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ABSTRACT Although there are several methods for the mean value
estimation of covariance stationary processes (see for ex-
Mean value estimation of processes exhibitirmng Range ample Bratley, Fox, and Schrage 1987), the only “classical’
DependencéLRD) requires a different approach than the method usable when the process exhibits LRD is “inde-
techniques applied to those exhibitirghort Range De- pendent replication”. However, this method requires the
pendence(SRD), except for the independent replication deletion of the transient period in every sample path. Since
method. We describe a nonoverlapping batch means methodtransient periods are expected to be larger when simulat-
able to deal with LRD processes, the LRD Batch Means ing systems usingsymptotically Second-order Self-Similar
method. This method exploits the behavior of Asymptoti- (ASSS) processes exhibiting LRD than when using classical
cally Second-order Self-Similar processes: their aggregated ones, this method will be usually much less efficient than
processes become well approximatedHogictional Gaus- another one using only one sample path.
sian Noise(FGN) processes for large aggregation levels. Although there exist methods able to estimate the mean
Once tested positively this similarity, the method produces value of ASSS processes (Beran 1994, pp. 161-164), they
a correlation-adjusted confidence interval from an empir- need to make assumptions about the spectral density function
ical approximation of the distribution of the standardized of the underlying process and require to store and process
average for the particular case of FGN processes. After- the whole sample path. In this paper, we propose the
wards, we measure its performance over both LRD and LRD Batch MeangLRDBM) method in order to adapt

SRD processes. the nonoverlapping batch means method approach to the
computation of confidence intervals (Cls) of ASSS processes
1 INTRODUCTION without any further assumption about the underlying process.

Afterwards, we check the performance of the LRDBM
Several recent traffic measurement studies have convincingly method when dealing with both LRD and SRD processes.
shown the presence of self-similarity in modern high-speed The rest of the paper is organized as follows. In
networks (Leland et al. 1993; Garrett and Willinger 1994) Section 2, we review the main concepts related to LRD and
phenomenon characterized by exhibiting LRD. The pre- self-similarity over which the LRDBM method builds up.
sence of LRD in input traffic may have a drastic impact on In Section 3 we present a brief overview of the LRDBM
network performance (Likhanov, Tsybakov, and Georganas method. A more complete description of the method may
1995; Erramilli, Narayan, and Willinger 1996). What is be found in (Suarez-Gonzélez et al. 2002b). In Section 4
more, it might happen that performance metrics (e.g. delay) we evaluate experimentally its performance over both LRD
inherit the LRD behavior of the input traffic (LOpez-Ardao, and SRD processes. Finally, in Section 5 we summarize
Suéarez-Gonzalez, and Lépez-Garcia 1998), opening new the conclusions about the proposed method.
statistical problems related to mean value estimation.
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2 LRD AND SELF-SIMILARITY

We limit our exposition to those stochastic processes of
interest in simulation studies of computer networks, that
is, those discrete-time processes with finite variance and
mainly positive autocorrelated (for a more thorough survey
see for example Beran 1994).

Let X = {X;k=1,2,...} be a covariance sta-
tionary stochastic process with autocorrelation function
re = Cov(X;, X;1x) /Var(X). It is said thatX exhibits
LRD when its autocorrelation function is not summable, i.e.,
Y o4k = 00, like in those processes whose autocorrelation
function decays hyperbolically:

. Ik
18 (0,1 | lim —
Conversely, it is said that exhibits SRD when its autocor-
relation function is summable, as in those processes whose
autocorrelation function either decays hyperbolically as in
equation (1) but withd > 1, or it decays exponentially:

k:CrE(0,00)

EIae(O,l)‘ lim %
k—o0o

Let X be the aggregated process Kf (with ag-
gregation level), obtained by averaging the original pro-
cess X over non-overlapping blocks (batches) of size
X0 =1{x;[1;i=1,2,...}, where:

Xil=7-

il
> X

j=G—-1)-1+1

and with autocorrelation coefficientg)r

The strictly stationary process is called exactly self-
similar, with self-similarity parametdt (defined by Hurst
1951), if for all [, its finite-dimensional distributions are
identical to those of the aggregated proceg$,, scaled by
11H that is, x 2 /2H . x O,

Another less strict definition involves exclusively the
second-order moments (Cox 1984). So, the covariance
stationary process is called second-order self-similar
(SSS) if the aggregated proceg’ scaled by/*~H (from
now on we will restrict to 2 < H < 1) has the same
variance and autocorrelation asfor all /, that is, if the

The autocorrelation function for every ldg> 1
is given by the expression

} [(k + 12 Pk — 1)2H]
2

2
For H = 1/2 the process is uncorrelated so that
r, = O for everyk > 1, whereas foH € (1/2, 1)
we can see that (Cox 1984):

g;
lemOOW —H-(2H-1),

that is, it decays hyperbolically as in (1), hence
the process exhibits long-range dependence.
The variances satisfy:

Var (X<’>) —var(X) 1?2 vi=1 (3

Therefore, the classical central limit theorem does
not hold forH € (1/2, 1).

If the process is Gaussian, self-similarity and second-order
self-similarity are equivalent. A FGN process, the sequence
of increments of a Fractional Brownian Motion (Mandelbrot
and Ness 1968) process, is of this kind, that is, it is Gaussian
and exactly self-similar. For/2 < H < 1 it exhibits LRD,
while for H = 1/2 it is simply the classical Gaussian
noise process, the sequence of increments of the classical
Brownian Motion process.

The process is called asymptotically second-order self-
similar (Cox 1984) if expression (2) is satisfied asymptoti-
cally as! tends to infinity:

lim r =g vk>1

[—o0

4

Therefore, an ASSS process withe (1/2, 1) will exhibit
LRD.

In the same way, an ASSS process also satisfies asymp-
totically expression (3):

Var (X @0)
\ar (X(k)) k—00

"2 vi>1 (5)

The following theorem (Tsybakov and Georganas 1997)
states a sufficient condition on a stochastic process to be

aggregated processes exhibits the same correlation structureasymptotically second-order self-similar exhibiting LRD:

as the original stochastic process. Any of the following
conditions is sufficient for second-order self-similarity:
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Theorem 2.1 A covariance stationary procesk¥
with variance o2 and autocorrelation function decaying
hyperbolically:

. Ik
3,3 € (0,1 k||—>mookT/3 =cCr € (0,00),
satisfies:
Var (X®) B
with H=1- -
cr 021282 |00 H2H-1) 2’

and is asymptotically second-order self-similar.

If this processX is also Gaussian, we have the following
central limit theorem for self-similar processes (Samorod-
nitsky and Tagqu 1994):

Theorem 2.2  If X isan stochastic process satisfying
the condition of theorem 2.1, and is also Gaussian with mean
value u, then:

Var (x) =

Y’

whereY is an standard FGN process (mean value 0 and
variance 1).
Although this theorem holds only for Gaussian pro-

cesses, Taqqu and Teverovsky (1998) claim that it is a good
approximation for the non Gaussian case, as it is the case

with the M/Ghbo processes (Cox 1984) and non-Gaussian
Auto-Regressive Fractional Integrated Moving Average pro-
cesses (Granger and Joyeux 1980).

At the other hand, foH = 1/2 we have the classical
central limit theorem (Billingsley 1968).

3 OVERVIEW OF LRDBM

The LRDBM method is a sequential procedure that tries to
estimate the mean valye of an ASSS procesX —with
Hurst parameteH € [1/2, 1) and variancer>— from one
sample path of growing length. It stores a maximum
numberm of batches with increasingly aggregation level
(power of two) until a goodness of fit test for its spectral
density and another one for its marginal distribution are
unable to distinguish it from a sample path of an FGN
process. Then, when both tests fail to reject the null hy-
pothesisH, = “is an FGN process”, the method computes
a correlation-adjusted estimation of the variance of the av-

