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ABSTRACT

We introduce ASAP2, an improved variant of the batch
means algorithm ASAP for steady-state simulation outp
analysis. ASAP2 operates as follows: the batch size is p
gressively increased until the batch means pass the Shap
Wilk test for multivariate normality; and then ASAP2 de
livers a correlation-adjusted confidence interval. The latt
adjustment is based on an inverted Cornish-Fisher expans
for the classical batch meanst-ratio, where the terms of
the expansion are estimated via a first-order autoregress
time series model of the batch means. ASAP2 is a s
quential procedure designed to deliver a confidence inter
that satisfies a prespecified absolute or relative precis
requirement. When used in this way, ASAP2 compares
vorably to ASAP and the well-known procedures ABATCH
and LBATCH with respect to close conformance to th
precision requirement as well as coverage probability a
mean and variance of the half-length of the final confiden
interval.

1 INTRODUCTION

In discrete-event simulation, we are often interested in e
timating the steady-state meanµX of a stochastic output
process

{
Xj : j ≥ 1

}
generated by a single, though long

simulation run. Assuming the target process is stationa
and given a time series of lengthn from this process, we see
that a natural estimator ofµX is the sample mean, given by
X(n) = n−1∑n

j=1Xj . We also require some indication o
this estimator’s precision; and typically a confidence inte
-
o-

n

e
-
l

-

val (CI) for µX is constructed at a certain confidence lev
1− α, where 0< α < 1. The CI forµX should satisfy
two criteria: (a) its actual coverage probability is close
the nominal level 1− α, and (b) it is narrow enough to b
informative.

In the simulation analysis method of nonoverlappi
batch means (NOBM), the sequence of simulation-genera
outputs {Xj : j = 1, . . . , n} is divided into k adjacent
nonoverlapping batches, each of sizem. For simplicity, we
assume thatn is a multiple ofm so thatn = km. The
sample mean for thej th batch is

Yj (m) = 1

m

mj∑
i=m(j−1)+1

Xi for j = 1, . . . , k;

and the grand mean of the individual batch means,

Y = Y (m, k) = 1

k

k∑
j=1

Yj (m) , (1)

is used as an estimator forµX (note thatY (m, k) = X(n)).
We construct a CI centered on an estimator like (1), wh
in practice we may exclude some initial batches to elimin
the effects of initialization bias.

If the batch sizem is sufficiently large so that the batc
means

{
Yj (m) : 1≤ j ≤ k

}
are approximately independen

and identically distributed (i.i.d.) normal random variabl
with meanµX, then we can apply a classical result fro
statistics (see, for example, Steiger and Wilson 1999, 20



Steiger, Lada, Wilson, Alexopoulos, Goldsman, and Zouaoui

,

s
e

n

-

e
ce
n
d
d

re

h
s

n

rt

n
s

2001) to compute a confidence interval forµX from the
batch means. The sample variance of thek batch means
for batches of sizem is

S2
m,k =

1

k − 1

k∑
j=1

[
Yj (m)− Y (m, k)

]2
.

If the original simulation-generated process{Xj : j =
1, . . . , n} is stationary and weakly dependent as specified
for example, in Theorem 1 of Steiger and Wilson (2001)
then it follows that asm→∞ with k fixed so thatn→∞,
an asymptotically valid 100(1− α)% confidence interval
for µX is

Y (m, k)± t1−α/2,k−1
Sm,k√
k
, (2)

wheret1−α/2,k−1 denotes the 1− α/2 quantile of Student’s
t-distribution withk − 1 degrees of freedom.

Sequential NOBM procedures address the problem o
determining the batch size,m, and the number of batches,k,
that are required to satisfy approximately the assumption
of independence and normality of the batch means. If thes
assumptions are exactly satisfied, then we will obtain CI
whose actual coverage probability is exactly equal to th
nominal coverage probability. In this paper we introduce
ASAP2, an improved variant of theASAP algorithm (Steiger
and Wilson 1999, 2000, 2002) for analysis of steady-stat
simulation output; and we compare the performance o
ASAP2 versus the original ASAP algorithm as well as the
widely used NOBM procedures ABATCH and LBATCH
(Fishman 1996; Fishman andYarberry 1997; Fishman 1998

The rest of this paper is organized as follows. A brief
overview ofASAP2 is given in §2, and a detailed explanation
of the steps of ASAP2 is given in §3. Some of the results
of our performance evaluation of ASAP2 are presented i
§4. Finally in §5 we summarize the main findings of this
work.

