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ABSTRACT 

An early stage of a simulation study often consists of col-
lecting data in order to parameterize the model.  This paper 
addresses the question of how much data to collect, and 
from what sources.  We use designed experiments to iden-
tify important unknown parameters, taking into account the 
current level of information about them.  We develop ap-
proaches based on two common forms of analysis of vari-
ance: a fixed effects model, and a random effects model. 

1 INTRODUCTION 

From a high-level perspective, a simulation study consists of 
data collection, model analysis, and decision making.  Each 
of these is generally viewed as a separate activity, the inter-
actions of which are usually not considered.  In this paper 
we provide a feedback mechanism from model analysis to 
data collection.  The goal is to determine how much real-
world data should be collected, and from what sources. 
 To a certain extent, such a feedback mechanism is al-
ready standard practice in the simulation community.  Law 
and Kelton (1991) suggest, “Sensitivity analyses can be 
used to determine which parameters, distributions, or sub-
systems will have the greatest impact on the desired meas-
ures of performance.  Given a limited amount of time for 
model development, one should obviously concentrate on 
the most important factors.” 
 At its simplest, sensitivity analysis may consist of 
varying each parameter (one-at-a-time) from a low value to 
a high one and examining the effect on the simulation out-
put.  A more structured approach might involve running a 
factorial experiment and analyzing the results using analy-
sis of variance (ANOVA).  For example, if the number of 
unknown parameters k is not too large, a common tech-
nique is the 2k factorial design.  The analyst fixes two val-
ues of each parameter (“low” and “high”) and performs 
simulation runs at each of the 2k combinations of values.  
One then estimates the main effects and interactions of the 

 

parameters, and tests their significance.  If the number of 
simulation parameters is very large, the 2k factorial design 
involves a prohibitively large number of replications.  In 
this case there are several screening designs available for 
determining a subset of the k parameters that are signifi-
cant.  Kleijnen (1987) discusses these designs in detail. 
 Our approach will take into account the current level of 
knowledge about each parameter.  In particular, we may be 
less concerned with a sensitive parameter for which we have 
a precise estimate than with a less-sensitive parameter about 
which we have little information.  There is an important 
tradeoff between our uncertainty about a parameter and its 
sensitivity with respect to the simulation output.  We ac-
count for this tradeoff in the experimental design by select-
ing appropriate parameter levels to test.  These levels reflect 
our uncertainty concerning the true value of the parameter. 
 We develop two approaches, based on the two most 
common variants of ANOVA.  The first uses a fixed effects 
model and a 2k factorial design.  The treatment levels cor-
respond to the endpoints of the confidence intervals (CI) 
for the unknown parameters, estimated from actual data.  If 
the ANOVA detects a significant difference between the 
endpoints of the CI for a particular parameter, the conclu-
sion is that more data must be collected for this parameter.  
Collecting more data reduces the width of the CI, reducing 
the effect of the parameter.  In the limit, the CI narrows to 
a single point, our uncertainty about the parameter van-
ishes, and the parameter is of no further significance with 
respect to data collection. 

A second approach is based on the random effects ver-
sion of ANOVA.  This approach has the advantage that it 
does not require a CI for each unknown parameter, how-
ever it can be much more computationally intensive. 

2 FIXED EFFECTS MODEL 

In this section we develop the approach based on the fixed 
effects version of ANOVA. 
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2.1 Review of the Fixed Effects ANOVA 

We begin with a brief review of the fixed effects version of 
ANOVA for a single factor experiment.  The notation is 
based on Hines and Montgomery (1990).  Suppose the fac-
tor has a levels (treatments), and there are n observations 
per level: yij, i = 1, …, a; j = 1, …, n.  We assume the ob-
servations, yij, satisfy the following statistical model: 

 
 

ijiijy ετµ ++= . (1) 

 
Here µ is an overall mean, τi is the effect due to treatment 
level i, and εij is a normally distributed error term with 
mean 0 and variance σ2.  The τi’s are assumed to be devia-
tions from the overall mean µ, so 0

1
=∑ =

a

i iτ .  The treat-

ment levels are specifically chosen by the analyst, so this is 
called a fixed effects model. 
 We want to test whether the factor treatments have a 
significant effect.  The null and alternative hypotheses are: 

 
 H0:  τ1 = τ2 = … = τa = 0 
 H1:  τi ≠ 0  for at least one i. 
 
