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ABSTRACT

Mean value estimation of processes exhibitingLong Range
Dependence(LRD) requires a different approach than the
techniques applied to those exhibitingShort Range De-
pendence(SRD), except for the independent replication
method. We describe a nonoverlapping batch means meth
able to deal with LRD processes, the LRD Batch Mean
method. This method exploits the behavior of Asymptoti
cally Second-order Self-Similar processes: their aggregat
processes become well approximated byFractional Gaus-
sian Noise(FGN) processes for large aggregation levels
Once tested positively this similarity, the method produce
a correlation-adjusted confidence interval from an empi
ical approximation of the distribution of the standardized
average for the particular case of FGN processes. Afte
wards, we measure its performance over both LRD an
SRD processes.

1 INTRODUCTION

Several recent traffic measurement studies have convincing
shown the presence of self-similarity in modern high-spee
networks (Leland et al. 1993; Garrett and Willinger 1994
phenomenon characterized by exhibiting LRD. The pre
sence of LRD in input traffic may have a drastic impact on
network performance (Likhanov, Tsybakov, and Georgana
1995; Erramilli, Narayan, and Willinger 1996). What is
more, it might happen that performance metrics (e.g. dela
inherit the LRD behavior of the input traffic (López-Ardao,
Suárez-González, and López-García 1998), opening ne
statistical problems related to mean value estimation.
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Although there are several methods for the mean valu
estimation of covariance stationary processes (see for e
ample Bratley, Fox, and Schrage 1987), the only “classica
method usable when the process exhibits LRD is “inde
pendent replication”. However, this method requires th
deletion of the transient period in every sample path. Sinc
transient periods are expected to be larger when simul
ing systems usingAsymptotically Second-order Self-Similar
(ASSS) processes exhibiting LRD than when using classic
ones, this method will be usually much less efficient tha
another one using only one sample path.

Although there exist methods able to estimate the me
value of ASSS processes (Beran 1994, pp. 161–164), th
need to make assumptions about the spectral density funct
of the underlying process and require to store and proce
the whole sample path. In this paper, we propose th
LRD Batch Means(LRDBM) method in order to adapt
the nonoverlapping batch means method approach to t
computation of confidence intervals (CIs) ofASSS process
without any further assumption about the underlying proces
Afterwards, we check the performance of the LRDBM
method when dealing with both LRD and SRD processe

The rest of the paper is organized as follows. In
Section 2, we review the main concepts related to LRD an
self-similarity over which the LRDBM method builds up.
In Section 3 we present a brief overview of the LRDBM
method. A more complete description of the method ma
be found in (Suárez-González et al. 2002b). In Section
we evaluate experimentally its performance over both LR
and SRD processes. Finally, in Section 5 we summariz
the conclusions about the proposed method.
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2 LRD AND SELF-SIMILARITY

We limit our exposition to those stochastic processes
interest in simulation studies of computer networks, th
is, those discrete-time processes with finite variance a
mainly positive autocorrelated (for a more thorough surv
see for example Beran 1994).

Let X = {Xk; k = 1,2, . . . } be a covariance sta
tionary stochastic process with autocorrelation functi
rk ≡ Cov(Xi,Xi+k) /Var (X) . It is said thatX exhibits
LRD when its autocorrelation function is not summable, i.∑∞
k=1 rk = ∞, like in those processes whose autocorrelati

function decays hyperbolically:

∃β ∈ (0,1)
∣∣∣∣ lim
k→∞

rk
k−β
= cr ∈ (0,∞) . (1)

Conversely, it is said thatX exhibits SRD when its autocor
relation function is summable, as in those processes wh
autocorrelation function either decays hyperbolically as
equation (1) but withβ > 1, or it decays exponentially:

∃α ∈ (0,1)
∣∣∣∣ lim
k→∞

rk
αk
= cr ∈ (0,∞) .

Let X(l) be the aggregated process ofX (with ag-
gregation levell), obtained by averaging the original pro
cessX over non-overlapping blocks (batches) of sizel,
X(l) = {Xi [l]; i = 1,2, . . .

}
, where:

Xi [l] = 1

l
·

i·l∑
j=(i−1)·l+1

Xj ,

and with autocorrelation coefficients r(l)
k .