2 OVERVIEW OF ASAP2

ASAP2 requires the following user-supplied inputs:

1. a simulation-generated output process{Xj : j =
1,2, . . . , n} from which the steady-state expected
responseµX is to be estimated;

2. a confidence coefficientα specifying that the de-
sired confidence-interval coverage probability is
1− α; and

3. an absolute or relative precision requirement spec
ifying the final confidence-interval half-length in
terms of (a) a maximum absolute half-lengthH ∗,
or (b) a maximum relative fractionr∗ of the mag-
nitude of the final grand meanY .
,
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f
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-

ASAP2 delivers the following outputs:

1. a nominal 100(1−α)% confidence interval forµX
having the form

Y ±H where H ≤ H ∗ or H ≤ r∗|Y |, (3)

provided no additional simulation-generated obser
vations are required; or

2. a new total sample sizen to be supplied to the
algorithm.

If additional observations of the target process must b
generated by the user’s simulation model before a confiden
interval with the required precision can be delivered, the
ASAP2 must be called again with the additional data; an
this cycle of simulation followed by analysis may be repeate
several times before ASAP2 finally delivers a confidence
interval.

On each iteration of ASAP2, the algorithm operates
as follows. The simulation outputs are divided initially
into a fixed number of batches (namely,k = 256 batches);
and batch means are computed. The first four batches a
discarded, and from the remainingk′ = k− 4= 252 batch
means, we select every other group of four adjacent batc
means to form a sample of 32 four-dimensional vector
of batch means that will be tested for joint multivariate
normality. If the normality test is failed, then the batch
sizem is increased by a factor of

√
2 and the process is

repeated until the normality test is passed.
Upon acceptance of the hypothesis of joint multivari-

ate normality of the batch means, a CI is constructed—
specifically, the correlation-adjusted CI (5) below based o
k′ batch means for batches of sizem. The correlation cor-
rection uses an inverted Cornish-Fisher expansion (Stua
and Ord 1994) for the classical NOBM Studentt-ratio

t = Y (m, k′)− µX
Sm,k′/

√
k′
; (4)

and the terms of this expansion are estimated by fitting a
order-one autoregressive time-series model (Box, Jenkin
and Reinsel 1994) to the set ofk′ retained batch means.
Based on this approach, a correlation-adjusted 100(1−α)%
confidence interval forµX is

Y (m, k′)±
[(

1+ κ̂2− 1

2
− κ̂4

8

)
z1−α/2+ κ̂4

24
z3

1−α/2
]

×
√

V̂ar[Y (m)]
k′

, (5)

where: z1−α/2 denotes the 1− α/2 quantile of the stan-
dard normal distribution;κ̂2 and κ̂4 respectively denote
estimators of the second and fourth cumulants of thet-
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Figure 1: Flow Chart of ASAP2
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ratio (4); V̂ar[Y (m)] denotes an estimator of the varianc
of the batch means; and all these statistics are based
fitting an order-one autoregressive time-series model to
(correlated) batch means process{Yj (m) : j = 5, . . . , k} as
detailed in §§3.2–3.3 below.

Subsequent iterations of ASAP2 that are performed
satisfy the user-specified precision requirement (if there
one) do not repeat testing for multivariate normality of th
overall set of batch means. These subsequent iterati
require additional sampling, computing the additional bat
means, and reconstructing the CI, again discarding the fi
four batches of the overall data set (consisting of all origin
observations plus any additional observations required
ASAP2). Successive iterations of ASAP2 continue until th
precision requirement is met.

A flow chart of ASAP2 is depicted in Figure 1. In the
next section we provide complete details on the main ste
in the operation of ASAP2.

