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ABSTRACT In addition, infinite-server queues form an important
class of models in their own right. In addition to their
We discuss rare-event simulation methodology for comput- mathematical importance within the queueing context, they
ing tail probabilities for infinite-server queues. Our theo- arise naturally in the study of electric power consumption.
retical discussion also offers some new simulation insights The number of electric power users consuming electricity can
into the change-of-measure associated with the Gartner-Ellis be viewed as the number-in-system process for an infinite-

theorem of large deviations. server queue. Thus, a tail probability for the infinite-server
queue provides important information on peak load demand
1 INTRODUCTION characteristics for an electric power grid.

This paper is specifically concerned with the use of

This paper is concerned with rare-event simulation in the rare-event simulation as a means of computing tail prob-
setting of infinite-server queues. Infinite-server queues play abilities for the infinite-server queue. In particular, we
an important role in queueing theory, as they form a math- develop efficient algorithms for computing tail probabili-
ematical idealization of systems in which many servers are ties for infinite-server queues with a high average arrival
present. In particular, if a queue possesses a large num-rate. In view of the telecommunications and electric power
ber of servers, the structure of the infinite-server queue is examples described above, this asymptotic setting seems
largely inherited by the many-server system, provided that especially natural.
the fraction of time that the many-server system has all This paper is organized as follows. Section 2 offers
servers busy is small. a problem formulation and describes the basic estimation

Many-server queues have played a fundamental role approach we shall utilize. In Section 3, we survey related
in the telecommunications modeling environment over the large deviations theory, while Section 4 provides additional
years. In this setting, circuits can be identified with servers. discussion of our proposed algorithm. Computational results
In view of the large number of circuits that are typically are given in Section 5.
available to carry traffic, a many-server queueing model is
often appropriate. Furthermore, quality-of-service consid- 2 PROBLEM FORMULATION AND BASIC
erations guarantee that the system will be engineered in RESULTS
such a way that the probability of finding all the servers
busy is small. We start by giving a precise description of t6d /G /oo

In the telecommunications setting, such many-server queue. Suppose thdf; : k > 1) is a non-decreasing
gueues typically exhibit “loss” whenever all the servers are sequence in whicl; corresponds to the arrival time of the
busy. In other words, connections are refused whenever all k'th customer. If the system starts emptyrat 0, and if
the circuits are busy. The corresponding “loss probability” V; denotes the “time-in-system” (or “processing time”) of
is a fundamental performance measure for such systems.the j'th customer, then the number of custome?$r) in
The tail probability for the number-in-system process for the the system at time is given by
associated infinite-server queue often is a good approxima-

tion to the loss probability for the many-server system. As a s
consequence, efficient computation of such tail probabilities Q) =) 1A <1< A+ Vi
for the infinite-server queue is of clear applied relevance. k=1
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Let N(r) = max{n > 0: A, <t} be the counting process
corresponding to the number of arrivals [, :]. (By
convention, we sedg = 0.) Then,Q(¢) can be re-expressed
in terms of N(-) as

N()

Q1) =Y I(Ax+ Vi > 1),
k=1

wherel (B) is the indicator random-variable (rv) associated
with the eventB.

Our goal here is to efficiently compute(Q(z) > x),
where x is so large that{Q(+) > x} is a “rare-event”.
Throughout this paper, we will assume that:

Assumption Al1. V = (V,, : n > 1) is a sequence of inde-
pendent and identically distributed (iid) random variables,
independent ofV = (N(¢) : ¢t > 0).

With this assumption in force, we find that

t
EQ(t):/ P(V >t —s)EN(ds).
0

Thus, if N = (N@®) : t > 0) is a point process with
stationary increments and arrival intensity= EN (1), it
follows that

t

EQ(1) =,\f F(s)ds,
0

where F(t) = P(V > t) and F(r) = P(V < t). The
event{Q() > x} will therefore tend to be “rare” when
x> Afé F(s)ds.

Our approach to computing = P(Q() > x) will
be to apply importance sampling, with the selection of the
importance sampling distribution guided by the principles of
large deviations theory (Bucklew 1990). The study of large

Continuing our calculation of the the moment generating
function of the random variabl@(t), we see that

E exp0 Q(1))

N ()
=E exp(z log (e F(t — Ap) + F(t — Ak)))

k=1

=E exp(/ log(e’ F(t —s) + F(t — s))N(ds)) )
[0,]

Setyo(0) = log E exp(@ Q()). Suppose that there exists
a positive rootv* of the equation

Vo) =x.