The strictly stationary processX is called exactly self-
similar, with self-similarity parameterH (defined by Hurst
1951), if for all l, its finite-dimensional distributions are
identical to those of the aggregated process,X(l), scaled by

l1−H, that is,X
d= l1−H ·X(l).

Another less strict definition involves exclusively th
second-order moments (Cox 1984). So, the covaria
stationary processX is called second-order self-similar
(SSS) if the aggregated processX(l) scaled byl1−H (from
now on we will restrict to 1/2 ≤ H < 1) has the same
variance and autocorrelation asX for all l, that is, if the
aggregated processes exhibits the same correlation stru
as the original stochastic process. Any of the followin
conditions is sufficient for second-order self-similarity:
e

• The autocorrelation function for every lagk ≥ 1
is given by the expression

rk = gH
k ≡

1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
(2)

For H = 1/2 the process is uncorrelated so th
rk = 0 for everyk ≥ 1, whereas forH ∈ (1/2,1)
we can see that (Cox 1984):

lim
k→∞

gH
k

k2H−2
= H · (2H− 1),

that is, it decays hyperbolically as in (1), henc
the process exhibits long-range dependence.

• The variances satisfy:

Var
(
X(l)

)
= Var (X) · l2H−2 ∀l > 1. (3)

Therefore, the classical central limit theorem doe
not hold forH ∈ (1/2,1).

If the process is Gaussian, self-similarity and second-ord
self-similarity are equivalent. A FGN process, the sequen
of increments of a Fractional Brownian Motion (Mandelbro
and Ness 1968) process, is of this kind, that is, it is Gauss
and exactly self-similar. For 1/2< H < 1 it exhibits LRD,
while for H = 1/2 it is simply the classical Gaussian
noise process, the sequence of increments of the class
Brownian Motion process.

The process is called asymptotically second-order se
similar (Cox 1984) if expression (2) is satisfied asympto
cally asl tends to infinity:

lim
l→∞ r(l)k = gH

k ∀k ≥ 1 (4)

Therefore, an ASSS process withH ∈ (1/2,1) will exhibit
LRD.

In the same way, an ASSS process also satisfies asy
totically expression (3):

Var
(
X(l·k)

)
Var

(
X(k)

) −−−→
k→∞ l2H−2 ∀l ≥ 1 (5)

The following theorem (Tsybakov and Georganas 199
states a sufficient condition on a stochastic process to
asymptotically second-order self-similar exhibiting LRD:
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Theorem 2.1 A covariance stationary processX
with variance σ 2 and autocorrelation function decaying
hyperbolically:

∃β ∈ (0,1)
∣∣∣∣ lim
k→∞

rk
k−β
= cr ∈ (0,∞) ,

satisfies:

Var
(
X(l)

)
cr · σ 2 · l2H−2

−−−→
l→∞

1

H(2H− 1)
with H = 1− β

2
,

and is asymptotically second-order self-similar.
If this processX is also Gaussian, we have the followin

central limit theorem for self-similar processes (Samoro
nitsky and Taqqu 1994):

Theorem 2.2 IfX is an stochastic process satisfyin
the condition of theorem 2.1, and is also Gaussian with me
valueµ, then:

X(l) − µ√
Var

(
X(l)

) d−−−→
l→∞ Y,

whereY is an standard FGN process (mean value 0 a
variance 1).

Although this theorem holds only for Gaussian pr
cesses, Taqqu and Teverovsky (1998) claim that it is a g
approximation for the non Gaussian case, as it is the c
with the M/G/∞ processes (Cox 1984) and non-Gauss
Auto-Regressive Fractional Integrated Moving Average p
cesses (Granger and Joyeux 1980).

At the other hand, forH = 1/2 we have the classica
central limit theorem (Billingsley 1968).