3 DETAILED STEPS OF ASAP2

3.1 Testing Batch Means for Normality

ASAP2 begins on iteration 1 with a user-specified initia
batch sizem1 (by defaultm1 = 16), requiring data fork1 =
256 initial batches. The results of extensive experimentati
show that ASAP2 performs well with this initial batch size
and batch count, even for processes that are highly depend
or whose marginal distributions exhibit marked departur
from normality. While a total ofn1 = k1m1 = 4,096
observations may exceed the user’s precision requirem
n

s

t

nt

t

or computing budget in some applications, such an initia
sample size is usually easy and inexpensive to generate

On each iteration of ASAP2 that requires a normality
test, the batch means are organized into groups of fou
adjacent quantities so that every other group can be tested
four-dimensional normality. Such an approach is tantamoun
to assuming that when the batch size is sufficiently large s
that the batch means pass the test for multivariate normalit
only dependence between batch means out to lag three
practically significant.

To address the start-up problem, we exclude the firs
group of four batches from the computation of overall
statistics for the batch means; and in each normality test, w
take aspacer(Fox, Goldsman, and Swain 1991) consisting
of a group of four ignored batch means between eac
group that is to be tested for normality. Our computationa
experience with ASAP2 in a wide variety of applications
has suggested that if the batch size is large enough for th
spacer-separated four-dimensional vectors of adjacent bat
means to pass the normality test, then the correspondin
spacer also provides a reasonable start-up period (statist
clearing time) for eliminating the effects of initialization
bias. Letk′1 = k1 − 4 = 252 denote the initial number of
batch means retained for confidence-interval constructio
from which we calculate the sample mean and variance

Y (m1, k
′
1) = 1

k′1

k1∑
j=5

Yj (m1)

and S2
m1,k

′
1
= 1
k′1− 1

k1∑
j=5

[
Yj (m1)− Y (m1, k

′
1)
]2
,
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respectively. (To simplify the subsequent notation, throug
out the rest of this paper we define aggregate batch statis
like Y (m1, k

′
1) andS2

m1,k
′
1

to exclude the first four batches

from the entire data set accumulated so far.)
The k′1 retained batch means{Yj (m1) : j = 5, . . . , k1}

are tested for multivariate normality by constructing 3
four-dimensional vectors{y` : ` = 1, . . . ,32} as depicted
in the following layout:

Y5(m1), Y6(m1), Y7(m1), Y8(m1)︸ ︷︷ ︸
1st (4×1) vector y1

,

Y9(m1), Y10(m1), Y11(m1), Y12(m1)︸ ︷︷ ︸
ignored spacer

,

Y13(m1), Y14(m1), Y15(m1), Y16(m1)︸ ︷︷ ︸
2nd (4×1) vector y2

,

Y17(m1), Y18(m1), Y19(m1), Y20(m1)︸ ︷︷ ︸
ignored spacer

,

· · ·
Y253(m1), Y254(m1), Y255(m1), Y256(m1)︸ ︷︷ ︸

32nd (4×1) vector y32

.



(6)

We apply the Shapiro-Wilk test for multivariate nor
mality (Malkovich and Afifi 1973) to the resulting data se
{y` : ` = 1, . . . ,32}. Although normality of each four-
dimensional random vectory` is not sufficient to ensure
joint normality of all k′1 = 252 batch means (Stuart and
Ord 1994, Exercise 15.20), our computational experien
strongly suggests that this approach to testing for joint no
mality of the batch means has sufficient power to be effecti
in practical applications of ASAP and ASAP2 (Steiger 199
Steiger and Wilson 1999, 2000, 2002).

Given a random sample{y` : ` = 1, . . . , g} of q-
dimensional response vectors, we perform the Shapiro-W
test for multivariate normality as follows. First we comput
the sample statistics

y = g−1
g∑
`=1

y` and A =
g∑
`=1

(y` − y)(y` − y)T .