The idea is to then generate variates from the “exponentially
twisted” distribution given by

P*(dw) = exp0* 0(t, ®) — Yo (0™)) P(dw.)
If E*(-) is the expectation operator correspondingPtb,

thena = P(Q(¢) > x) can be expressed in terms Bf ()
via the relation

a = E*exp(—0"0(t) + Yo (@™ NI (Q() > x).

The importance sampling algorithm for computiagnow
involves first simulating iid replicates of the rv

W =exp(—0"Q(t) + Yo (0™ NI (Q(t) > x)

under the probabilityP*. The estimator fore is then
obtained as the sample mean of the replicates generated.

Example 1. Suppose thalV = (N (¢) : t > 0) is a Poisson

deviations suggests first computing the moment generating Process with rate: > 0. It is known that the distribution

function of the rvQ(¢). Under Al, we note that

Eexp0Q(t))
= EE[exp@Q(1))|N]
N (1)
= EE[exp® Y I(Ax+ Vi > 1))|N]
i=1
N(@)
= E [ | Elexp®1 (Vi > Ay — 1))|N]
k=1
N(@)
=E ]"[ (PF(t — Ap) + F(t — Ap)).
k=1
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of Q(z) in this M/ G /oo setting is Poisson distributed with
parameten. j(; F(s)ds (see, for example, page 39 in Ross
(1983)). Consequently,

wg(e)):A/
0

Note that6* = log(x/(x [y F(s)ds)), and it follows
that we have

t

F(s)ds(e® —1).

t
P*(dw) = expe* Q(t, w) — A(e? — 1)/ F(s)ds)P(dw)
0

t

= exp0*0(t, ) — (x — ,\/ F(s)ds))P(dw).
0
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In particular, we obtain the following probability mass func-
tion for the random variabl®(¢) under the probabilty?*,

P*(Q(1) = k)
t
= exp0™k — (x — A/ F(s)ds))P(Q(t) = k)
0

t

= exp@*k — (x — ,\/ F(s)ds))
0

[ k t
.(—O‘ Jo F(s)ds) exp(—k/ F(s)ds))
0
k

k!
_ X
= exp(—x)ﬁ.

Thus, for a Poisson arrival stream, our algorithm replicates

t
exp(—0" 0 (1) — (x — ?»/ F(s)ds)1(Q(1) > x),
0

where Q(¢) is generated undeP* so that it has a Poisson
distribution with meant. So, our algorithm can be easily
implemented in the Poisson setting.

In the next section, we offer some motivation for our
choice of P* as an importance distribution.
3 IMPORTANCE SAMPLING AND THE
GARTNER-ELLIS THEOREM

As was mentioned in the Introduction, the typical real-
world modeling environment that leads to infinite-server
gueues is one in which the arrival rate is large. Thus, we
will consider here the so-called “heavy-traffic” asymptotic
regime for infinite-server queues, in which we examine the
behavior of a sequence of infinite server queues having an
arrival rate tending to infinity.

Let N = (N@) :t >0,V =(V;:j>1 and
(A, : n > 0) be defined as in Section 2. To send the
infinite-server queue into heavy-traffic, we speed up the
arrival process by a factor o, leaving the processing
times unchanged. More specifically, let

N, (t) = N(nt)

be the arrival process feeding th&h system; the arrival
time of customer;j in the n’th system is themd;/n. The
number-in-system process for thh system is then given

by

Ny (1) Aj
— 4+ Vj >1].
n

Qut)y= Y 1

j=1
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The mean o), (¢) is easily seen to be given by the following
expression,

t
EQ,(t) =ni / F(s)ds.

0
Thus, a “rare-event” for thei'th system is a deviation
in which 0, () > xn, wherex > A fj F(s)ds. We are
interested in efficient computation of

ap = P(Qn(t) > xn)

whenn is large.

The Gartner-Ellis large deviations theorem describes
the asymptotic behavior af, for n large. It is generally
stated in an abstract form, and concerns a sequence of real-
valued rv's(8, : n > 1). The main hypothesis underlying
the Gértner-Ellis theorem is the following:

Assumption A2. There exists a real-valued functigrg(-)
such that

%IogEexp(@ﬁn) — Yg(0) asn — oo.