3 OVERVIEW OF LRDBM

The LRDBM method is a sequential procedure that tries
estimate the mean valueµ of an ASSS processX —with
Hurst parameterH ∈ [1/2,1) and varianceσ 2— from one
sample path of growing lengthn. It stores a maximum
numberm of batches with increasingly aggregation level
(power of two) until a goodness of fit test for its spectr
density and another one for its marginal distribution a
unable to distinguish it from a sample path of an FG
process. Then, when both tests fail to reject the null h
pothesisHo ≡ “is an FGN process”, the method compute
a correlation-adjusted estimation of the variance of the
erage upon an estimation of the Hurst parameter, and fin
constructs a CI for the mean value from an empirically fitt
distribution of the normalized average of FGN processe

Since the processX is required to be ASSS, we will
have that the autocorrelation structure (hence spectral d
sity) of the batches of the sample path of the processX
-

n

d
e

-

-

-
ly

.

n-

will tend to that of an SSS process as the aggregation le
increases, as given by expression (4). Therefore, the nat
approach to the estimation of the Hurst parameter is to u
the aggregated Whittle estimator (see for example Lela
et al. 1993), that is, the parametric discrete Whittle es
mator (see for example Beran 1994, pp. 116–119) with t
parametric spectral density of SSS processes, over a sam
path of sizem of the aggregated processX(l), H̃ [m, l]. In
order to obtain a significant enough estimation of the Hu
parameter (Suárez-González et al. 2002b) we have cho
the numberm of stored batches to be 4096.

As goodness of fit test for the spectral density of th
aggregated processX(l) we use the “flat zone” goodness o
fit test (Suárez-González et al. 2002b) of the null hypothe
“the spectral density ofX(l) is that of an SSS process”: it
computes the absolute value difference of two estimatio
two steps apart of the Hurst parameter,H̃ [4096, l] and
H̃ [4096, l/4], and uses an empirically computed rejectio
region R = (−∞,−0.024903) ∪ (0.024903,+∞) for an
approximate 0.05 significance level. Although heuristic in
its nature, we have checked its higher power to reject the n
hypothesis for non FGN processes than the more theoret
test proposed by Beran (1994, pp. 201–206).

Once we consider the correlation structure of the a
gregated processX(l) well approximated by that of an
SSS process, we may estimate the variance of the aver
σ 2
X[n]
≡ Var

(
X[n]

)
, from property (5):

σ 2
X[n]
= Var

(
X(m·l)

)
−−−→
l→∞ Var

(
X(l)

)
·m2H−2, (6)

applying a correlation-adjusted estimation of the varian
for an SSS processY (Beran 1994, p. 156):

S̃2
Y

[
n, H̃

]
≡ S2

Y [n] · n− 1

n− n2H̃−1
, (7)

whereS2
Y [n] is the common quasi-variance estimator an

H̃ is an estimator of the Hurst parameter. Hence, we ge

S̃2
X(l)

[
m, H̃

]
= S2

X(l)

[
m, H̃

]
· m− 1

m−m2H̃−1
. (8)

In this way we may derive an estimator ofσ 2
X[n]

using
expressions (6) and (8):

Ŝ2
[
m, l, H̃

]
≡ S̃2

X(l)

[
m, H̃

]
·m2H̃−2

= 1−m−1

m2−2H̃ − 1
· S2
X(l)

[m] .
(9)

This estimator is still biased, although much less than t
common quasi-variance estimator.
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Taqqu and Teverovsky (1998) have shown that the re
of theorem 2.2 is a good approximation for non-Gauss
marginal distributions. Therefore, we test the goodness
of the marginal distribution of the aggregated processX(l)

to a Gaussian distribution, using a Kolmogorov-Smirn
test with composite hypothesis (mean value and varia
estimated from them batches) with a significance level
0.05 under independence. Of course, the actual signific
level when the null hypothesis is true (X is an FGN process
will not match this value, although it will tend asm increases
to a number different of the unity (Beran 1994, pp. 197–2
for any value ofH.

Once we have checked both the goodness of fi
the spectral density by an SSS process and the mar
distribution by a Gaussian random variable, and in or
to compute a CI for the mean value, we approximate
distribution of the standardized average:

Z ≡ X[n] − µ√
Ŝ2
[
m, l, H̃

] ,
consideringX(l) an FGN process. Nevertheless, since
will be using a moderate number of blocksm (both for quick
convergence and low storage requirement), our estima

—H̃ and Ŝ2 [m, l]— will not be consistent (we will not le
m tend to infinity asn does), and so, a standard normal
given by theorem 2.2 for Gaussian processes) will not b
good enough approximation of the distribution ofZ, even if
X is actually an FGN process. Beran (1994, p. 163) prop
to approximate analytically the distribution ofZ, through
the distribution of some random variables function of t
independent Gaussian random variables, whose qua
have to be estimated by Monte Carlo simulation, thou
Instead of this approach, we have conducted an inten
Monte Carlo simulation of the actualZ variable withX
an actual FGN process for different values of the Hu
parameter, and fitted their empirical distribution by a
Student one. In this way, we limit the stored informati
to a table of freedom degrees.