Throughout the rest of this section, we assume that t
random matrixA is nonsingular with probability one. This
property can be ensured, for example, by a mild technic
requirement detailed by Tew and Wilson (1992, p. 91
provided the replication countg > q; and since we take
g = 32 andq = 4 in ASAP2, with probability one we
can identify the observationy† ∈ {y` : ` = 1,2, . . . , g} for
which

(y†− y)TA−1(y†− y) = max
`=1,...,g

{
(y` − y)TA−1(y` − y)

}
.

CI
s

l

We computeZ` ≡ (y†−y)TA−1(y`−y) for ` = 1,2, . . . , g;
and we sort these auxiliary quantities in ascending order
obtain the corresponding order statisticsZ(1) < Z(2) < · · ·
< Z(g). Let {β` : ` = 1,2, . . . , g} denote the associated
coefficients of the univariate Shapiro-Wilk statistic for a
random sample of sizeg (see Royston 1982a, 1982b). The
null hypothesis of multinormal responses{y`} is rejected at
the level of significanceδ (0 < δ < 1) if the multivariate
Shapiro-Wilk statistic,

W ∗ =
[∑g

`=1 β`Z(`)
]2

(y†− y)TA−1(y†− y)
, (7)

satisfiesW ∗ < w∗δ (q, g), the 100(1− δ)% quantile of the
null distribution ofW ∗. (The null distribution ofW ∗ is the
c.d.f.FW ∗(·) of (7) when this statistic is based on a random
sample of sizeg taken from aq-dimensional nonsingular
normal distribution.)

On theith iteration of ASAP2 fori = 1,2, . . . , we let
ki andmi respectively denote the batch count and the batc
size. An additional iteration of ASAP2 will be required
if the multivariate Shapiro-Wilk test yields a significant
result (that is, the 32 four-dimensional vectors of batc
means (6) fail the multivariate normality test) at the leve
of significanceδi , where

δi = δ1 exp
[
−ω(i − 1)2

]
for i = 1,2, . . . , (8)

with δ1 = 0.10 andω = 0.18421. If the test statisticW ∗i
computed from (7) on iterationi corresponds to aP -value
FW ∗(W ∗i ) < δi , then on iterationi + 1 the batch size and
batch count are respectively taken to be

mi+1 =
⌊√

2mi
⌋

and ki+1 = ki (9)

so that the total required sample size isni+1 = mi+1ki+1;
and thus the user must provide the additional simulatio
responses

{
Xj : j = ni + 1, ni + 2, . . . , ni+1

}
before exe-

cuting iterationi + 1 of ASAP2.
The scheme (6)–(9) is specifically designed so tha

ASAP2 avoids the excessive variability in the final sampl
size and confidence-interval half-length that we have som
times observed with ASAP. Display (8) implies that for
i = 1,2, . . . ,6, the significance levelδi for the multivariate
normality test has the following values: 0.10, 0.083, 0.048
0.019, 0.0052, and 0.001; and on each iterationi beyond
the sixth,δi declines by at least an order of magnitude.

3.2 Building an AR(1) Model for Dependent Normal
Batch Means

If the batch means pass the test for joint multivariate no
mality, then we seek to adjust the classical batch means
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(2) by taking into account the deviation of the distributio
of the classical NOBMt-ratio (4) from the desired Student’s
t-distribution withk′ − 1 degrees of freedom. Our adjust
ment is based on an inverted Cornish-Fisher expansion
(4) that involves the first four cumulants of (4). In the nex
section, we develop expressions for the first four cumulan
of (4) in terms of Var[Y (m)] and Var

[
Y (m, k′)

]
. To com-

pute sample estimators of Var[Y (m)] and Var
[
Y (m, k′)

]
, we

fit an order-one autoregressive (that is, AR(1)) time seri
model (Box, Jenkins, and Reinsel 1994) to the sequen
of batch means{Yj (m) : j = 5, . . . , k}. (In this section
we suppress the indexi of the current iteration of ASAP2
to simplify the notation; no confusion can result from thi
simplification since the iteration index remains the sam
throughout the discussion.) For the batch means varian
estimatorV̂ar[Y (m)], we take the usual maximum likeli-
hood estimator of the variance of the fitted AR(1) proce
(see Chapter 7 of Box, Jenkins, and Reinsel 1994); a
for the grand mean variance estimator̂Var

[
Y (m, k′)

]
, we

derive a similar statistic based on the estimated covarian
between all relevant batch means expressed in terms of
maximum likelihood estimators of the parameters of th
fitted AR(1) process.