The test procedure is based on the following well-known 
equation, which partitions the total sum of squares of the 
data: 
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(For a derivation of (2), see Hines and Montgomery 1990.)  
We label the components of this equation as: SST =    
SStreatments + SSE.  Under the null hypothesis, SStreatments/σ2 
and SSE/σ2 are independently distributed chi-squared ran-
dom variables with a-1 and a(n-1) degrees of freedom re-
spectively.  Therefore the test statistic: 
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has an Fa-1,a(n-1) distribution.  We reject H0 if the test statis-
tic is too large, i.e. if F0 > Fα,a-1,a(n-1). 

2.2 Data Collection for a Single Unknown Parameter 

We begin with the simplest case, a single unknown pa-
rameter θ.  Presumably we already have some information 
about θ, expressed as a confidence interval [B1, B2].  Sup-
pose we have a vector of observations [ ]01 ,, nXX …=X  that 

are random variables with mean θ and variance σX
2.  A CI 

based on the central limit theorem is: 
 

 [ ] ( ) ( ) 00
2

21021 , nnSznXBB α−±≡ , (3) 

 
where ( )0nX  is the sample mean of the n0 observations, and 

( )0
2 nS  is the sample variance. 

 Define L(θ,ω) to be a realization of the simulation 
model at fixed parameter value θ.  Usually L(θ,ω) is a per-
formance measure (e.g. average waiting time).  The expres-
sions EL[L(θ)] and VarL[L(θ)] will refer the expectation and 
variance of the simulation output, where the subscript L re-
fers to the randomness due to the simulation model.  (This is 
as opposed to the randomness due to the observations X.) 
 We would like to test whether θ has a significant effect 
on the expected simulation output, EL[L(θ)], as θ varies over 
the range [B1, B2].  The approach will be to repeat n simula-
tion replications at both θ=B1 and θ=B2, and perform an 
ANOVA test as described in the last section.  Suppose 
EL[L(θ)] is monotone in θ over [B1, B2], so if the difference 
between treatments θ=B1 and θ=B2 is not significant, we can 
assume it is also not significant for any other pair of θ values 

in [B1, B2].  In this case our current estimator for θ, ( )0nX , is 
precise enough; we cannot distinguish the effect of changing 
the parameter level within the range of our confidence inter-
val.  If the difference between treatments θ=B1 and θ=B2 is 
significant, the implication is that we should collect more 
observations Xi, so as to narrow the CI until the difference is 
no longer significant.  Later in this section we will discuss 
the number of additional observations required.  First, how-
ever, we discuss some technical considerations related to the 
use of ANOVA. 
 One issue with the procedure outlined in the last para-
graph is that the error term εij from model (1) is assumed to 
have a variance σ2 that is independent of the factor level i.  
(This is known as homoscedasticity.)  In the present 
framework this is equivalent to assuming VarL[L(θ)] = σ2 
for θ in a neighborhood of its true value.  It is well known 
that VarL[L(θ)] may change significantly with θ.  We 
should therefore check the sample variances at θ=B1 and 
θ=B2.  If they are different, a number of non-linear vari-
ance-stabilizing transformations are available (Casella and 
Berger 1990).  Another approach, described by Kleijnen 
(1987), is to perform more replications at values of θ that 
show higher variance and average these to obtain “observa-
tions” with lower variance. 
 A second issue with the procedure is our assumption 
that E[L(θ)] is monotone in θ over [B1, B2].  In practice this 
is probably a mild assumption, especially if the width of the 
CI is small.  However the benefit we gain is significant; the 
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assumption allows us to make an inference about an infinite 
number of values for θ, the entire range [B1, B2].  Further-
more, we might use a technique such as infinitesimal pertur-
bation analysis to check the derivatives of E[L(θ)] at B1 and 
B2 and see if the assumption seems reasonable. 
 A third issue related to the procedure described above 
is the choice of n, the number of simulation replications 
made at θ=B1 and θ=B2.  Recall that τ1 is the effect of the 
treatment θ=B1, and τ2 is the effect of the treatment θ=B2.  
Increasing the value of n raises the power of the hypothesis 
test, so if τ1≠0 and/or τ2≠0, then a large enough value for n 
will allow us to detect the difference, but how large a dif-
ference is it important to detect?  This issue is addressed 
with a set of operating characteristic curves, each of which 
graphs the probability of type II error (β) for a particular 
sample size n against the following measure (Hines and 
Montgomery 1990): 

 

 ( )
2

2
2

2
12

2σ
ττ +

≡Φ
n . 