Assuming that we wish to approximate the probability
P (B, > nx), we also require:

Assumption A3. There exist positive constants and e
such thatyg () is continuously differentiable and strictly
increasing ori—e, 9;; + €], with w,g(O) < (9;) =x. The
following result is due to Gartner and Ellis (see page 15 of
Bucklew 1990).

Theorem 1. Under hypotheses A2 and A3,

1 * *
- log P(B, > nx) — —0gx + Yp(0p)

asn — oQ.

To apply this result to the analysis @f = P(Q,(¢) >
xn), we setg, = Q,(t). The validation of hypothesis A2
requires the following condition on the counting procass

Assumption A4. There exists a finite-valued function
Yy such that for 0= < n < ... < t, =t and
(61,09, ...,60,) € R", we have

% log E exp(; 6;[N(nt;) — N(nti_1)])

— Y YnO) (6 —tio1)

i=1

asn — oo.

This assumption is satisfied by many different arrival
processes; see Dembo and Zajic (1995). The funafign
will now be described in a couple of different modeling
contexts.
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Example 2. Suppose that the arrival process is renewal, so
that A; can be represented & = U1 + - - - + Uy, Where
(U : k > 1) is iid. Under suitable regularity conditions on
the Uy’s, Glynn and Whitt (1994) show that

YN ©) = —k (=),

wherex (8) = log(E exp@U1)), andk~1(-) is the inverse
function tox (ie. k(k~1(0)) = k 1k (8)) = 0).
Example 3. Here, we consider a Markov-modulated Poisson
process. Inotherwords, there existssavalued continuous-
time Markov chainX = (X (¢) : + > 0) with generatorB
and functionf : § — (0, c0) such that the intensity of
the Poisson (arrival) process at timés f(X(¢)). Suppose
B is finite and irreducible. Thenjy(0) is the eigenvalue
of B + D(6) having maximal real part, wher® () =
diag((e? — 1) f(x) : x € S).

Under Assumption A4, Glynn (1995) proves the fol-
lowing theorem.

Theorem 2. If Assumption A1 and A4 hold, then

t
% log E exp(6 O (1)) — / Y (log(e’ F(x) + F(x)))dx,
0

asn — oQ.
Set

t
V() = f yn (log(e? F(s) + F(s)))ds.
0

Suppose that the functiofi-) has the property that there exist
positive constantg’, ande such thatv(-) is continuously
differentiable and strictly increasing dr-¢, 6%, + €], with

V' (0) < v'(8%) = x. Then, Theorem 1 ensures that

1
—log P(Q,(t) > xn) — =05 x +v(6) Q)
n

asn — oo. The above limit suggests the approximation
P(Qu(t) > xn) ~ expn(—63,x + v(63.))),

whenn is large.

Simulation offers ameans of computiRrgQ,, () > xn)
to a much higher level of precision than that associated with
the approximation. The rare-event simulation algorithm
proposed in Section 2, when applied to the computation of
o, = P(Q,(t) > xn), suggests the use of the importance
distribution

P, (dw) = exp, On(t, ®) — 109 E exp(6, 0n (1)) P (dw),

where 6" is the root ofd/d0log E exp6; Q,(t)) = xn
and P(-) is the original probability associated with the
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probability space supportin@,, (). An estimator fory,, is
then obtained via the sample mean of replications of the rv

W, = exp(—0, Qn(1)+l0g E exp(6, Qn ()1 (Qn(t) > xn)

simulated under the distributio®*. Let E}(-) be the
expectation operator corresponding Bj. The Cauchy-
Schwarz inequality implies that for any unbiased estimator
W, of oy,

EW?2 > (EW,)? = a2,

Thus, under the conditions leading to (1), we have

1
lim ~log EW?2 > —20% x 4+ 2yn (0%).

n—oo N

)

We will show momentarily that the lower bound on the right-
hand side of (2) is achieved asymptotically by simulating
W, under P}. In other words, the r#v,,, when simulated
underP, achieves (in logarithmic scale) the highest possible
asymptotic efficiency (in the sense of minimizing the second
moment of the estimator). We view this as an asymptotic
justification for our use of the algorithm suggested in Section
2.

In fact, this result holds in great generality. To make
this point clear, we shall show that the result holds in the
general Gartner-Ellis setting.