If the batch means pass the test for multivariate normal
detailed in §3.1, then an AR(1) process is fitted to th
set of k′ = 252 batch means. This is based on all ou
previous computational experience with the original ASA
algorithm (Steiger 1999; Steiger and Wilson 1999, 200
2002). Generally, however, identification and estimation
autoregressive–time series models should be based on at
50 and preferably 100 or more observations (Box, Jenkin
and Reinsel 1994, p. 17); and this is one of the reasons t
ASAP2 requires an initial batch count of 256. Adapting th
notation in Box, Jenkins, and Reinsel (1994) to the notati
used here, we let{Ỹj−4 ≡ Yj (m) − µX : j = 5, . . . , k}
denote the corresponding deviations from the steady-st
meanµX. The`th observation of an AR(1) process can b
expressed as

Ỹ` = ϕ1Ỹ`−1+ a` for ` = 1,2, . . . , (10)

where ϕ1 is the autoregressive parameter anda` is an
independent normal “shock” with mean zero and varian
σ 2
a .

The estimators of Var[Y (m)] = Var[Ỹ`] and the other
parameters of the AR(1) model (10) are then used to estim
Var

[
Y (m, k′)

]
:

V̂ar
[
Y (m, k′)

] = 1

k′

k′−1∑
q=−k′+1

(
1− |q|

k′

)
γ̂m(q), (11)

whereγ̂m(q) denotes the estimated lag-q covariance of the
batch means{Yj (m) : j = 5, . . . , k} based on the fitted time
r

s

s
e

e

d
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e
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,
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te

te

series model. For an AR(1) process (10), the covariance
lag q is given by Cov

[
Ỹ`, Ỹ`+q

] = ϕ
|q|
1 σ 2

a

/(
1− ϕ2

1

)
, for

q = 0,±1,±2, . . . . Thus if (10) is an adequate model of
the batch means process for batches of sizem and if ϕ̂1
and σ̂a denote the usual maximum likelihood estimates o
ϕ1 and σa respectively (Box, Jenkins, and Reinsel 1994
Chapter 7), then the estimated covariances in (11) are

γ̂m(q) = ϕ̂
|q|
1

1− ϕ̂ 2
1

σ̂ 2
a for q = 0,±1,±2, . . . . (12)

See Steiger (1999) for complete details on the time seri
estimation techniques used in ASAP2.

3.3 Confidence Interval for Dependent Batch Means

In this section, we formulate an adjustment to the usual C
(2) that accounts for dependency between the batch mea
The adjustment is based on the first four cumulants of th
usualt-ratio (4) on which the classical confidence interva
(2) is built. To simplify the discussion, we let

N ≡
√
k′
[
Y (m, k′)− µX

]√
Var[ Y (m) ]

, D ≡
√

S2
m,k′

Var[ Y (m)]
(13)

respectively denote the numerator and denominator of t
t-ratio (4) based onk′ batch means for batches of sizem.
To compute the moments of (4), we make the following
key assumptions.

A1: The batch means have a joint multivariate norma
distribution.

A2: As defined in (13), the numeratorN and denomi-
natorD of the t-ratio (4) are independent.

A3: The squared denominatorD2 of the t-ratio (4) is
distributed asχ2

k′−1/(k
′ − 1).

Note that if A1 holds and the batch means are independen
then A2 and A3 follow immediately. The basis for A1 is
ASAP2’s test for multivariate normality; moreover, some
theoretical and experimental evidence for the reasonablen
of A2 and A3 can be found, respectively, in equation (19
and in Figures 9–10 of Steiger and Wilson (2001).

