;(m) : j = 5,...,k}; and this procedure yields
the approximate 10Q — o)% confidence interval (5) for
Hx-

3
L1—a/2-

3.4 Fulfilling the Precision Requirement

The final step in ASAP2 is to determine if the constructed
confidence interval satisfies the user’s precision requirement.
The confidence interval is based on a nonsignificant result
from the multivariate normality test (that is, the batch means
pass the test for multivariate normality). If the relevant
precision requirement
H<H* or H<r¥Y| (18)
is satisfied, then ASAP2 terminates, returning a confidence
interval with midpointy and half-lengthH . If the precision
requirement (18) is not satisfied on iteratiaaf ASAP2, then

the procedure estimates the number of additional batches

ki required to satisfy (18) using batch size,

H 2
ki = Rm> k;—‘ — k.

To simplify the operation of ASAP2, we specified an
upper limit on the number of batches that the algorithm
may require. Preliminary experiments with ASAP2 revealed
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(19)

that no substantial improvements in the performance of the
procedure could be achieved by setting the upper limit on
the batch count much above 1,500. If the projected total
number of batchek; +ki+ exceeds 1,504, then a new batch
size is calculated and the batch count remains fixed so that

If ki + k" > 1,504, then m;1 = [(H/H*) m;]
and ki+1 =k;.

If, however, the projected total number of batches does not
exceed 1,504, then a new batch count is calculated and the
batch size remains fixed so that

If ki +k;" < 1,504, then kip1=k +k;
andm,-+1 =m;.

Thus if the user-specified precision requirement (18) is not
satisfied on iteration of ASAP2, then iteration 4+ 1 will

be required in which the number of batches; < 1,504
and the total sample size is finally taken to be

nit1 =mjy1kii1;

and the user must provide the additional simulation responses
{X;:j=mni+1n;+2, ..., n;1)before executing iteration
i + 1 of ASAP2.

The user then performs iteration 1 of ASAP2 with
the values ofn; 1, ki1, andn; 1 for the batch size, batch
count, and total sample size, respectively. The first four
batches of the entire simulation-generated data set are again
omitted from the calculation of the overall sample mean.
The batch means fdefjJrl = k;+1 — 4 batches of sizer; ;1
are computed. Then an updated AR(1) fit is made using
kf+1 batches of sizen;,1; moreover, in this situation new
estimates of V4l (m; 1)), Var[ Y (miy1. k], ) |, k2, and
k4 are computed; and the updated CI (5) is constructed.
If the precision requirement (18) is satisfied on iteration
i +1 of ASAP2, then the algorithm terminates, returning a
confidence interval with midpoint’ = ¥ (m; 41, k., ;) and
the associated half-lengtl. If the required precision is
not achieved on iteratioh+ 1 of ASAP2, then the rest of
iterationi + 1 of ASAP2 proceeds along the same lines as
described above.

4 PERFORMANCE EVALUATION FOR
SELECTED NOBM PROCEDURES

To evaluate the performance of ASAP2 with respect to the
coverage probability of its confidence intervals, the mean
and variance of the half-length of its confidence intervals,
and its total sample size, we applied ASAP2 together with the
ABATCH, LBATCH, and ASAP algorithms (Fishman 1996;
Fishman and Yarberry 1997; Steiger and Wilson 1999, 2000,
2002) to the queue waiting time process for e M /1
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gueue with server utilization of 0.9 and an empty-and-idle performance of ASAP and ASAP2 that can be expected in
initial condition. This is a particularly difficult test problem  many practical applications. On the other hand, ABATCH
for several reasons: (a) the magnitude of the initialization and LBATCH are nonsequential procedures whose proper
bias is substantial and decays relatively slowly; (b) in steady- operation may require direct interaction with the user (Fish-
state operation the autocorrelation function of the waiting man 1998); and thus it is not clear that the following results
time process decays very slowly with increasing lags; and (c) exemplify the performance of ABATCH and LBATCH in

in steady-state operation the marginal distribution of waiting practical applications. Nevertheless, we believe that the
times has an exponential tail and is therefore markedly results given below provide some basis for comparing the
nonnormal. Because of these characteristics, we can expectperformance of ABATCH, LBATCH, ASAP, and ASAP2.
slow convergence to the classical requirement that the batch Since each confidence interval with a nominal coverage
means are independent and identically normally distributed. probability of 90% was replicated 400 times, the standard
This test problem most dramatically displays one of the error of each coverage estimator is approximately 1.5%. As
advantages of the ASAP2 algorithm—namely, that ASAP2 explained below, this level of precision in the estimation
does not rely on any test for independence of the batch of coverage probabilities turns out to be sufficient to re-
means. veal significant differences in the performance of ASAP2