Theorem 3. Assume hypotheses A2 and A3 hold. i.) Let
(W, : n > 1) be a sequence of estimators BfS, > nx)
that is unbiased, in the sense thaw, = P(8, > nx).
Then,

.1
lim =~ log EW? > —205x + 2y (0p).

n—oo N

ii.) Suppose that the variat#, given by exg—6,8, +
log E exp(, ) (B, > nx) is simulated undeP, (dw) =
exp(, n(w)) — log E exp(6,8,)) P(dw), whered, is the
root of d/d6 log E exp(8, f,) = nx and P(-) is the original
probability associated witls,. Then

Ean = P(B, > nx)
and

im % log E, W2 = —20}x + 2y5(0}),
where E,(-) is the expectation operator associated with
Pn(')-
Proof. Part i.) follows in the same way that we derived
relation (2) above. For part ii.), it is easily verified that
the function logE exp(68,,) is convex ind; see Dembo and
Zeitouni (1998). It follows from the convexity property
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of log E exp(68,,) that we obtain the following asymptotic
result,

19 \ogEexp08) — Lvs0)
ndo 9 n) = 1gVh

asn — oo; see Dembo and Zeitouni (1998). Furthermore,
w/’g() is continuous and strictly increasing ¢fe, 9; +€).

It therefore follows easily thaf, — 9; asn — oo and

n—tlog E exp(6,,) — Yp(05) asn — oo. Sinced, is
positive forn sufficiently large,

W, = exp(—6,, B, + log E exp(@, ) (By > nx)
< exp(—6unx + log E exp@, o) (B > nx)
< exp(—6,nx + log E exp(f, B,)).

Hence,
1 ~ 2 ~ 2 ~
—logE, W, < —20,x + — log E exp(6, ).
n n

Sendingn — oo, we conclude that

— 1
nILmOO;IogEn < —205x + 2yp(0p).

BecauseW,, is clearly unbiased for estimation @ (8, >
nx), part i.) immediately yields

lim % log £, W7 = —205x + 2y5(6}).
as desired.

Thus, the importance distributiaB, is always guaran-
teed to yield a asymptotically optima “change-of-measure”
(in logarithmic scale). So, the Gartner-Ellis theory estab-
lishes that the importance sampling algorithm introduced
in Section 2 is asymptotically optimal in “heavy traffic”.

Unfortunately, the importance distributigt suggested
in Section 2 is, in general, impossible to implement from a
practical standpoint. While implementation is clearly possi-
ble when the distribution of (¢) is known, such knowledge
will never be available in situations of practical interest (forin

such cases, simulation would be unnecessary). Any realistic

implementation of importance sampling must involve de-
scribing the change-of-measure at the level of the “building-
blocks” of the process. In the setting of the infinite-server
gueue, the change-of-measure must be described at the
level of the inter-arrival times and processing times. Since
P* does not lend itself to such a description (because it
“twists” Q(¢) and not the inter-arrival times and processing
times), we must instead search for an alternative change-of-
measure that (hopefully) coincides asymptotically with

The same general remarks unfortunately also apply to the
Gartner-Ellis change-of-measure described in Theorem 3.
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In Section 4, we explore an alternative change-of-measure
to P* that has the appropriate asymptotic structure.

4 AN IMPLEMENTABLE RARE-EVENT
SIMULATION ALGORITHM

We wish to find a “change-of-measure” that coincides asymp-
totically (for large n) with the probability P} discussed
earlier. Recall thatP; is defined through the “twisting-
parameter’d, wheref — 0% and@y, is defined as the
root of

t
V(0% =/ Y (% F(t —s) + F(t —s))
0

eH;OF(t —5)
e F(t —s)+ F(t —s)

Recall thatel>F(r — s)/(e?~F(t — s) + F(t — s)) is
the parameter of a Bernoulli random variable having
meane’~F (1 — 5)/(e?~ F(t — s) + F(t — s)). Note that,

Y (% F(t —s) + F(t — s)) is the (asymptotic) mean
of the arrival process associated with exponential twist
¢’ F(t —s)+ F(t —s). This suggests an importance sam-
pling algorithm in which the arrival process (or, equivalently,
the inter-arrival times) is twisted at timeto have instan-
taneous arrival rate/y (e’~ F (1 —s) + F(t — s)), and the
Bernoullirvindicating that a customer arriving at timstays
until time¢ (i.e. has a processing time greater thans) is
twisted to have meaef> F (1 —s)/(e?~ F (t —s)+ F(t —s)).