erage upon an estimation of the Hurst parameter, and finally

constructs a Cl for the mean value from an empirically fitted
distribution of the normalized average of FGN processes.
Since the procesX is required to be ASSS, we will

have that the autocorrelation structure (hence spectral den-

sity) of the batches of the sample path of the procEss
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will tend to that of an SSS process as the aggregation level
increases, as given by expression (4). Therefore, the natural
approach to the estimation of the Hurst parameter is to use
the aggregated Whittle estimator (see for example Leland
et al. 1993), that is, the parametric discrete Whittle esti-
mator (see for example Beran 1994, pp. 116-119) with the
parametric spectral density of SSS processes, over a sample
path of sizem of the aggregated procex€”, H[m,I]. In
order to obtain a significant enough estimation of the Hurst
parameter (Suarez-Gonzélez et al. 2002b) we have chosen
the numbenn of stored batches to be 4096.

As goodness of fit test for the spectral density of the
aggregated process’) we use the “flat zone” goodness of
fit test (Suarez-Gonzalez et al. 2002b) of the null hypothesis
“the spectral density ok ® is that of an SSS process”: it
computes the absolute value difference of two estimations
two steps apart of the Hurst parametet[4096 /] and
H[4096 //4], and uses an empirically computed rejection
region R = (—o0, —0.024903 U (0.024903 +00) for an
approximate M5 significance level. Although heuristic in
its nature, we have checked its higher power to reject the null
hypothesis for non FGN processes than the more theoretical
test proposed by Beran (1994, pp. 201-206).

Once we consider the correlation structure of the ag-
gregated proces¥X ) well approximated by that of an
SSS process, we may estimate the variance of the average,

a%[n] = Var (X[n]), from property (5):
2 _ (m-1) O\ ., 2H-2
og, = Var (X ) — Var (X ) m=% (6)

applying a correlation-adjusted estimation of the variance
for an SSS procesE (Beran 1994, p. 156):

o n—1l
Sy [n] n — p2H-1’

&, [n ﬁ] - @)

whereS% [n] is the common quasi-variance estimator and
H is an estimator of the Hurst parameter. Hence, we get:

Si(/) [m ﬁ] : "

_ m2H-1

o ~ m—1
Sy [m.H] = )
In this way we may derive an estimator a%nl using
expressions (6) and (8):

§2 [m, I, ﬁ] = S~2X<z> [m, ﬁ] -m2ﬁ_2
1 9)

Lo 'Sim [m].

m2-2H _ 1

This estimator is still biased, although much less than the
common quasi-variance estimator.
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Tagqu and Teverovsky (1998) have shown that the result to be a power of two. As a matter of faet, will be a
of theorem 2.2 is a good approximation for non-Gaussian function of the number of batches selected to estinkite
marginal distributions. Therefore, we test the goodness of fit my, as stated below.
of the marginal distribution of the aggregated prock§s With respect to the empirically adjusted distribution
to a Gaussian distribution, using a Kolmogorov-Smirnov of Z, we have fitted it by a t-Student fony € {2; k =
test with composite hypothesis (mean value and variance 10,11, 12}, m, € {2/;j = 6,...,10} andH € {0.5 +
estimated from then batches) with a significance level of i-0.05i = 1,...,9}, selecting its number of degrees of
0.05 under independence. Of course, the actual significance freedom such that it minimizes the maximum absolute error
level when the null hypothesis is tru& s an FGN process) between its 100 quantiles and those obtained empirically
will not match this value, although it will tend asincreases from 72000 sample paths of each FGN process, generated
to a number different of the unity (Beran 1994, pp. 197-201) using the exact method proposed by Crouse and Baraniuk
for any value ofH. (1999). In this same Monte Carlo study, we have also
Once we have checked both the goodness of fit of estimated the value afi, which minimizes the bias of
the spectral density by an SSS process and the marginalthe estimator from equation (9), giving rise to the values
distribution by a Gaussian random variable, and in order m, = 64 for mpy € {1024 2048 andm, = 128 formy =
to compute a CI for the mean value, we approximate the 4096. For these thre@n,, my) pairs, the worst (best) fitted