The steady-state mean response is available analytically versus ASAP, ABATCH, and LBATCH in the test problem
for this test problem; thus we were able to evaluate the presented here.
performance of ASAP, ASAP2, ABATCH, and LBATCH in As can be seen from Table 1, ASAP2 outperforms
terms of actual versus nominal coverage probabilities for the ABATCH and LBATCH with respect to confidence inter-
confidence intervals delivered by each of these procedures. val coverage for all three precision requirements. As we

We performed 400 independent replications of each demand more precision, we are of course forced to per-
batch means procedure to construct nominal 90% confidence form more sampling. The results in Table 1 suggest that
intervals that satisfy three different precision requirements: ABATCH and LBATCH will give satisfactory coverage if

these procedures are supplied with an adequate amount of

(1) no precision requirement—that is, we continued data; however, ABATCH and LBATCH provide no mecha-

the simulation of each test problem until ASAP2  nism for determining the amount of data that should be used.
delivered a confidence interval (5) based on 256 A desirable feature of ASAP2 is that it usually determines a
batches of the size at which the batch means passed sample size sufficient to yield acceptable results. It should be
the statistical test (7) for multivariate normality  recognized, however, that ASAP2 was designed for use with
without considering a precision requirement; a user-specified precision requirement; and in the absence

(2) +£15% precision—that is, we continued the simu- of a precision requirement, ASAP2-generated confidence

lation of each test problem until ASAP2 delivered intervals can be highly variable in their half-lengths. If a
a confidence interval (3) that satisfied the relative yser-specified precision requirement is imposed after using
precision requirement (18) with* = 0.15; and ASAP2 to generate an initial or “pilot” confidence interval

(3) £7.5% precision—that is, we continued the simu-  without a precision requirement, then in our computational

lation of each test problem until ASAP2 delivered  experience, the resulting follow-up confidence interval will

a confidence interval (3) that satisfied the relative exhibit the same stability that we have observed in all our

precision requirement (18) with* = 0.075. other applications of ASAP2 with a user-specified (nonva-
cuous) precision requirement.

By comparing the performance of ASAP2 versus the
performance of the original ASAP algorithm given in the
rightmost column in Table 1, we see that ASAP2 frequently
routperforms ASAP in small-sample applications.

In addition to the experimentation using the ASAP2 al-
gorithm, we performed 400 independent replications of the
original ASAP algorithm under the same precision require-
ments described above. However, for case (a) above (thatis
no precision requirement), we continued the simulation of
each test problem until ASAP delivered a confidenceinterval 5 ~oNCLUSIONS
based on 96 batches of the size at which the batch means
passed either the statistical test for independence or for Building on the promising results we obtained with ASAP
multivariate normality, as prescribed by the original ASAP ., o proad diversity of stochastic systems, we have intro-
algorithm (Steiger 1999; Steiger and Wilson 2000, 2002). q,,ceq ASAP2 as an improved batch-means procedure for
Since ABATCH and LBATCH do not explicitly determine  gio54y.-state simulation output analysis. Our extensive ex-

a sample size, we passed to the ABATCH and LBATCH o imental performance evaluation of ASAP2 indicates that
algorithms the same data sets used by ASAP2. Based onji o performs LBATCH and ABATCH in virtually all the

all our computational experience with ASAP and ASAP2, - qchastic systems to which we have applied all three pro-
we believe that the results given below are typical of the ceqyres. Moreover, built into ASAP2 is an enhanced test
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Table 1: Performance of Batch-Means Procedures for Mya//1
Queue Waiting Time Process with Traffic Intensity= 0.9 Based on
400 Independent Replications of Nominal 90% Confidence Intervals