To precisely state our rare-event simulation algorithm,
we need to specify the arrival process more exactly. Set
Uy = Ay — Ag—q for k > 1.

Assumption A5. (U; : k > 1) is iid, with «(0) :=
log E exp(0Uy) for 6 € R.

Our goal is to computexr =
x> EQ().
Algorithm.

P(Q(t) > x) where

1. Compute the roof* to the equation
t

— | kY (=log(e’ F(t—s)+F(1—s)))ds
do Jo 0=6*
= —Xx

and selecin, the total number of replications.

wnN

SetA <0, L« 1 O« 0, W <«0.
Generatd/ from the distribution

expic L(—log(e? F(t — A) + F(t — A)))x
— k(Y= log(e” F(t — A) + F(t — A)))))
x P(U € dx),
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which is easily seen to have the following formu-
lation,

(" F(t — A+ F(t — A))
x expic L(—log(e? F(t — A) + F(t — A)))x)
x P(U € dx).

4. L« L-("Ft—A +F@t—A)1t
cexp(—k (= log(e? F(t — A) + F(t — A))U).

5, A< A+U.

If A >t goto 11.

7. Else, generate a Bernoulli vwith parameter

o

& Ft — A)
" F(t —A)+ F(t—A)
8. 0« Q0+1. )
9. L« L-e (" F(t—A)+ F@t — A)).
10. Go to 3.
11. W < I(Q > x)L.

12. Replicate steps 2 through zlindependent times,
thereby computingVy, Wo, ..., W,,.

13. The estimator fow is n=1 3" | W;.

A natural question that arises here is the efficiency of
the algorithm just described. As in Sections 2 and 3, we
offer an asymptotic “heavy-traffic” analysis of the estimator
above.

Suppose that we wish to compute= P(Q,(t) > nx),
whereQ, (¢) is as described earlier. The arrival process for
system is accelerated by a factor of so that thej'th inter-
arrival time in systemm is justU; /n. Thus, the logarithmic
moment generating function, (-) for the inter-arrival times
in systemn is given by «,(0#) = logE expl@U1i/n) =
k(0/n). Itis then easily verified that,1(0) = nkc=1().
Hence, the rood* of the equation

t

— | kN (—log(e” F(t —s) + F(t — 5)))ds|g—p+
do Jo

d 1 4 0* £
=n— [ « ~(—log(e” F(t —s)+ F(t — 5)))ds|g=p
do Jo

= —nx

appearing in step (1) of the algorithm is independent.of
Also, the likelihood ratio of step (11) is equal to

L,= " F@t)+ F(t)!
Na(t) A
cexp(—n Yk H(—log(e” F(r — 7’) 3)
j=0

A U
+F(l——))——070,1))
n n
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Continuing our derivation of the likelihood ratio of step
(11), we see that

o = 1 n AN 0 +1
L,=(" F@)+ F(t)) ~- exp(—n/
0

k(= log(e? F(t —n"YAw, ) + F(t — An,5)))ds
— 6% 0, (1)).
4)

Let E.(-) denote the expectation operator associated with
the “change-of-measure” for system

Theorem 4. Suppose that/ is a bounded rv, and that A1,
A4, and A5 hold. Assume that there exists a rebto the
equation

t

— | k7 Y(=loge? F(r —5) + F(t — 5)))lg=pr = —x
do Jo

and thatr(-) is continuously differentiable of0, 7 + 1],
wherer(s) = k 1(—log(e?” F(r — s) + F(t — s5))). Then,

1 2
—l0gQEI(Qn(t) > xn)L;
n
t
N —29*x—2/ k(= log(e? F(t—s)+ F(t —s)))ds
0
asn — oQ.