 
These probabilities are derived from the fact that under the 
alternative hypothesis, F0 has a noncentral F distribution.  
The parameter Φ2 is a measure of the difference in means 
(relative to σ2, the variability caused by the simulation) 
that it is important to detect.  The analyst first determines 
an acceptable power for the test (1-β).  Then, given a lower 
limit for Φ2 that is important to detect, the analyst works 
backward through the operating characteristic curves to 
find a sample size n that will achieve (1-β).  A set of 
curves is given by Pearson and Hartley (1972). 
 It turns out that we can interpret Φ2 as a ratio of the 
variance due to parameter uncertainty and the variance due 
to simulation variability.  In our construction τ1 and τ2 are 
random variables depending on B1 and B2.  If we assume τ1 
= −τ2, we have: 
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 Roughly speaking, the expectation of ( ) 22

2
2
1 ττ +  is an 

upper bound on the variability of the simulation output due 
to parameter uncertainty.  We derive this bound in the case 
where ( )[ ]⋅LEL

 is linear and α ≤ 0.3174.  Suppose  
 

( )[ ] baxxLEL +≡ .  Using the expressions for τ1 and τ2 from 

the last paragraph and (3), we have: 
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The last equality uses the fact that ( )( ) 2

0
2

XnSE σ=X
.  Now 

consider the variability of the simulation output due to pa-
rameter uncertainty, ( )( )[ ][ ]0nXLEVar LX

.  Again using 

( )[ ] baxxLEL +≡ , we have: 
 

( )( )[ ][ ]
( )( )[ ] ( )( )[ ][ ]( ){ }

( ) ( )[ ]( ){ }
( ) ( )[ ]( ){ }
( ){ }

⋅=

=

−=

+−+=

−=

0

22

0
2

2

00
2

2

00

2

00

0

n

a

nXVara

nXEnXEa

bnXaEbnXaE

nXLEEnXLEE

nXLEVar

X

LL

L

σ
X

XX

XX

XX

X

 

 

If α ≤ 0.3174, then 121 ≥−αz , and: 
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 If the expectation of ( ) 22

2
2
1 ττ +  is an upper bound on 

the variability due to parameter uncertainty, then the ex-
pectation of ( ) 22

2
2
1 2σττ +  is an upper bound for the ratio of 

variability caused by parameter uncertainty to variability 
caused by the simulation.  The analyst determines a limit 
for this ratio (say 0.05), and an acceptable power for the 
test (1-β), and works backwards through the operating 
characteristic curves to find an appropriate sample size n. 
 Returning to the issue of data collection, if the factor 
effects at θ=B1 and θ=B2 are significant, we must collect 
additional observations Xi.  How many more should we 
collect?  The idea is to narrow the CI sufficiently so that 
we can no longer distinguish between the effects of the two 
parameter levels.  Once we have determined how narrow 
the CI must be, we can estimate the number of additional 
observations required using (3).  Recalling that the CI 
given by (3) is symmetric and centered at ( )0nX , we define
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the following procedure.  First, let ( )2

0 1 2 0 0z S n nαδ −≡ , and 

choose a sequence {δi} such that for every i, 
ii δδ << +10 .  

Set index i equal to zero.  Now: 
 
1. Perform 2n simulation replications, n each at 

( ) 10 +± inX δ .  Compute the ANOVA test statistic 

( )10 +iF δ , and compare this with Fα,1,2(n-1). 

2. If ( )10 +iF δ  > Fα,1,2(n-1), increment i and return to the 

first step; otherwise stop. 
 