3.1 LRDBM Implementation

In practice, we have implemented the LRDBM method w
some modifications in order to get either the first CI as s
as possible, or a higher quality CI.

First, the number of batches used to compute the
mator of the variance of the average given by expression
mσ , will be the power of two which minimizes its bias an
for which the Kolmogorov-Smirnov test fails to reject t
null hypothesis forX(lσ ) (n = lσ ·mσ ). Also, as the storag
size will bem = 4096> mσ , we will be able to compute

another estimation̂S2
[
mσ , lσ , H̃

]
without the need oflσ
t

e

l

s

s

s

e

-
,

to be a power of two. As a matter of fact,mσ will be a
function of the number of batches selected to estimateH,
mH, as stated below.

With respect to the empirically adjusted distributio
of Z, we have fitted it by a t-Student formH ∈ {2k; k =
10,11,12}, mσ ∈ {2j ; j = 6, . . . ,10} and H ∈ {0.5 +
i · 0.05; i = 1, . . . ,9}, selecting its number of degrees o
freedom such that it minimizes the maximum absolute er
between its 100 quantiles and those obtained empirica
from 72000 sample paths of each FGN process, genera
using the exact method proposed by Crouse and Baran
(1999). In this same Monte Carlo study, we have al
estimated the value ofmσ which minimizes the bias of
the estimator from equation (9), giving rise to the value
mσ = 64 formH ∈ {1024,2048} andmσ = 128 formH =
4096. For these three(mσ ,mH) pairs, the worst (best) fitted
case has been forH = 0.95 (0.95), mσ = 64 (128) and
mH = 1024 (4096) with a maximum absolute error amon
the 100 quantile pairs (empirical versus t-Student one)
0.0697888 (0.0198527) for 7 (16) degrees of freedom. W
also letmσ to be 32 formH = 1024, since the estimator
of the variance of the average with this pair exhibits a
acceptable small bias. The number of degrees of freed
of the t-Student distribution actually used to compute t
CIs is obtained by linear interpolation for̃H of the stored
values formσ andmH completed withmσ −1 for H = 0.5
and 1 forH = 1.

Second, since the “flat zone” test implies a quite larg
initial sample sizen for a first CI computation, and given
that for some ASSS processes with large low-lag autoc
relation structure the estimator̃H [4096, l] tends initially to
decrease (Suárez-González et al. 2002b), we will try to d
tect this behavior and permit to compute a CI without passi
the “flat zone” test and possibly using a higher aggregati
level for the Hurst parameter estimation (H̃ [mH, n/mH]
with mH equal to 1024, 2048 or 4096). This way we tr
to compute conservative CIs with less sample values th
the required for the “flat zone” test to fail to reject.

Third, since for some ASSS processes with low low
lag autocorrelation structure the estimatorH̃ [4096, l] tends
initially to increase giving rise to low-quality CIs the firs
time the “flat zone” test fails to reject the null hypothe
sis (Suárez-González et al. 2002b), we will try to dete
this behavior and react using a more pessimistic Hurst e

mator: max
(
H̃ [4096, l] , H̃ [2048,2l] , H̃ [1024,4l]

)
. This

way we try to counteract the subestimation of the corre
tion structure (hence the estimation of the variance of t
average) and produce higher quality CIs.

The resulting LRDBM implementation is made up b
two algorithms:

• Every time the sample sizen is a power of two mul-
tiple of the number of stored batchesm = 4096,
the Algorithm 1 verifies the expected behavior o
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H̃ [4096, l] and updates accordingly the Hurst es
mation,H̃, the number of batches used to compu
the variance of the average,mσ , and the next num-
ber of batches to compute the Hurst paramet
mH.

• Every time the sample sizen is, either a power
of two multiple of the number of stored batche
m = 4096, or it is higher than the next sample siz
check point and, at the same time, a multiple
bothmσ and the newl aggregation level for the nex
m = 4096 batches, the Algorithm 2 computes
new estimation of the variance of the average, t
degrees of freedom of the t-Student distributio
used to approximate the distribution ofZ, and
finally the half-width of the new CI for the desired
quality 1− α. If this half-width is lower than the
desired half-width relative to the average, then
returns its value and quits. If not, it computes
new gross estimation of the needed samples a
selects the midpoint between it and the curre
sample size as the next check point.