Proof. The key is formula (3) for the likelihood ratio. The
exponent appearing in (3) is just

n AN, (41 1
—n/ r(n” A, (s)ds — 0% Q, (1)
0

t
—n/ r(s)ds — 6*Q,(t)
0

Na®) - Ajia/n
—n Z[ [r(n AN, () — r(s)lds
j=0 Aj/n
t
<-n / F(s)ds — 6% Qu(1)
0
Na() A iq/n
4n sup |r/(u)|2f T (s — Ay n)ds
O<u=<t+1 i=0 JAj/n

t
< n / r(s)ds — 6% 0n (1)
0

Ny (t)+1
+n sup || Y. UZ/n®
O<u<t+1 =0

t
= —n/ r(s)ds —0*Q,(t) + 0(1/n)
0
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where theO(1/n) term above is deterministic. It follows
that

1(Q,(t) > xn)L?
< 1(Qu(1) > xn)(” F(1) + F(1))™!

t
exp(—Zn/ r(s)ds — 20*Q,(t) + 0(1/n))
0
t
< eXp(—Zn/ r(s)ds — 20*xn + O(1/n)).
0

Hence, we obtain the following “limit-supremum” result
that is critical to the justification of the desired limit,

1 )
lim —logE.I(Qn(t) > xn)L;
n—oon
t
< —2f k(= log(e” F(t—s)+ F(t —s)))ds — 20*x.
0

The corresponding “limit-infimum” result necessary to reach
our desired limit follows from the same argument as in
Section 3 (namely,/(Q,(t) > xn)L, is unbiased for
P(Q,(t) > xn), and the latter probability converges in
logarithmic scale via the Gartner-Ellis theorem).

Theorem 4 establishes that our algorithm produces esti-
mates that are asymptotically optimal (in logarithmic scale).

5 A NUMERICAL EXAMPLE

In this section, we provide a numerical example to comple-
ment the theoretical developments of the previous sections.
More precisely, we findv = P(Q(¢) > x) via simulation

for two different systems and for several different values of
x. We first consider amM /M /oo system, and secondly a
G/M /oo system with iid inter-arrival times distributed as
an hyper-exponentialH>) rv with density

f(x) = prie ™ 4+ (1 — p)rge 2% x > 0.

The H> distribution is the mixture of two exponential dis-
tributions, and for this reason it is useful when modeling
the arrivals of two different classes of customers.

In these simulations, we choose= 500, A = 1 in
the M/M /oo system;iy = 1, Ao = 2, andp = 0.8 in
the Ho/M /oo system; andu = 0.01 for both systems.
The values ofc considered are = 120, 130, 140 for both
systems, so thatQ(r) > x} becomes a “rare-event” as
increases.

We obtain two estimators. The first oneasn), the
estimator obtained by conventional Monte Carlo simulation
resulting from computing the sample mean formed from
n = 1000 iid replications of the random varialléQ > x).
Our second estimator ig(n), formed by computing the
average of: iid replicates of the i (Q > x)L, whereQ
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is obtained using the Algorithm described in the previous
section.

In order to compare the efficiency of these estimators,
we repeatn = 1000 times the simulation just described.
The sample mean (sample standard deviation) eveosf
these estimators producésn, m) anda(n, m) (5(m) and
s(m)).

In Tables 1 and 2 we summarize our results. In each
case we displayg(n, m), a(n,m), s(m), and s(m). In
addition, to validate our results we also include the true
value of o; a known value in theM /M /oo setting, and
obtained with a very long simulation in thié /M /oo case.

To make more explicit the impact of our estimator, the last
row in the tables shows the ratio of the estimator standard
deviationss (m)/5(m).

Table 1: M /M /oo Tail Probability Simulation
Tail parameterx

Parameter 120 130 140
o 0.0192 0.0014 4.77e-5
a(n, m) 0.0184 0.0012 6.5e-5
a(n, m) 0.0194 0.0015 4.75e-5
s(m) 4.25e-3 1.16e-3 2.37e-4
s(m) 3.41e-3 3.26e-4 1.65e-5
s(m)/s(m) 1.25 3.56 14.4

Table 2: Ho/M /oo Tail Probability Simulation
Tail parameter

Parameter 120 130 140
o 0.173 0.0334 0.0034
a(n, m) 0.175 0.0345 0.0030
a(n, m) 0.174 0.0337 0.0033
s(m) 0.0503 0.0269 6.7e-3
s(m) 0.0457 9.83e-3 1.23e-3
s(m)/s(m) 1.10 2.74 5.45

The conclusion we draw from these simulations is
that our estimator becomes much more efficient than the
conventional Monte Carlo estimator as the tail parameter
increases, for both th® /M /oo and theH>/ M /oo systems.
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