 If the expected simulation output, E[L(θ)], is strictly 
monotone in θ over [B1,B2]= ( ) ( )[ ]0000 , δδ +− nXnX , at each 

stage of the procedure the null hypothesis 
( ) ( ) 0: 210 == iiH δτδτ  is, in fact, false.  However since we 

have fixed n, eventually δi becomes so small that the test is 
not powerful enough to detect the difference between 
(τ1,τ2) and zero.  If we choose a sequence {δi} that con-
verges to zero, the procedure terminates with probability 
one.  The output of the procedure is a half-width δ small 
enough that the analysis of variance is unable to distin-
guish between the treatments.  
 A useful choice for the sequence {δi} is one such that 
the number of additional real-world observations required 
to narrow the CI half-width from δi to δi+1 is approximately 
constant.  For a fixed positive integer η, let 

( ) ( )ηδ α innSzi += − 00
2

21
.  If ( ) ( )ηinSnS +≈ 0

2
0

2 , then δi 

is approximately the half-width of the interval we would 
obtain by collecting n0+iη observations.  Furthermore, 
from this definition it is apparent that {δi} converges to 
zero.  If the procedure terminates at stage it, the number of 
additional observations required beyond n0 is ηti . 

 To illustrate this technique, we adapt a problem given 
by Law and Kelton (1991).  A bank plans to install a new 
automated teller having a mean service time of 0.9 min-
utes.  The bank has a midday busy period, during which 
the customer arrival rate is one per minute.  The bank man-
ager is interested in the performance of the new system, 
which he models as an m/m/1 queue.  Suppose the service 
rate of the new machine has been supplied by the manufac-
turer, but the bank manager does not know the exact arrival 
rate, and he has collected n0=1000 observations of the in-
ter-arrival time.  (These observations were drawn inde-
pendently from an exponential distribution with mean 1.)  
He wants to know whether these data are sufficient for his 
simulation model, and if not, roughly how many more ob-
servations are required. 
 We begin by computing a 95% confidence interval for 
the mean of the arrival data, using (3).  The information is 
listed in the table below. 

 
Table 1:  Summary Statistics for Inter-Arrival Data 

# of 
Observations 

Mean Standard 
Deviation 

CI Lower 
Limit 

CI Upper 
Limit 

1000 1.008 0.955 0.949 1.067 
 
 The next step is to perform a number of simulation 
replications at each extreme of the confidence interval.  
Suppose the α-value for the ANOVA test is 0.05, and we 
would like the power of the test to be at least 0.95 when the 
ratio ( ) 05.02 22

2
2

1 =+ σττ .  Using Table 30 from Pearson and 

Hartley (1972), we see that when n = 126, then 
51.205.0126 =⋅=Φ , and the power of the test is 0.95.  

Therefore we perform 126 simulation replications at each 
extreme of the confidence interval for the mean inter-
arrival time.  This constitutes the first stage of the proce-
dure (Step 0 in Table 2).  We compute the F0 statistic from 
the simulation data, which is 7.75.  Since F0.05,1,∞ = 3.84, 
we reject the null hypothesis (H0: τ1 = τ2 = 0) and conclude 
that we do not yet have sufficient real-world data. 
 

Table 2:  An Application of the Procedure of Section 2 
Step i δi SST SStreat SSE F0 

0 0.059 1579.12 47.49 1531.63 7.75 
1 0.048 2285.23 205.86 2079.38 24.75 
2 0.042 2056.68 99.68 1957.00 12.73 
3 0.037 1991.19 35.61 1955.57 4.55 
4 0.034 1983.84 30.05 1953.79 3.84 

 
 Next we narrow the confidence interval to half-width 
δ1 and perform additional simulation replications.  Suppose 
we choose an increment η = 500 observations, and let 

( ) ( )ηδ innSzi += 00
2

975.0
.  (The values of δi are listed in Table 

2.)  Again we compute the statistic F0; the value is 24.75, 
and we conclude that 1000+η = 1500 observations are not 
yet enough.  We continue in this way until i = 4, at which 
point F0 = 3.84, and we no longer have sufficient evidence 
to reject the null hypothesis.  The conclusion is that 
roughly 1000+4η = 3000 inter-arrival time observations 
will be sufficient data. 
 We close this section with a comment on the choice of 
{δi}, ( ) ( )ηδ innSzi += 00