Exploiting assumptions A1–A3, we first derive expres-
sions for the first four cumulantsκ1, κ2, κ3, andκ4 of the
NOBM t-ratio (4). From A1–A3 it follows that

κp = 0 for p = 1,3 andk′ ≥ 5, (14)

κ2 = k′(k′ − 1)Var
[
Y (m, k′)

]
(k′ − 3)Var[Y (m)] for k′ ≥ 4, (15)

κ4 = 2(k′)2(k′ − 1)2Var2
[
Y (m, k′)

]
(k′ − 3)2(k′ − 5)Var2[Y (m)] for k′ ≥ 6. (16)
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See Steiger (1999) or Steiger andWilson (2002) for a detail
justification of (14)–(16). In terms of these cumulants
we obtain the following adjusted 100(1− α)% confidence
interval forµX:

Y (m, k′)± h′(z1−α/2)
Sm,k′√
k′
,

where h′(z1−α/2) =
(
κ1− κ3

6

)
(17)

+
(

1+ κ2− 1

2
− κ4

8
+ 5κ2

3

36

)
z1−α/2

+ κ3

6
z2

1−α/2+
(
κ4

24
− κ

2
3

18

)
z3

1−α/2.

The result (17) is obtained from the inverted Cornish-Fish
expansion (6.56) of Stuart and Ord (1994) based on
standard normal density.

Exploiting our approximations for the first four cumu-
lants of the t-ratio (4) based on (14)–(16), we compute
the final confidence interval delivered by ASAP2 as fo
lows. In the expressions (15) and (16) forκ2 and κ4, we
replace the quantities Var[Y (m)] and Var

[
Y (m, k′)

]
by the

corresponding variance estimatorŝVar[Y (m)] = γ̂m(0) and
V̂ar

[
Y (m, k′)

]
that are respectively obtained from relation

(12) and (11) by fitting an AR(1) process to the batc
means{Yj (m) : j = 5, . . . , k}; and this procedure yields
the approximate 100(1− α)% confidence interval (5) for
µX.

3.4 Fulfilling the Precision Requirement

The final step in ASAP2 is to determine if the constructe
confidence interval satisfies the user’s precision requireme
The confidence interval is based on a nonsignificant res
from the multivariate normality test (that is, the batch mean
pass the test for multivariate normality). If the relevan
precision requirement

H ≤ H ∗ or H ≤ r∗|Y | (18)

is satisfied, then ASAP2 terminates, returning a confiden
interval with midpointY and half-lengthH . If the precision
requirement (18) is not satisfied on iterationi ofASAP2, then
the procedure estimates the number of additional batch
k+i required to satisfy (18) using batch sizemi ,

k+i =
⌈(

H

H ∗

)2

k′i

⌉
− k′i . (19)

To simplify the operation of ASAP2, we specified an
upper limit on the number of batches that the algorithm
may require. Preliminary experiments with ASAP2 reveale
d

r
a

t.
lt

e

s

that no substantial improvements in the performance of th
procedure could be achieved by setting the upper limit o
the batch count much above 1,500. If the projected tot
number of batcheski+k+i exceeds 1,504, then a new batch
size is calculated and the batch count remains fixed so th

If ki + k+i > 1,504, then mi+1 = b(H/H ∗)mic
andki+1 = ki .

If, however, the projected total number of batches does n
exceed 1,504, then a new batch count is calculated and
batch size remains fixed so that

If ki + k+i ≤ 1,504, then ki+1 = ki + k+i
andmi+1 = mi.

Thus if the user-specified precision requirement (18) is n
satisfied on iterationi of ASAP2, then iterationi + 1 will
be required in which the number of batcheski+1 ≤ 1,504
and the total sample size is finally taken to be

ni+1 = mi+1ki+1;

and the user must provide the additional simulation respons
{Xj : j = ni+1, ni+2, . . . , ni+1}before executing iteration
i + 1 of ASAP2.