The source code is available at<ftp://ftp-gris.
det.uvigo.es/pub/LRD/LRDBM-src.tgz> .

4 PERFORMANCE MEASURE

In this section we present the measured performance
the LRDBM method applied over some selected LRD a
SRD processes. For those processes exhibiting SRD,
also show the behavior of theAutomated Simulation Analy
sis Procedure(ASAP) procedure proposed by (Steiger an
Wilson 2000), since it is also an autocorrelation correct
batch means procedure which gives similar or better
quality than other nonoverlapping batch means method

For the first set of tests, we select a process that ar
naturally in teletraffic as the limiting case for aggreg
tion of on/off sources (Likhanov, Tsybakov, and Georgan
1995), the M/G/∞ process. Moreover, its sample gener
tion method is exact and quite efficient —O(n) with n the
sample size— and, even more useful, at the same tim
is a sequential procedure (its sample size has not to be
beforehand). Specifically, we use the discrete-time proc
proposed by Suárez-González et al. (2002a), M/S/∞, since
its correlation structure is simple and quite flexible (tw
parameters).

As the second set of tests (exclusively SRD) we ha
selected those queue waiting time processes where Ste
and Wilson (2000) have measured the worst coverage
ASAP. Namely, an M/M/1 queue withLast Input First Output
(LIFO) service and a computer model with one central ser
(CPU) and two peripheral units, both previously used by La
and Carson (1979).
f
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Algorithm 1 ComputeH̃, mH andmσ
Require: n = 212+k
m← 212 = 4096
l← 2k = n/m
{ set initial values}
if n = 4096 then

maxmσ ,mσ ,grow, flatzone, incmH ← 0
nextmH ← 1024

{ compute highest mσ value}
for all p ∈ {5,6,7} such that 2p > maxmσ do

if K_S
(
X(2

12+k−p)
)

fails to rejectHo then

maxmσ ← 2p

{ check behavior of H̃ [m, l] estimator}
if
∣∣∣H̃ [m, l] − H̃ [m, l/4]

∣∣∣ < 0.024903then
flatzone← flatzone+ 2

else
if flatzone> 0 then

flatzone← flatzone− 1
if H̃ [m, l] > H̃ [m/2,2l] > H̃ [m/4,4l] then

grow← grow− 1
else if H̃ [m, l] < H̃ [m/2,2l] < H̃ [m/4,4l] then

grow← grow+ 1
{ compute mσ and new H̃ estimation if possible}
mH ← nextmH
if mH = 4096 then

optmσ ← 128
else

optmσ ← 64
if grow< 0 or flatzone> 0 then
mσ ← min

(
maxmσ ,optmσ

)
if grow< 0 then

H̃← H̃ [mH, n/mH]
else

H̃← max
(
H̃ [k, n/k] : mH ≤ k = 2i ≤ m

)
{ adjust next mH}
if mH < m then

if grow< 0 then

if H̃ [mH, n/mH] ≥ H̃
[
2mH,

n
2mH

]
then

incmH ← 1
else if flatzone> 0

and H̃ [mH, n/mH] < H̃
[
2mH,

n
2mH

]
then

incmH ← 1
if incmH = 1 and
(maxmσ > optmσ or (mH = 1024 andmaxmσ = 64))
then

nextmH ← 2mH
incmH ← 0
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Algorithm 2 Compute CI
Require: mσ 6= 0 and (

n = 212+k
or (n > nextnandn÷ l andn÷mσ ))

{ l = 2i with i = ⌈log2 n
⌉− 12}

lσ ← n/mσ

var← Ŝ2 [mσ , lσ ] { use H̃ computed in Algorithm 1}

df← degrees_of_freedom
(
mσ ,mH, H̃

)
t ← t_Student(1− α/2, df )
rhalfCI← t · √var/X[n]
{ check quality requirements}
if rhalfCI < goal_rhCI then

return rhalfCI and quit
else

nextn← (n+ extrapolate(n, rhalfCI,goal_rhCI))/2

For all the experiments of this section, 1000 stead
state simulations have been run for any given set of p
rameters. The set of requirements for the half width
the 90% CI relative to the mean value estimation has be
{10,4%,2%,1%}. The 95% confidence interval for the cov
erage (given a method with exact CI estimation for the me
value) is(0.884,0.916), considering approximately Gaus
sian the binomial distribution withp = 0.9 andn = 1000.
None of the experiments of this section has shown
estimated coverage of the LRDBM procedure lower tha
0.884. The tables for each experiment show for each
requirement (rhCI req.), the average sample size (n), the
estimated coverage (cvrg), the average half width of t
90% CI relative to the mean value estimation (av.rhCI), i
estimated coefficient of variation (CrhCI), that is, the es-
timated