2
975.0

.  Given this choice, the dif-

ference between δi and δi+1 decreases as i increases.   In 
fact, the ratio of δi+1 to δi is: 
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which approaches 1 as i approaches infinity.  Therefore 
while the procedure is guaranteed to terminate, with this 
choice of {δi} it may take a long time to do so. 
 Another choice for {δi} is δi+1 = γδi = γ i+1δ0 for a fixed 
constant γ.  In this case the number of additional real-world 
observations required to narrow the CI half-width from δi 
to δi+1 is no longer constant.  To see this, we first find the 
number of observations ni required to achieve a CI of half-
width δi by solving ( ) iii nnSz 2

975.0=δ  for ni.  If the sam-

ple variance ( )nS 2  is roughly constant in the number of ob-

servations n, then we have: 
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Likewise 
( ) 212
0

1 γγ
i

ii

nn
n ≈≈ ++

, so to narrow the CI half-width 

from δi to δi+1 we must multiply the overall number of ob-
servations by γ -2. 

2.3 Data Collection for Multiple  
Unknown Parameters 

We next turn to the case where there are two unknown pa-
rameters, [ ]21 ,θθ=θ .  The approach will be similar to that 

taken in the last section.  Suppose we have observations 

{ }1,01, ,,1  : niX i …=  that are random variables with mean θ1 

and variance 2
1,Xσ , and observations { }2,02, ,,1  : niX i …=  that 

are random variables with mean θ2 and variance 2
2,Xσ .  Let 

[ ]2111, BB  and [ ]2212 , BB  be confidence intervals for θ1 and 

θ2 respectively, of the form given by: 
 

 ( ) ( ) 00
2

410 nnSznX α−± . 

 
 Let [ ] [ ]22122111 ,, BBBB ×=Ξ , so by the Bonferroni ine-

quality, Ξ is a (1-α)100% confidence interval for θ .  We 
would like to test whether θ  has a significant effect on the 
expected simulation output, ( )[ ]θLE , as it varies over Ξ.  

We will repeat n simulation experiments at each of the four 
combinations of levels determined by the endpoints of the 
confidence intervals, and perform a two-way ANOVA.  
(For a description of the two-way ANOVA, refer to Hines 
and Montgomery  1990.)  This time we will test for the 
main effects of θ1 and θ2, as well as an interaction effect.  
If none of these are significant, we can assume our current 
estimators for θ1 and θ2 are sufficiently precise; we cannot 
distinguish the effect of parameter levels within the range 
of our confidence intervals.  If the main or interaction ef-
fects are significant, the implication is that we should col-
lect more real-world observations. 
 Let ( ) 1,01,0

2
1411,0 nnSz αγ −≡  and ( ) 2,02,0

2
2412,0 nnSz αγ −≡ , 

which are the half-widths of the original CIs.  Choose se-
quences { }1,iγ  and { }2,iγ  such that for every i, 

1,1,10 ii γγ << +  and 
2,2,10 ii γγ << + .  We also define vari-

ables ( )i1ϕ  and ( )i2ϕ  that will be indices into the sequences 

{ }1,iγ  and { }2,iγ , respectively.  Let ( ) ( ) 000 21 == ϕϕ .  We 

define the following procedure.  Let i = 0. 
 
1. Let ( ) 1,1, 1 ii ϕγδ =  and ( ) 2,2, 2 ii ϕγδ = . 

2. Perform 4n simulation replications, n each at the 
four combinations of ( ) 1,1,011 inX δθ ±=  and 

( ) 2,2,022 inX δθ ±= .  Compute the ANOVA test 

statistics for the main and interaction effects of θ1 
and θ2. 

3. If none of the effects are significant then stop.  
Otherwise: 
• If the main effect of θ1 is significant, set 

( ) ( ) 11 11 +=+ ii ϕϕ .  Otherwise set 

( ) ( )ii 11 1 ϕϕ =+ . 

• If the main effect of θ2 is significant, set 
( ) ( ) 11 22 +=+ ii ϕϕ .  Otherwise set 

( ) ( )ii 22 1 ϕϕ =+ . 

• If neither of the main effects are significant 
but the interaction effect is, compare 

( ) ( )( )1,11, 11 +− ii ϕϕ γγ  and ( ) ( )( )2,12, 22 +− ii ϕϕ γγ .  If the 

former is larger, set ( ) ( ) 11 11 +=+ ii ϕϕ  and 

( ) ( )ii 22 1 ϕϕ =+ .  Otherwise set ( ) ( )ii 11 1 ϕϕ =+  

and ( ) ( ) 11 22 +=+ ii ϕϕ . 