The user then performs iterationi + 1 of ASAP2 with
the values ofmi+1, ki+1, andni+1 for the batch size, batch
count, and total sample size, respectively. The first fou
batches of the entire simulation-generated data set are ag
omitted from the calculation of the overall sample mean
The batch means fork′i+1 = ki+1− 4 batches of sizemi+1
are computed. Then an updated AR(1) fit is made usin
k′i+1 batches of sizemi+1; moreover, in this situation new
estimates of Var[Y (mi+1)], Var

[
Y (mi+1, k

′
i+1)

]
, κ2, and

κ4 are computed; and the updated CI (5) is constructe
If the precision requirement (18) is satisfied on iteratio
i + 1 of ASAP2, then the algorithm terminates, returning
confidence interval with midpointY = Y (mi+1, k

′
i+1) and

the associated half-lengthH . If the required precision is
not achieved on iterationi + 1 of ASAP2, then the rest of
iteration i + 1 of ASAP2 proceeds along the same lines a
described above.

4 PERFORMANCE EVALUATION FOR
SELECTED NOBM PROCEDURES

To evaluate the performance of ASAP2 with respect to th
coverage probability of its confidence intervals, the mea
and variance of the half-length of its confidence intervals
and its total sample size, we appliedASAP2 together with th
ABATCH, LBATCH, and ASAP algorithms (Fishman 1996;
Fishman andYarberry 1997; Steiger and Wilson 1999, 200
2002) to the queue waiting time process for theM/M/1
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queue with server utilization of 0.9 and an empty-and-id
initial condition. This is a particularly difficult test problem
for several reasons: (a) the magnitude of the initializati
bias is substantial and decays relatively slowly; (b) in stea
state operation the autocorrelation function of the waiti
time process decays very slowly with increasing lags; and
in steady-state operation the marginal distribution of waiti
times has an exponential tail and is therefore marke
nonnormal. Because of these characteristics, we can ex
slow convergence to the classical requirement that the ba
means are independent and identically normally distribut
This test problem most dramatically displays one of t
advantages of the ASAP2 algorithm—namely, that ASA
does not rely on any test for independence of the ba
means.

The steady-state mean response is available analytic
for this test problem; thus we were able to evaluate
performance of ASAP, ASAP2, ABATCH, and LBATCH in
terms of actual versus nominal coverage probabilities for
confidence intervals delivered by each of these procedu

We performed 400 independent replications of ea
batch means procedure to construct nominal 90% confide
intervals that satisfy three different precision requiremen

(1) no precision requirement—that is, we continue
the simulation of each test problem until ASAP
delivered a confidence interval (5) based on 2
batches of the size at which the batch means pas
the statistical test (7) for multivariate normalit
without considering a precision requirement;

(2) ±15% precision—that is, we continued the sim
lation of each test problem until ASAP2 delivere
a confidence interval (3) that satisfied the relati
precision requirement (18) withr∗ = 0.15; and

(3) ±7.5% precision—that is, we continued the simu
lation of each test problem until ASAP2 delivere
a confidence interval (3) that satisfied the relati
precision requirement (18) withr∗ = 0.075.

In addition to the experimentation using the ASAP2 a
gorithm, we performed 400 independent replications of t
original ASAP algorithm under the same precision requi
ments described above. However, for case (a) above (tha
no precision requirement), we continued the simulation
each test problem until ASAP delivered a confidence inter
based on 96 batches of the size at which the batch me
passed either the statistical test for independence or
multivariate normality, as prescribed by the original ASA
algorithm (Steiger 1999; Steiger and Wilson 2000, 200
Since ABATCH and LBATCH do not explicitly determine
a sample size, we passed to the ABATCH and LBATC
algorithms the same data sets used by ASAP2. Based
all our computational experience with ASAP and ASAP
we believe that the results given below are typical of t
-

)

ct
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.
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e
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d

s,
f
l
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.

n

performance of ASAP and ASAP2 that can be expected
many practical applications. On the other hand, ABATC
and LBATCH are nonsequential procedures whose pro
operation may require direct interaction with the user (Fis
man 1998); and thus it is not clear that the following resu
exemplify the performance of ABATCH and LBATCH in
practical applications. Nevertheless, we believe that t
results given below provide some basis for comparing t
performance of ABATCH, LBATCH, ASAP, and ASAP2.
Since each confidence interval with a nominal covera
probability of 90% was replicated 400 times, the standa
error of each coverage estimator is approximately 1.5%.
explained below, this level of precision in the estimatio
of coverage probabilities turns out to be sufficient to r
veal significant differences in the performance of ASAP
versus ASAP, ABATCH, and LBATCH in the test problem
presented here.