√
Var (rhCI)/E (rhCI) value, and, in the LRDBM

case, the estimated bias (H̃− H) shown by the used Hurst
estimation (av.̃Hbias).

4.1 M/S/∞ Processes

The autocorrelation structure of these family of process
is given by:

rk =


1− α − 1

mα · k ∀k ∈ (0,m]
1
α ·

(
m
k

)α−1 ∀k ≥ m,

hence the process is ASSS exhibiting LRD of Hurst p
rameterH = (3− α)/2 for 1< α < 2 from Theorem 2.1
(β = α−1), and it exhibits SRD (H = 0.5) for α > 2. The
parameterm > 0 is selected to get a desired r1 ∈ (0,1). In
any case, the marginal distribution of any M/G/∞ process
with arbitrary service time random variable of finite mea
value is Poisson.

The mean value selected for all the M/S/∞ processes
generated was 20. All the simulations have been star
-

n

n

I

s

d

in steady state. For the LRD cases, we have selecte
r1 = 0.9 (0.1) andH = 0.6 (0.8) as representative of strong
(weak) correlation and of weak (strong) LRD behavior. Fo
the SRD case, we have selected r1 = 0.9 and α = 2.1,
as representative of strong low-lag correlation and slow
correlation decay.

Table 1 shows the performance of the LRDBM method
for an M/S/∞ process withH = 0.6 and r1 = 0.9. All of
the CIs have been computed after forecasting a decreasi
behavior of the Hurst estimation (grow< 0 in Algorithm 1).
This decreasing behavior is a direct consequence of th
autocorrelation structure of the process being higher tha
that of the SSS process of the same Hurst parameter: ri >

g0.6
i ∀i > 1. As shown by the average sample size for the

non-requirement case (' 5000), this behavior is detected
quite quickly.

We observe in this and all the following tables, how
the estimated bias of the Hurst estimator decreases wi
the average sample size (we get closer to the asympto
behavior of the process), as expected. This behavior of th
Hurst estimation drives that of the estimated coverage:
tends to be the nearer to the asked CI quality (90%) whe
the bias of the former is lower. Nevertheless, there is a ligh
glitch of this behavior in Table 1 (also in Table 5 below),
when we compare the±2% and±1% CI requirement entries.
This has almost certainly been due to the stochastic natu
of the estimators, since from the total 58 CIs that failed to
contain the actual mean value for these two cases, there we
only 4 of them common to both cases (same seed, hen
same sample path). At the same time, we observe that t
estimated variation coefficient of the computed CI relative
to the average (CrhCI) also diminishes with the sample size.

Table 1: M/S/∞ Process withH = 0.6 and r1 = 0.9

rhCI req. none ±4% ±2% ±1%

n 5.0 · 103 3.1 · 104 9.5 · 104 4.1 · 105

cvrg 1.0 0.986 0.966 0.978

av.rhCI ±79.4% ±3.63% ±1.88% ±0.95%

CrhCI 0.514 0.102 0.0622 0.0477

av.̃Hbias 0.361 0.142 0.088 0.055

Table 2 shows the performance of the LRDBM method
for an M/S/∞ process withH = 0.8 and r1 = 0.1. Con-
versely to the previous process, this one has a correlatio
structure always lower than a second-order self-similar pro
cess of the same Hurst parameter, that is, ri < g0.8

i ∀i > 1.
This fact causes the increasing behavior of the Hurst estim
tion, and, as a consequence, all of the CIs in this experime
have been computed after the “flat zone” test has been unab
to reject the null hypothesis (flatzone> 0 andgrow≥ 0 in
Algorithm 1). This is a harder condition to achieve than
that of decreasing̃H behavior, and this explains the high
value of the average sample size for the first computab
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CI. As a matter of fact, already in this non-requirement case
the half length CI relative to the average is lower than our
stricter requirement (±1%). There are actually 708 out of
the 1000 experiments which are identical for each one of
the requirements, that is, their computed relative half length
CI in the non-requirement case is already lower than±1%.
We may observe also that the proposed method is able t
compute good quality CIs even though the Hurst estimation
is negatively biased.