4. Increment the counter i and return to step 1. 
 
 If the sequences { }1,iγ  and { }2,iγ  both converge to zero, 

the procedure terminates with probability one.  Again it 

may be convenient to choose { }1,iγ  and { }2,iγ  so that the 

number of observations required to narrow the CI from one 
step to the next is roughly constant.  Thus for fixed values 
η1 and η2, let ( ) ( )100

2
1411, ηγ α innSzi += −

 and 

( ) ( )200
2
2412, ηγ α innSzi += −

. (Given per-observation costs 

for each parameter, the values η1 and η2 might be chosen 
so that the cost of a step for either parameter is the same.) 
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This procedure can be easily extended to k>2 parame-
ters.  However one difficulty is that a prohibitively large 
number of simulation replications may be required: 2k⋅n 
replications at each stage of the procedure.  The assump-
tion must be that simulation data is much less expensive 
than real world observations.  When this assumption is 
false, we can think about using other experimental designs.  
For example, if we assume that high-order interaction ef-
fects are negligible, we can use 2k-p fractional designs that 
require many fewer replications.  (See Hines and Mont-
gomery 1990 and Kleijnen 1987 for details.)  Other tech-
niques for screening extremely large numbers of factors are 
described by Kleijnen (1987).  These include random de-
signs, in which factor levels are selected for testing with 
equal probabilities, and group-screening designs, in which 
the effects of several factors are grouped so that they all 
may be eliminated (deemed insignificant) at once. 

3 RANDOM EFFECTS MODEL 

An assumption made in Section 2 was that the expected 
simulation output, E[L(θ)], was monotone in θ over the pa-
rameter’s confidence interval.  This assumption was made 
so that by testing the extremes of the CI, we could draw 
conclusions about values of θ within the CI.  As an alterna-
tive to this assumption, we can apply the random effect 
model for ANOVA.  This model is used when the number 
of levels for a particular factor is infinite (as it is in our 
case), and the analyst wants to make inferences about the 
entire population of factor levels. 

3.1 Review of the Random Effects ANOVA 

We summarize the description of the random effects model 
for a single factor, given by Hines and Montgomery 
(1990).  The analyst performs n simulation replications at 
each of a randomly selected factor levels.  (The levels are 
selected with equal probability from the population of fac-
tor levels.) We assume the observations 
{ }njaiyij ,,1 ;,,1: …… ==  satisfy the following statisti-

cal model: 
 

 
ijiijy ετµ ++= . (4) 

 
Here µ is the overall mean, and τi and εij are independent 
normally distributed random variables with mean 0 and 

variances 2
τσ  and 2σ  respectively.  We would like to test 

whether the treatments have any effect.  Since the treat-
ments are identical if 02 =τσ , the null hypothesis is: 

 
 0  : 2

0 =τσH . 
 

 Equation (2) still holds:  SST = SStreatments + SSE, where 
SStreatments and SSE are defined as before.  One can show 
that 2σESS  has a ( )ana −2χ  distribution, and under H0 

the distribution of 2σtreatmentsSS  is ( )12 −aχ , independent 

of 2σESS .  Therefore the test statistic is: 

 
 ( )

( )anaSS

aSS
F

E

treatments

−
−

=
1

0
, 

 
which under the null hypothesis is distributed 

anaaF −− ,1
.  We 

reject the null hypothesis if 
anaaFF −−> ,1,0 α
. 

3.2 Data Collection for a Single  
Unknown Parameter 

Again we will start with the simplest case, a single un-
known simulation parameter.  Suppose we have already 
collected n0 real-world observations (each with mean θ and 
variance 2

Xσ ).  Again let [ ]′=  ,,
01 nXX …X  be the vector of 

observations, and let ( )0nX  be the sample mean of the ob-

servations.  We would like to use ( )0nX  as a surrogate for 

θ in our study since presumably the value of ( )0nX  will be 

close θ.  If we think of performing the simulation study 
over and over with different realizations of ( )0nX , we 

would like to know whether there would be any significant 
effect on the simulation output.  Clearly as n0 increases any 
such effect will diminish since ( )0nX  converges to θ.  