As can be seen from Table 1, ASAP2 outperform
ABATCH and LBATCH with respect to confidence inter
val coverage for all three precision requirements. As w
demand more precision, we are of course forced to p
form more sampling. The results in Table 1 suggest th
ABATCH and LBATCH will give satisfactory coverage if
these procedures are supplied with an adequate amoun
data; however, ABATCH and LBATCH provide no mecha
nism for determining the amount of data that should be us
A desirable feature of ASAP2 is that it usually determines
sample size sufficient to yield acceptable results. It should
recognized, however, that ASAP2 was designed for use w
a user-specified precision requirement; and in the abse
of a precision requirement, ASAP2-generated confiden
intervals can be highly variable in their half-lengths. If
user-specified precision requirement is imposed after us
ASAP2 to generate an initial or “pilot” confidence interva
without a precision requirement, then in our computation
experience, the resulting follow-up confidence interval w
exhibit the same stability that we have observed in all o
other applications of ASAP2 with a user-specified (nonv
cuous) precision requirement.

By comparing the performance of ASAP2 versus th
performance of the original ASAP algorithm given in th
rightmost column in Table 1, we see that ASAP2 frequen
outperforms ASAP in small-sample applications.

5 CONCLUSIONS

Building on the promising results we obtained with ASA
in a broad diversity of stochastic systems, we have intr
duced ASAP2 as an improved batch-means procedure
steady-state simulation output analysis. Our extensive
perimental performance evaluation of ASAP2 indicates th
it outperforms LBATCH and ABATCH in virtually all the
stochastic systems to which we have applied all three p
cedures. Moreover, built into ASAP2 is an enhanced te
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ls
Table 1: Performance of Batch-Means Procedures for theM/M/1
Queue Waiting Time Process with Traffic Intensityτ = 0.9 Based on
400 Independent Replications of Nominal 90% Confidence Interva

Precision Procedure
Requirement LBATCH ABATCH ASAP2 ASAP

NO PRECISION
avg. sample size 22554 5873
coverage 65% 72% 88% 81%
avg. rel. precision 0.175 0.209 0.579 1.31
avg. CI half-length 1.660 1.980 6.440 18.2
var. CI half-length 1.500 1.716 167.0 3506
±15% PRECISION
avg. sample size 93374 117856
coverage 75% 81% 90% 93%
avg. rel. precision 0.089 0.103 0.135 0.13
avg. CI half-length 0.788 0.912 1.184 1.19
var. CI half-length 0.026 0.028 0.025 0.022
±7.5% PRECISION
avg. sample size 281022 321468
coverage 80% 85% 92% 93%
avg. rel. precision 0.057 0.063 0.070 0.069
avg. CI half-length 0.511 0.563 0.628 0.62
var. CI half-length 0.004 0.005 0.002 0.003
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for normality of the batch means; and this feature sho
enable ASAP2 to avoid the anomalous behavior of ASA
that we have observed in some stochastic systems whe
significant departures from normality of the batch means
observed even for batch sizes sufficiently large to ensure n
ligible dependence between the batch means. Although s
situations occur relatively infrequently in our computation
experience, they should be properly handled by a comp
hensive, general-purpose batch-means algorithm for stea
state simulation output analysis. Based on our prelimin
experimentation, ASAP2 appears to have this property.
are continuing the refinement and experimental evaluat
of ASAP2; and future developments concerning ASAP
including technical reports, papers submitted to archi
journals, software, and corrections will be available
the websites<www.isye.gatech.edu/˜christos>
and <www.isye.gatech.edu/˜sman> as well as
<www.ie.ncsu.edu/jwilson> .
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