Table 2: M/S/∞ Process withH = 0.8 and r1 = 0.1

rhCI req. none ±4% ±2% ±1%

n 3.2 · 106 3.2 · 106 3.3 · 106 4.4 · 106

cvrg 0.897 0.897 0.897 0.901

av.rhCI ±0.89% ±0.89% ±0.88% ±0.76%

CrhCI 0.498 0.492 0.438 0.254

av.̃Hbias −0.038 −0.038 −0.038 −0.038

Table 3 shows the performance of the LRDBM and
ASAP methods over an M/S/∞ process withα = 2.1 and
r1 = 0.9, that is, over an SRD M/S/∞ process. The
behavior of the LRDBM method in this case is qualitatively
equal to the case showed in Table 1, although the weake
autocorrelation structure in this SRD case implies a lower
average sample size for any given requirement. The ASAP
method has clear trouble keeping pace with this extreme
correlation structure, although the process exhibits SRD.

Table 3: M/S/∞ Process withα = 2.1 and r1 = 0.9

rhCI req. none ±4% ±2% ±1%

LRDBM

n 6.6 · 103 1.8 · 104 4.0 · 104 1.1 · 105

cvrg 1.0 0.996 0.991 0.978

av.rhCI ±44.6% ±3.34% ±1.8% ±0.939%

CrhCI 1.02 0.14 0.0941 0.0626

av.̃Hbias 0.397 0.218 0.159 0.112

ASAP

n 1.6 · 103 2.0 · 103 7.6 · 103 3.0 · 104

cvrg 0.811 0.797 0.824 0.808

av.rhCI ±4.01% ±3.54% ±1.87% ±0.946%

CrhCI 0.216 0.116 0.0865 0.0693

4.2 Queue Waiting Time

The first queue system is the M/M/1/LIFO. We have taken
ρ = 0.8 as utilization of the server, and E(S) = 4 as the
mean value of the service time random variable, yielding
a mean queue waiting time (between arrival to the sys-
tem queue and receiving service) of 16. Each one of the
simulations has been started in the empty state.
Table 4 shows the behavior of both the LRDBM and
ASAP methods applied to this system, estimating the mea
value of the queue waiting time process. In this case, 77
out of the 1000 first CIs computed by the LRDBM method
had to wait for the Kolmogorov-Smirnov test to fail to
reject the Gaussian hypothesis, with 49438.72 as average
sample size in all the 1000 experiments for the first time to
fail. In fact, the Kolmogorov-Smirnov test has failed only
for a maximum value ofmaxmσ = 32 in 910 times out
of these 1000 experiments (first CI), while in the M/S/∞
experiments it has happened (maxmσ = 32) less than 7
times out of every 1000 set of experiments. Obviously
the M/S/∞ process has an almost Gaussian distribution
(Poisson), while the marginal distribution of queue waiting
time processes has an exponential tail (see for examp
Kleinrock 1975). Comparing both the LRDBM and ASAP
methods in this case: initially, the former has a mildly
conservative behavior while the latter clearly gets a quite
low coverage; asymptotically, both have a fairly similar
performance.