distribution of the standardized average: case has been fdd = 0.95 (095), m, = 64 (128) and
my = 1024 (4096) with a maximum absolute error among
X[n] — the 100 quantile pairs (empirical versus t-Student one) of
Z= = = 0.0697888 (00198527) for 7 (16) degrees of freedom. We
s [m L H] also letm, to be 32 formy = 1024, since the estimator

of the variance of the average with this pair exhibits an
acceptable small bias. The number of degrees of freedom
of the t-Student distribution actually used to compute the
Cls is obtained by linear interpolation fét of the stored
values form, andmy completed withm, — 1 forH = 0.5

and 1 forH = 1.

Second, since the “flat zone” test implies a quite large
initial sample sizen for a first ClI computation, and given
that for some ASSS processes with large low-lag autocor-
relation structure the estimatbr[4096 /] tends initially to
decrease (Suarez-Gonzélez et al. 2002b), we will try to de-
tect this behavior and permit to compute a Cl without passing
the “flat zone” test and possibly using a higher aggregation
level for the Hurst parameter estimatioRl [(ny, n/my]
with my equal to 1024, 2048 or 4096). This way we try
to compute conservative Cls with less sample values than
the required for the “flat zone” test to fail to reject.

Third, since for some ASSS processes with low low-
lag autocorrelation structure the estimatbj4096 /] tends
initially to increase giving rise to low-quality Cls the first
time the “flat zone” test fails to reject the null hypothe-
sis (Suarez-Gonzélez et al. 2002b), we will try to detect

In practice, we have implemented the LRDBM method with this be.:haV|or~and react using a more~peSS|m|st|c Hur;t esti-
some modifications in order to get either the first Cl as soon Mator: ma><(H [4096 /], H[2048 2/] , H[1024 41])- This
as possible, or a higher quality CI. way we try to counteract the subestimation of the correla-

First, the number of batches used to compute the esti- tion structure (hence the estimation of the variance of the
mator of the variance of the average given by expression (9), average) and produce higher quality Cls.
me, will be the power of two which minimizes its bias and The resulting LRDBM implementation is made up by
for which the Kolmogorov-Smirnov test fails to reject the two algorithms:
null hypothesis forx ) (n = 1, -m,). Also, as the storage
size will bem = 4096 > m,, we will be able to compute

another estimatiors? [mg, ly, ﬁ] without the need of,

consideringX® an FGN process. Nevertheless, since we
will be using a moderate number of blookgboth for quick
convergence and low storage requirement), our estimators

—H and<? [m, I]— will not be consistent (we will not let

m tend to infinity asz does), and so, a standard normal (as
given by theorem 2.2 for Gaussian processes) will not be a
good enough approximation of the distributionffeven if

X isactually an FGN process. Beran (1994, p. 163) proposes
to approximate analytically the distribution &f, through

the distribution of some random variables function of two
independent Gaussian random variables, whose quantiles
have to be estimated by Monte Carlo simulation, though.
Instead of this approach, we have conducted an intensive
Monte Carlo simulation of the actu& variable with X

an actual FGN process for different values of the Hurst
parameter, and fitted their empirical distribution by a t-
Student one. In this way, we limit the stored information
to a table of freedom degrees.

3.1 LRDBM Implementation

»  Everytime the sample sizeis a power of two mul-
tiple of the number of stored batches—= 4096,
the Algorithm 1 verifies the expected behavior of
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H [4096 [] and updates accordingly the Hurst esti-

mation,H, the number of batches used to compute Algorithm 1 Computeﬁ my andm
’ o

the variance of the average,,, and the next num-
ber of batches to compute the Hurst parameter,
my.