Therefore if there is a significant effect at n0, we also want 
to know how many additional observations are required for 
this effect to become undetectable. 
 The idea is to use the random effects model to test 
whether the expected simulation output is constant over the 
population of realizations of ( )0nX .  We therefore must 

generate realizations of ( )0nX , which requires us to make 

draws from its distribution.  Unfortunately this distribution 
depends on the unknown variable θ.  However this is pre-
cisely the situation where bootstrapping is appropriate.  
Therefore we approximate the distribution by drawing 
bootstrap samples from the vector of observations X . 
 A bootstrap sample of size n is a set of n observations 
drawn with replacement from the elements of X .  In other 
words, it is a set of n observations drawn from the empiri-
cal distribution function corresponding to the observations 
in X .  (See Efron and Tibshirani 1993 for details.)  A 
bootstrap replication of ( )0nX , represented as ( )0

* nX , is 

the sample average of a bootstrap sample of size n0. 
 We now define the following procedure for determin-
ing the approximate number of observations required in 
addition to n0.  First, choose a positive integer η, which 
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will be the incremental number of observations at each 
stage of the procedure.  Let N = n0. 

 
1. Generate a bootstrap samples of size N from the 

data in X , and compute the bootstrap replication 
( )NX *  for each.  Perform n simulation replica-

tions at each of the a values of ( )NX * . 

2. Compute the test statistic F0 from the data gener-
ated in the first step.  If 

anaaFF −−< ,1,0 α ,  stop.  

Otherwise let N = N + η and return to the first step. 
 
 This procedure terminates with probability one since 
eventually the ( )NX * ‘s will converge to the expectation of 

the empirical distribution, at which point there is no differ-
ence in treatments.  The output of the procedure is the 
number of additional observations, (N-n0), required for the 
analysis of variance to be unable to detect the effect of the 
uncertainty of ( )NX . 

 As with the procedure of Section 2, there is an issue 
concerning how to choose n, the number of simulation rep-
lications.  Once again this issue is addressed with a set of 
operating characteristic curves, which for particular values 
of n plot the probability of type II error against the follow-
ing measure: 

 

 
2

2

1
σ
σλ τn

+= . 

 
The analyst chooses a power for the test and a value of λ 
that is important to detect, and then works backward 
through the operating characteristic curves to find an ap-
propriate n.  (See Hines and Montgomery 1990 for details.)  
In this case the measure λ is easy to interpret, for 22 σσ τ  

is the ratio of variance due to parameter uncertainty to 
variance due to the simulation.  A set of operating charac-
teristic curves for the random effects model is given by 
Hines and Montgomery (1990). 
 We mention in passing an advantage of this procedure 
over the one given in Section 2: we are not required to pro-
duce joint confidence intervals for each unknown parame-
ter.  In some cases it may be difficult or impossible to 
compute a CI, or to produce good joint CIs for multiple pa-
rameters from a single data set.  The procedure in this sec-
tion is applicable to any set of parameters for which we can 
generate bootstrap samples.  On the other hand, the compu-
tational effort can be much greater.  For the fixed effects 
model with power 0.95 and ( ) 05.02 22

2
2
1 =+ σττ , the num-

ber of simulation replications n required at each factor 
level is 126; we make 2×126 = 252 replications at each 
step of the procedure.  For the random effects model with a 
= 2, power 0.95, and 05.022 =σσ τ

, the value of n is 

16,800; we make 2×16,800 = 33,600 replications at each 
step of the procedure.  The reason for this disparity is that 
the random effects model draws inferences about an infi-
nite number of factor levels (parameter values).  The fixed 
effects model draws inferences about only two factor lev-
els; in order to make inferences about factor levels within 
the range of the CI, we add the assumption that the ex-
pected simulation response is monotone. 
 To demonstrate this procedure we return to the bank 
teller example, where we will use the same 1000 “ob-
served” inter-arrival times.  Again suppose the α-value for 
the ANOVA test is 0.05, and we would like the power of 
the test to be at least 0.95 when the ratio 05.022 =σσ τ

.  

Using Appendix VIII from Hines and Montgomery (1990), 
we see that when n = 240 and a = 5, then λ = 3.6, and the 
power of the test is 0.95.  Therefore we will perform 240 
simulation replications at each of five bootstrap replica-
tions of the mean inter-arrival time. 
 