Precision Procedure
Requirement LBATCH ABATCH ASAP2 ASAP
NO PRECISION
avg. sample size 22554 5873
coverage 65% 72% 88% 81%
avg. rel. precision 0.175 0.209| 0.579 1.31
avg. ClI half-length 1.660 1.980| 6.440 18.2
var. Cl half-length 1.500 1.716| 167.0 3506
+15% PRECISION
avg. sample size 93374 | 117856
coverage 75% 81% 90% 93%
avg. rel. precision 0.089 0.103| 0.135 0.13

avg. Cl half-length 0.788 0.912| 1.184 1.19
var. Cl half-length 0.026 0.028| 0.025 0.022
+7.5% PRECISION
avg. sample size 281022 321468
coverage 80% 85% 92% 93%
avg. rel. precision 0.057 0.063| 0.070 0.069
avg. Cl half-length 0.511 0.563| 0.628 0.62

var. Cl half-length 0.004 0.005| 0.002 0.003

for normality of the batch means; and this feature should Fishman, G. S. 1996Vonte Carlo: Concepts, algorithms,
enable ASAP2 to avoid the anomalous behavior of ASAP and applications New York: Springer-Verlag.
that we have observed in some stochastic systems whereinFishman, G. S. 1998. LABATCH.2: Software for statistical
significant departures from normality of the batch means are analysis of simulation sample path dataPhoceedings
observed even for batch sizes sufficiently large to ensure neg- of the 1998 Winter Simulation Conferenc. D. J.
ligible dependence between the batch means. Although such Medeiros, E. F. Watson, J. S. Carson, and M. S. Mani-
situations occur relatively infrequently in our computational vannan, 131-139. Piscataway, New Jersey: Institute
experience, they should be properly handled by a compre- of Electrical and Electronics Engineers. Available via
hensive, general-purpose batch-means algorithm for steady- <www.informs-cs.org/wsc98papers/017.PDF>
state simulation output analysis. Based on our preliminary [accessed June 25, 2000].
experimentation, ASAP2 appears to have this property. We Fishman, G. S., and L. S. Yarberry. 1997. An implemen-
are continuing the refinement and experimental evaluation tation of the batch means methoddlFORMS Journal
of ASAP2; and future developments concerning ASAP2, on Computingd (3): 296-310.
including technical reports, papers submitted to archival Fox, B. L., D. Goldsman, and J. J. Swain. 1991. Spaced
journals, software, and corrections will be available on batch meansOperations Research Lettet§:255-263.
the websitesxwww.isye.gatech.edu/christos> Malkovich, J. F., and A. A. Afifi. 1973. On tests for multi-
and <www.isye.gatech.edu/"sman> as well as variate normality.Journal of the American Statistical
<www.ie.ncsu.edu/jwilson> . Association68:176—-179.

Royston, J. P. 1982a. An extension of Shapiro and WiK’s
ACKNOWLEDGMENTS test for normality to large sample#\pplied Statistics

31 (2): 115-124.
This research was supported by the National Science Foun- Royston, J. P. 1982b. Algorithm AS 181. TH#® test for

dation under grant number DMI-9900164. normality. Applied Statistics31:176-180.
Steiger, N. M. 1999. Improved batching for con-
REFERENCES fidence interval construction in steady-state sim-
ulation. Doctoral dissertation, Department of
Box, G. E. P.,, G. M. Jenkins, and G. C. Reinsel. 1994. Industrial Engineering, North Carolina State Uni-
Time series analysis: Forecasting and contr8d ed. versity, Raleigh, North Carolina. Available from
Englewood Cliffs, New Jersey: Prentice Hall. <www.lib.ncsu.edu/etd> [full web address is

<http://www.lib.ncsu.edu/etd/public/
343


<www.isye.gatech.edu/~christos>
http://www.isye.gatech.edu/~christos
<www.isye.gatech.edu/~sman>
http://www.isye.gatech.edu/~sman
<www.ie.ncsu.edu/jwilson>
http://www.ie.ncsu.edu/jwilson
<www.informs-cs.org/wsc98papers/017.PDF>
http://www.informs-cs.org/wsc98papers/017.PDF
<www.lib.ncsu.edu/etd>
http://www.lib.ncsu.edu/etd/public/etd-19231992992670/etd.pdf

Steiger, Lada, Wilson, Alexopoulos, Goldsman, and Zouaoui

etd-19231992992670/etd.pdf> ; accessed
June 18, 2000].