* Every time the sample size is, either a power
of two multiple of the number of stored batches
m = 4096, or it is higher than the next sample size
check point and, at the same time, a multiple of
bothm, and the new aggregation level for the next
m = 4096 batches, the Algorithm 2 computes a
new estimation of the variance of the average, the
degrees of freedom of the t-Student distribution
used to approximate the distribution &f, and
finally the half-width of the new CI for the desired
quality 1— «. If this half-width is lower than the
desired half-width relative to the average, then it
returns its value and quits. If not, it computes a
new gross estimation of the needed samples and
selects the midpoint between it and the current
sample size as the next check point.

The source code is available<dtp:/ftp-gris.
det.uvigo.es/pub/LRD/LRDBM-src.tgz>

4 PERFORMANCE MEASURE

In this section we present the measured performance of
the LRDBM method applied over some selected LRD and
SRD processes. For those processes exhibiting SRD, we
also show the behavior of theutomated Simulation Analy-
sis Procedurd ASAP) procedure proposed by (Steiger and
Wilson 2000), since it is also an autocorrelation corrected
batch means procedure which gives similar or better ClI
quality than other nonoverlapping batch means methods.

For the first set of tests, we select a process that arises
naturally in teletraffic as the limiting case for aggrega-
tion of on/off sources (Likhanov, Tsybakov, and Georganas
1995), the M/Gso process. Moreover, its sample genera-
tion method is exact and quite efficient@n) with n the
sample size— and, even more useful, at the same time it
is a sequential procedure (its sample size has not to be set
beforehand). Specifically, we use the discrete-time process
proposed by Suarez-Gonzalez et al. (2002a), M/Stince
its correlation structure is simple and quite flexible (two
parameters).

As the second set of tests (exclusively SRD) we have
selected those queue waiting time processes where Steiger
and Wilson (2000) have measured the worst coverage for
ASAP. Namely, an M/M/1 queue withast Input First Output
(LIFO) service and a computer model with one central server

Require: n = 212tk

m <« 212 = 4096
| <2=n/m
{’set initial values}
if n =4096then
maxny , m., grow, flatzoneincmy < 0
nextny < 1024
{compute highest m, value}
for all p € {5, 6, 7} such that 2 > maxm do
if K_s(x@“*k*”) fails to reject?, then
maxng <« 2°
{check behavior of H[m, ] estimator}
if ‘ﬁ [m, 1] — H[m, 1/4]‘ < 0.024903then
flatzone< flatzone+ 2
else
if flatzone> 0 then
flatzone< flatzone—1
if H[m, 1] > H[m/2,2[] > H[m/4, 4] then
grow < grow— 1 -
else if H[m, 1] < H[m/2,2]] < H[m/4, 4] then
grow < grow+1
{compute m, and new H estimation if possible}
mpy < nextny
if my = 4096then
optm, < 128
else
optm, « 64
if grow < O or flatzone> 0 then
mg < min (maxny, optm,)
if grow < 0 then
H < H[mp, n/my]
else ~
H < max(H[k,n/k] mpy<k=2 fm)
{adjust next my}
if my < m then
if grow < 0 then

it H[my,n/my] > H [ZmH, szH] then
incmy <1
else if flatzone> 0
andH [my, n/my] < H [ZmH, #H] then
incmy < 1
if incmy =1 and

(maxm > optm, or (my = 1024 andmaxm = 64))

then
nextny <« 2my
incmy <0

(CPU) and two peripheral units, both previously used by Law
and Carson (1979).
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Algorithm 2 Compute ClI
Require: m, # 0 and (
n = 212+k
or (n > nextnandn [ andn -+ m,))
{I =2 with i = [logyn]| — 12}
log < n/mg _
var < $?[m,, I,] {use H computed in Algorithm 1}
df < degrees_of_freedo@na, my, ﬁ)
t <t _Studentl — «/2,df)
rhalfCl < ¢ - /var/X[n]
{check quality requirements}
if rhalfCl < goal_rhClthen
returnrhalfCl and quit
else
nextn<« (n + extrapolatén, rhalfCl, goal_rhCl))/2