Table 4: M/M/1/LIFO Queue Waiting Time Process

rhCI req. none ±4% ±2% ±1%

LRDBM

n 7.2 · 104 3.6 · 105 1.1 · 106 3.8 · 106

cvrg 0.963 0.934 0.911 0.906

av.rhCI ±19.5% ±3.7% ±1.88% ±0.953%

CrhCI 0.577 0.0802 0.0559 0.0426

av.̃Hbias 0.167 0.043 0.017 0.009

ASAP

n 5.3 · 103 1.9 · 105 9.0 · 105 3.7 · 106

cvrg 0.75 0.848 0.904 0.875

av.rhCI ±20.9% ±3.8% ±1.89% ±0.944%

CrhCI 0.311 0.0606 0.0609 0.0534

The second queue system is a computer model wit
one CPU and two peripheral units, the third of the four
cases of the second computer model used by Law an
Carson (1979). The system has a fixed number of job
N = 8. The probability that the job is routed to the first
(second) peripheral unit is 0.9 (0.1). All service times are
exponentially distributed. The service rate at the CPU is
1.0, and at the first (second) peripheral unit is 0.45 (0.05).
After getting service at one of the peripheral units, the job
leaves the system and is immediately replaced by anoth
job joining the CPU queue. The process whose mean valu
will be estimated is made up of the jobs response time
(between arrival at the CPU queue and departure from th
system). The mean response time with these parameters
18.279. The initial state is 5 jobs at the CPU and 1 (2) jobs
at the first (second) peripheral unit.
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Table 5 shows the performance of both the LRDBM
and ASAP methods in this case. In the LRDBM case, onl
185 of the 1000 experiments without CI requirement hav
waited for the Kolmogorov-Smirnov test to fail. Clearly,
the tail behavior of the marginal distribution of the queue
waiting time process will be less strong, since we have
limited number of jobs in the system. Of the remaining
815 cases, 62 have computed its first CI after forecastin
a decreasing̃H behavior, while the remaining 753 cases
have waited to the “flat zone” test to fail to reject the
null hypothesis. The used Hurst estimator tends to beg
increasing, for afterwards start decreasing. This behavi
has also been observed, although less extended in time,
the previous M/M/1/LIFO queue system. As a side effec
this tends to force the method to usemH = 4096 (414
out of the 1000 simulations for±1% requirement) before
it really has arrived to an stable behavior (estimated bia
for the Hurst estimation is still 0.054), producing an over
pessimistic CI. Comparing both methods, the behavior o
the LRDMB method is quite conservative, while the ASAP
method gets nearer to the desired coverage but from
optimistic approach.

Table 5: Computer Model Response Time Process

rhCI req. none ±4% ±2% ±1%

LRDBM

n 7.8 · 104 7.9 · 104 1.1 · 105 2.8 · 105

cvrg 0.95 0.944 0.959 0.947

av.rhCI ±2.9% ±2.7% ±1.78% ±0.92%

CrhCI 0.426 0.34 0.157 0.101

av.̃Hbias 0.086 0.086 0.086 0.054

ASAP

n 2.5 · 103 8.3 · 103 3.3 · 104 1.5 · 105

cvrg 0.825 0.816 0.832 0.882

av.rhCI ±7.44% ±3.71% ±1.9% ±0.954%

CrhCI 0.259 0.0846 0.0674 0.0569

5 CONCLUSIONS

In this paper we have presented the LRDBM method de
signed to perform the steady-state mean estimation of LR
processes, although it is also applicable to SRD process
Actually, the LRDBM implicitly performs a test of indepen-
dence, that is, when the Hurst estimator takes the value 0.5,
but it does not fix its result for the rest of the simulation
Although its approach is heuristic, its quality is supporte
by a quite intensive Monte Carlo simulation study using
an exact method of generation of FGN samples (72000 p
process).

Unlike other batch means methods proposed for SR
processes, the LRDBM method tries to keep itself in the sa
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side and produce conservative CIs. This is quite importan
when dealing with LRD processes, but may be a desirable
property even when the LRDBM method is applied to SRD
processes: it is not clear the utility of a mean estimation
method whose real coverage gets clearly lower than the
asked quality in quite simple simulation studies, where we
are able to compute the actual mean value. This fact als
has been pointed out by Steiger and Wilson (2000), and
will be addressed by a future modification of the ASAP
procedure.

We have measured the performance of the LRDBM
method for a selected set of LRD and SRD processes
In these tests, the LRDBM method has performed well,
producing conservative CIs, and even getting quite accurat
coverage for a classical tough test, the M/M/1/LIFO queue
system.

Nevertheless, the LRDBM method may be further im-
proved at least in the following ways: (i) limiting the history
for the forecasting of the Hurst estimator behavior, in order
to discard a possible noisy initial transient period, like that
observed in the studied computer model; (ii) studying the
usefulness of other Hurst estimators, in order to use an eve
lower number of batches than 1024; (iii) trying to extrap-
olate the previous computed values of the Hurst estimato
in order to be able to compute sooner a CI, mainly when
it exhibits an increasing behavior.
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