Steiger, N. M., and J. R. Wilson. 1999. Improved
batching for confidence interval construction in

steady-state simulation. IRroceedings of the 1999
Winter Simulation Conferenceed. P. A. Farrington,
H. B. Nembhard, D. T. Sturrock, and G. W. Evans,
442-451. Piscataway, New Jersey:. Institute of
Electrical and Electronics Engineers. Available from
<www.informs-cs.org> [full web address is
<www.informs-cs.org/wsc99papers/061.

PDF> accessed March 21, 2000].

Steiger, N. M., and J. R. Wilson. 2000. Experimental
performance evaluation of batch-means procedures
for simulation output analysis. IfProceedings of
the 2000 Winter Simulation Conferenced. J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick,
627-636. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers. Available from
<www.informs-cs.org> [full web address is
<www.informs-cs.org/wscOOpapers/084.

PDF> accessed January 6, 2001].

Steiger, N. M., and J. R. Wilson. 2001. Convergence
properties of the batch means method for simulation
output analysisINFORMS Journal on Computing3
(4): 277-293.

Steiger, N. M., and J. R. Wilson. 2002. An improved
batch means procedure for simulation output anal-
ysis. Management Sciencén review. Available
via <ftp.ncsu.edu/pub/eos/pub/jwilson>
[full web address isftp://ftp.ncsu.edu/pub/
eos/publ/jwilson/asaporv12.pdf>
January 16, 2002].

Stuart, A. and J. K. Ord. 199&endall's advanced theory
of statistics, volume 1: Distribution theary6th ed.
London: Edward Arnold.

Tew, J. D., and J. R. Wilson. 1992. Validation of sim-
ulation analysis methods for the Schruben-Margolin
correlation-induction strategyoperations Research0
(1): 87-103.

; accessed

AUTHOR BIOGRAPHIES

NATALIE M. STEIGER is an Assistant Professor of
Production and Operations Management in the Univer-
sity of Maine Business School. Her e-mail address is
<nsteiger@maine.edu>

EMILY K. LADA is a Ph.D. student in the Operations Re-
search Graduate Program at North Carolina State University.
Her e-mail address iseklada@eos.ncsu.edu> , and

her web page iswww4.ncsu.edu/"eklada/>

344

JAMES R. WILSON is Professor
the Department of Industrial
Carolina State University.
<jwilson@eos.ncsu.edu>

<www.ie.ncsu.edu/jwilson>

and Head of
Engineering at North
His e-mail address is
, and his web page is

CHRISTOS ALEXOPOULOS is an Associate Pro-
fessor in the School of Industrial & Systems En-
gineering at Georgia Tech. His e-mail address is
<christos@isye.gatech.edu> , and his web page
is <www.isye.gatech.edu/"christos>

DAVID GOLDSMAN is a Professor in the School of Indus-
trial & Systems Engineering at Georgia Tech. His e-mail
address is<sman@isye.gatech.edu> , and his web
page is<www.isye.gatech.edu/"sman>

FAKER ZOUAOQOUI is an operations research consultant
in the Research Group at Sabre, Inc. His e-mail address is
<faker.zouaoui@sabre.com>


<www.informs-cs.org>
http://www.informs-cs.org/wsc99papers/061.PDF
<www.informs-cs.org>
http://www.informs-cs.org/wsc00papers/084.PDF
<ftp.ncsu.edu/pub/eos/pub/jwilson>
ftp://ftp.ncsu.edu/pub/eos/pub/jwilson/asaporv12.pdf
<nsteiger@maine.edu>
mailto:nsteiger@maine.edu
<eklada@eos.ncsu.edu>
mailto:eklada@eos.ncsu.edu
<www4.ncsu.edu/~eklada/>
http://www4.ncsu.edu/~eklada/
<jwilson@eos.ncsu.edu>
mailto:jwilson@eos.ncsu.edu
<www.ie.ncsu.edu/jwilson>
http://www.ie.ncsu.edu/jwilson
<christos@isye.gatech.edu>
mailto:christos@isye.gatech.edu
<www.isye.gatech.edu/~christos>
http://www.isye.gatech.edu/~christos
<sman@isye.gatech.edu>
mailto:sman@isye.gatech.edu
<www.isye.gatech.edu/~sman>
http://www.isye.gatech.edu/~sman
<faker.zouaoui@sabre.com>
mailto:faker.zouaoui@sabre.com

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 336
	02: 337
	03: 338
	04: 339
	05: 340
	06: 341
	07: 342
	08: 343
	09: 344