For all the experiments of this section, 1000 steady
state simulations have been run for any given set of pa-
rameters. The set of requirements for the half width of
the 90% CI relative to the mean value estimation has been
{10, 4%, 2%, 1%}. The 95% confidence interval for the cov-
erage (given a method with exact Cl estimation for the mean
value) is(0.884, 0.916), considering approximately Gaus-
sian the binomial distribution witip = 0.9 andn = 1000.
None of the experiments of this section has shown an
estimated coverage of the LRDBM procedure lower than
0.884. The tables for each experiment show for each CI
requirement (rhCl req.), the average sample size the
estimated coverage (cvrg), the average half width of the
90% Cl relative to the mean value estimation (av.rhCl), its
estimated coefficient of variation {£g)), that is, the es-
timated \/Var (rhCl)/ E (rthCl) value, and, in the LRDBM
case, the estimated biad ¢ H) shown by the used Hurst
estimation (awbias).

4.1 M/Sho Processes

The autocorrelation structure of these family of processes
is given by:

-1
1_amot
1
o

{0

hence the process is ASSS exhibiting LRD of Hurst pa-
rameterH = (3— «)/2 for 1 < o < 2 from Theorem 2.1
(B = a —1), and it exhibits SRDH = 0.5) fora > 2. The
parametem > 0 is selected to get a desirede (0, 1). In
any case, the marginal distribution of any MéG/process
with arbitrary service time random variable of finite mean
value is Poisson.

The mean value selected for all the M#S/processes
generated was 20. All the simulations have been started
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-k Vk € (0, m]

Iy =
Vk > m,

in steady state. For the LRD cases, we have selected
ri = 0.9 (0.1) andH = 0.6 (0.8) as representative of strong
(weak) correlation and of weak (strong) LRD behavior. For
the SRD case, we have selectgd= 0.9 anda = 2.1,

as representative of strong low-lag correlation and slow
correlation decay.

Table 1 shows the performance of the LRDBM method
for an M/Sko process withH = 0.6 and § = 0.9. All of
the Cls have been computed after forecasting a decreasing
behavior of the Hurst estimatiogrow < 0 in Algorithm 1).

This decreasing behavior is a direct consequence of the
autocorrelation structure of the process being higher than
that of the SSS process of the same Hurst parameter: r
g%® Vi > 1. As shown by the average sample size for the
non-requirement case~(5000), this behavior is detected
quite quickly.

We observe in this and all the following tables, how
the estimated bias of the Hurst estimator decreases with
the average sample size (we get closer to the asymptotic
behavior of the process), as expected. This behavior of the
Hurst estimation drives that of the estimated coverage: it
tends to be the nearer to the asked CI quality (90%) when
the bias of the former is lower. Nevertheless, there is a light
glitch of this behavior in Table 1 (also in Table 5 below),
when we compare the2% and+1% Cl requirement entries.
This has almost certainly been due to the stochastic nature
of the estimators, since from the total 58 Cls that failed to
contain the actual mean value for these two cases, there were
only 4 of them common to both cases (same seed, hence
same sample path). At the same time, we observe that the
estimated variation coefficient of the computed ClI relative
to the average (c)) also diminishes with the sample size.

Table 1: M/Sho Process withtH = 0.6 and f = 0.9

rhCl req. none +4% +2% +1%
n 50-10° 31-10* 95.10* 41-10°
cvrg 10 0.986 0966 Q978
av.rhCl +79.4% +3.63% +1.88% +0.95%
Cinci 0.514 Q102 Q0622 Q0477
avHbias 0361 Q142 Q088 Q055

Table 2 shows the performance of the LRDBM method
for an M/Sko process withH = 0.8 and g = 0.1. Con-
versely to the previous process, this one has a correlation
structure always lower than a second-order self-similar pro-
cess of the same Hurst parameter, thagis; g®® Vi > 1.