Table 3:  An Application of the Procedure of Section 3 
Step 

i 
Boot-
strap 
#1 

Boot-
strap 
#2 

Boot-
strap 
#3 

Boot-
strap 
#4 

Boot
strap 
#5 

F0 

0 1.020 0.997 1.056 1.041 0.991 3.94 
1 0.996 1.016 1.003 1.020 0.980 2.86 
2 1.015 0.990 1.047 1.035 1.013 6.26 
3 1.009 1.031 1.026 1.003 1.006 1.59 

 
 The five bootstrap replications of size 1000 are listed 
in the row of Table 3 labeled “Step 0.”  After performing 
the simulation runs at these values, we compute the F0 sta-
tistic, which is 3.94.  Since F0.05,4,∞ = 2.37, we reject the 
null hypothesis ( )0: 2

0 =τσH  and conclude that we do not 

yet have sufficient real-world data. 
 Next we increase the size of the bootstrap samples 
used to compute the bootstrap replications of the mean in-
ter-arrival time.  Suppose we again choose an increment η 
= 500 observations, so the size of the new bootstrap sam-
ples will be 1000+η = 1500 observations.  The new boot-
strap replications of the mean inter-arrival time are listed in 
the row of Table 5.5 labeled “Step 1.”  Again the value of 
F0 is greater than F0.05,4,∞ = 2.37, and we conclude that 
1500 observations are not enough.  We continue in this 
manner until Step 3, when the value of the statistic F0 is 
1.59, which is less than F0.05,4,∞.  We no longer have suffi-
cient evidence to reject the null hypothesis, and the conclu-
sion is that 1000+3η = 2500  observations of the inter-
arrival time are sufficient. 

3.3 Data Collection for Multiple  
Unknown Parameters 

The procedure for two unknown parameters, [ ]21,θθ=θ , is 

similar to the one presented in the previous section.  (See 



Freimer and Schruben 

 
Hines and Montgomery 1990 for a description of the ran-
dom effects two-way ANOVA.)  Suppose we have obser-
vations { }1,01, ,,1  : niX i …=  that are random variables with 

mean θ1 and variance 2
1,Xσ , and observations 

{ }2,02, ,,1  : niX i …=  that are random variables with mean θ2 

and variance 2
2,Xσ .  Choose positive integers η1 and η2, 

which will be the incremental numbers of observations of 
the two parameters at each stage of the procedure.  Let N1 
= n0,1  and N2 = n0,2. 

 
1. Generate a bootstrap samples of size N1 from 

{ }1,01, ,,1  : niX i …= , and compute bootstrap rep-

lications of 1X  for each: ( ) ( )1
*

1,1
*
1,1 ,, NXNX a… .  

Generate b bootstrap samples of size N2 from 
{ }2,02, ,,1  : niX i …= , and compute bootstrap rep-

lications of 2X  for each:  ( ) ( )2
*

2,2
*

2,1 ,, NXNX b… . 

2. Perform n simulation replications at each of the 
ab combinations of 

 
( ) ( ){ } ( ) ( ){ }2

*
2,2

*
2,11

*
1,1

*
1,1 ,,,, NXNXNXNX ba …… × . 

 
3. Compute the test statistics from the data generated 

in the second step.  If none of the effects are sig-
nificant then stop.  Otherwise 
• If the main effect of θ1 is significant, set N1 = 

N1 + η1. 
• If the main effect of θ2 is significant, set N2 = 

N2 + η2. 
• If neither of the main effects are significant 

but the interaction effect is, set N1 = N1 + η1 
and set N2 = N2 + η2. 

• Return to step one. 
 
 This procedure again terminates with probability one.  
The output is the number of additional observations, (N1-
n0,1) and (N2-n0,2), required for parameters [ ]21,θθ=θ . 

4 TOPICS FOR FUTURE RESEARCH 

We are working to compare the effectiveness of the two 
procedures developed in Sections 2 and 3.  We are also in-
vestigating the connection between these procedures and 
the techniques for screening large number of factors men-
tioned in Section 1.  Finally, these techniques have been 
developed under the implicit assumption that the cost of 
collecting information about each parameter is the same.  
We are also constructing a model that will relate the costs 
of data collection to the cost of the uncertainty in the simu-
lation output caused by parameter estimation. 
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