This fact causes the increasing behavior of the Hurst estima-
tion, and, as a consequence, all of the Cls in this experiment
have been computed after the “flat zone” test has been unable
to reject the null hypothesiglétzone> 0 andgrow > 0 in
Algorithm 1). This is a harder condition to achieve than
that of decreasindgd behavior, and this explains the high
value of the average sample size for the first computable
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Cl. As a matter of fact, already in this non-requirement case Table 4 shows the behavior of both the LRDBM and
the half length CI relative to the average is lower than our ASAP methods applied to this system, estimating the mean
stricter requirement#1%). There are actually 708 out of value of the queue waiting time process. In this case, 770
the 1000 experiments which are identical for each one of out of the 1000 first Cls computed by the LRDBM method

the requirements, that is, their computed relative half length had to wait for the Kolmogorov-Smirnov test to fail to
reject the Gaussian hypothesis, with 494323as average
We may observe also that the proposed method is able to sample size in all the 1000 experiments for the first time to
compute good quality Cls even though the Hurst estimation fail. In fact, the Kolmogorov-Smirnov test has failed only
for a maximum value ofmaxng = 32 in 910 times out
of these 1000 experiments (first Cl), while in the M3/
experiments it has happenethgxm = 32) less than 7

Cl in the non-requirement case is already lower thd96.

is negatively biased.

Table 2: M/Séo Process wittH = 0.8 and = 0.1

rhCl req. none +4% +2% +1% times out of every 1000 set of experiments. Obviously,
7 32.10F 32.10° 33.10° 44.10° the M/Shbo process has an almost Gaussian distribution
cvrg 0897 Q897 Q897 Q901 (Poisson), while the marginal distribution of queue waiting

time processes has an exponential tail (see for example
av.rhCl +089% +089% +088% +0.76% Kleinrock 1975). Comparing both the LRDBM and ASAP
C'hS' 0.498 Q492 Q438 0254 methods in this case: initially, the former has a mildly
avHbias -0.038 —-0.038 —-0.038 —0.038

Table 3 shows the performance of the LRDBM and
ASAP methods over an M/& process withe = 2.1 and

conservative behavior while the latter clearly gets a quite
low coverage; asymptotically, both have a fairly similar

performance.

rn = 0.9, that is, over an SRD M/86 process. The Table 4: M/M/1/LIFO Queue Waiting Time Process
behavior of the LRDBM method in this case is qualitatively ~ rhCl req. none +4% +2% +1%
equal to tlhi,-_ casi) shtowegl i?h_Taglle, aItho_ughI_the V\I/eaker LRDBM
autocorrelation structure in this case implies a lower
average sample size for any given requiremenpt. The ASAP 72:10' 36-10° 11-10° 38-10°
method has clear trouble keeping pace with this extreme C€Vrg 0963 0934 0911 Q906
correlation structure, although the process exhibits SRD. av.rhCl +195% +£3.7% +1.88% £0.953%
) ) Cinci 0.577 Q0802 00559 00426
rh-?lb:zq& M/ i’;:mcez;‘:tm :j';/oa”d f zl(:)/f avAbias 0167 Q043 Q017 Q009
: ASAP
LRDBM 7 53.10° 19.10° 90.10° 3.7.1CF
n 66-10° 18-10° 40-10* 11.10° cvrg 075 0848 Q904 Q875
cvrg 10 0996 Q991 Q978 av.rhCl  +209% +38% +189% +0.944%
Cincl 1.02 014 00941 00626
avHbias 0397 0218 Q159 Q112 The second queue system is a computer model with
ASAP one CPU and two peripheral units, the third of the four
7 16-108 20-10° 76-10° 3.0-10% cases of the second computer model used by Law and
org - 0BLL Q797 - om4 008 LR LT et the job is routed 10 the fist
av.rhCl +401%  £354%  +187% +0.946% (second) peripheral unit is.® (0.1). All service times are
Crnci 0.216 Q116 Q0865 Q0693 exponentially distributed. The service rate at the CPU is

1.0, and at the first (second) peripheral unit i4®(0.05).

After getting service at one of the peripheral units, the job
leaves the system and is immediately replaced by another
job joining the CPU queue. The process whose mean value
The first queue system is the M/M/1/LIFO. We have taken will be estimated is made up of the jobs response time
p = 0.8 as utilization of the server, and(E) = 4 as the (between arrival at the CPU queue and departure from the
mean value of the service time random variable, yielding system). The mean response time with these parameters is
a mean queue waiting time (between arrival to the sys- 18.279. The initial state is 5 jobs at the CPU and 1 (2) jobs
tem queue and receiving service) of 16. Each one of the at the first (second) peripheral unit.

simulations has been started in the empty state.

4.2 Queue Waiting Time
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Table 5 shows the performance of both the LRDBM
and ASAP methods in this case. In the LRDBM case, only
185 of the 1000 experiments without CI requirement have
waited for the Kolmogorov-Smirnov test to fail. Clearly,
the tail behavior of the marginal distribution of the queue
waiting time process will be less strong, since we have a
limited number of jobs in the system. Of the remaining
815 cases, 62 have computed its first Cl after forecasting
a decreasingd behavior, while the remaining 753 cases
have waited to the “flat zone” test to fail to reject the
null hypothesis. The used Hurst estimator tends to begin
increasing, for afterwards start decreasing. This behavior

side and produce conservative Cls. This is quite important
when dealing with LRD processes, but may be a desirable
property even when the LRDBM method is applied to SRD
processes: it is not clear the utility of a mean estimation
method whose real coverage gets clearly lower than the
asked quality in quite simple simulation studies, where we
are able to compute the actual mean value. This fact also
has been pointed out by Steiger and Wilson (2000), and
will be addressed by a future modification of the ASAP
procedure.

We have measured the performance of the LRDBM
method for a selected set of LRD and SRD processes.

has also been observed, although less extended in time, inIn these tests, the LRDBM method has performed well,

the previous M/M/1/LIFO queue system. As a side effect,
this tends to force the method to usgy = 4096 (414
out of the 1000 simulations fat:1% requirement) before

it really has arrived to an stable behavior (estimated bias
for the Hurst estimation is still .054), producing an over
pessimistic Cl. Comparing both methods, the behavior of
the LRDMB method is quite conservative, while the ASAP

producing conservative Cls, and even getting quite accurate
coverage for a classical tough test, the M/M/1/LIFO queue
system.

Nevertheless, the LRDBM method may be further im-
proved at least in the following ways: (i) limiting the history
for the forecasting of the Hurst estimator behavior, in order
to discard a possible noisy initial transient period, like that

method gets nearer to the desired coverage but from an observed in the studied computer model; (ii) studying the

optimistic approach.

Table 5: Computer Model Response Time Process

rhCl req. none +4% +2% +1%
LRDBM
i 78.-10* 79.10* 11.10° 28-10°
cvrg 095 0944 Q959 Q947
av.rhCl +29% 4+2.7% +1.78% +0.92%
Crhel 0.426 Q34 0157 Q101
avHbias 0086 Q086 Q086 Q054
ASAP
7 25.10° 83.10° 33.10° 15.10°
cvrg 0825 0816 Q832 Q882
av.rhCl  +7.44% +371% +1.9% +0.954%
Crhel 0.259 Q0846 00674 00569

5 CONCLUSIONS

In this paper we have presented the LRDBM method de-
signed to perform the steady-state mean estimation of LRD

processes, although it is also applicable to SRD processes.

Actually, the LRDBM implicitly performs a test of indepen-
dence, that is, when the Hurst estimator takes the vakie O
but it does not fix its result for the rest of the simulation.
Although its approach is heuristic, its quality is supported
by a quite intensive Monte Carlo simulation study using
an exact method of generation of FGN samples (72000 per
process).

Unlike other batch means methods proposed for SRD
processes, the LRDBM method tries to keep itself in the safe
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usefulness of other Hurst estimators, in order to use an even
lower number of batches than 1024; (iii) trying to extrap-
olate the previous computed values of the Hurst estimator
in order to be able to compute sooner a Cl, mainly when
it exhibits an increasing behavior.
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