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ABSTRACT 

We describe a discrete event simulation model of the na-
tional liver allocation system. This model differs from pre-
vious modeling efforts in that it considers the natural his-
tory of the disease independently of any particular patient 
priority scheme, thus allowing an unbiased appraisal of 
various allocation schemes. We provide the basic structure 
of the model, which consists of patient and organ genera-
tors, a survival module, and a disease progression module. 
The model provides various outputs such as patient sur-
vival, financial cost, and the number of wasted organs. We 
describe our model of patient survival with and without a 
transplant. We discuss some difficulties estimating model 
parameters due to a lack of appropriate medical data, and 
how these difficulties were overcome. We close with con-
clusions and directions for further research. 

1 INTRODUCTION 

The allocation of scarce donated organs is both an increas-
ingly complex clinical and social problem as well as an ex-
cellent example of the general problem of optimization un-
der constraints, which is a common analysis structure in 
engineering but has been used rarely in medical care.  In 
the case of livers, for example, there are now over 4,000 
liver transplant procedures performed each year in the U.S. 
(UNOS 1999), but this represents only a fraction of the po-
tential transplants as the number of people on the waiting 

  

list now exceeds 17,000 (UNOS 2002).  The growth of the 
waiting list has produced substantial debate about the 
mechanisms for allocating organs to potential recipients, 
with issues of fairness, efficiency and regional versus na-
tional interests complicating the discussion (Ubel and 
Loewenstein 1996, McMaster 2000). 

Our modeling efforts rely on discrete event simulation 
(DES) instead of a randomized control trial, which is the 
more standard experimental design in medical research.  
However, because transplantation has been widely adopted 
and considered effective, it would be impossible to “ran-
domize” patients between treatment and non-treatment.  
Furthermore, we focus on many questions, such as the op-
timal timing of transplantation, that are not suitable to ran-
domization.  Although the issues we raise pertain to all vi-
tal organ transplantation procedures, our work and this 
paper focus specifically on liver transplantation. 
 The purpose of this project is to inform this debate with 
a rigorous, clinically realistic model of end stage liver dis-
ease (ESLD) that is adequately robust to predict the ex-
pected effects of different selection and organ allocation 
rules in terms of life expectancy, size of waiting list, number 
of wasted organs, and other relevant outcome characteristics 
of the transplantation process.  Although the model is de-
signed to incorporate costs and quality of life, those compo-
nents, which are not central to the design and structure of the 
model, will not be discussed here.  Instead, we focus on 
background and basic structure, two of the most fundamen-
tal components/estimates of the model (survival both with 
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and without transplantation given patient characteristics), 
model outputs, and limitations and future directions.  In this 
paper we report the methods by which we have included 
clinical realism into a DES model of the organ allocation 
system, and present a series of modeling issues that arise 
through the desire for clinical realism. 

1.1 Prior Modeling Efforts 

There have been two prior modeling efforts designed to 
address these issues. Over 10 years ago, The United Net-
work for Organ Sharing (UNOS) developed the UNOS 
Liver Allocation Model (ULAM).  This model used dis-
crete event simulation to model the process by which can-
didates are listed, organs are made available for transplan-
tation, and the matching criteria between these processes 
(Pritsker et al. 1995).  The model has primarily been used 
to estimate the effects of changing from a regional to na-
tional waiting list.  In a similar effort, a private research 
consulting firm, CONSAD, constructed a simulation model 
to incorporate several additional characteristics (technol-
ogy advance, survival improvement) to address many of 
these same issues (CONSAD 1995).  A potential flaw in 
both of these modeling efforts is that the description of 
natural history (how patients become “sicker”) was esti-
mated entirely through probability distributions that de-
scribe how patients move through the existing priority 
scheme for allocation, preventing an unbiased analysis of 
any organ allocation scheme significantly different than the 
current mechanism. 

1.2 Basic Structure of the Model 

The major motivation for the structure of the simulation 
model is the need to separate the modeling of the biology 
and natural history of the disease from the allocation and 
selection mechanism.  This allows an arbitrarily large set 
of allocation rules to be examined.  Another motivation for 
the direct and clinically realistic modeling of the biology is 
the need for transplant clinicians to have faith in the re-
sults.  Any policy based on models that clinicians believe 
to be overly simplistic or that do not include factors that 
clinicians know to be relevant to prognosis will be intellec-
tually (and pragmatically) ignored. 
 The basic structure of the model is presented in Figure 
1. A patient generator and an organ generator create pa-
tients with liver disease and organs for donation according 
to the empiric probability distributions found within the 
UNOS database.  A survival module and a disease progres-
sion module predict the time-course of individual patients 
as they progress through their disease, and estimate pre- 
and post-transplant mortality and retransplantation.  Stan-
dard DES techniques are used to match patients to organs 
from a queue (the waiting list).  Organ allocation policies 
are implemented as user-defined inputs. 
 Bryce, and Roberts 

DES traditionally uses random draws from distribu-
tions, because it is essentially a “time-to-event” technique. 
However, several model-derived events (e.g., patients re-
ceiving an organ) are stochastic and not predictable in the 
absence of model operations. 

2 SURVIVAL IN THE ABSENCE OF  
LIVER TRANSPLANTATION 

The progression of disease in patients awaiting  a particular 
medical intervention (liver transplantation) is important to 
incorporate in the DES model because it allows us to un-
derstand the net gain or reduction in survival based on dif-
ferent timing decisions.  The right timing matters, as the 
transplant procedure itself poses varying risks to the patient 
in terms of short-term outcomes and long-term survival 
depending on the course of illness. Essentially, patients 
need to be “sick enough” but not “too sick” to benefit from 
transplantation.  Because the supply of donor organs is se-
verely limited, suboptimal timing of the procedure impacts 
both the transplant recipient and other candidates who 
might have received greater benefit (in terms of either life 
expectancy or quality-adjusted life expectancy) had they 
received the transplant instead.   

For the purpose of this model, we describe disease 
progression as the time course of a series of clinical vari-
ables that predict future survival.  In the case of organ 
transplantation, this natural history might begin with the 
date that a patient is placed on the transplant waiting list (t 
= 1) and continue until date of death in the absence of 
transplantation  (t = Ti for each patient i).  At t = 1, indi-
viduals start with a specific set of values for the vector of 
clinical covariates.  We then want to “age” the clinical 
variables in subsequent time periods as members of the co-
hort progress through the simulation. In other words, for 
any patient i, we want to predict the covariate vector at 
time t+∆t, given information provided at time t, that is, 
Xi,t+∆t = f(Xi,t).  The predicted values of the covariates need 
to be incremented and updated by the expected amount that 

Figure 1: Basic Structure of the DES Model 
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would occur in the time that has transpired.  We continue 
updating the variables for each time period until either 
transplantation or death.  Because of the chaotic and sto-
chastic nature of changes in clinical status, we cannot sim-
ply predict the average level of change of a variable, but 
need specific changes proportional to the extent to which 
changes of a given magnitude occur. 
 Theoretically, this goal is a straightforward one.  In 
practice, however, clinical data are not compatible with es-
timating disease progression in this way.  Although hospi-
tals maintain pre-transplant information over time for po-
tentially large patient cohorts, our experience has identified 
at least five shortcomings with the structure of the data.  
First, the panel is unbalanced and does not contain the 
same number of observations (timepoints) for each patient. 
Some patients are observed only once while others have 
several hundred timepoints in the data set.  Second, the in-
tervals between observations frequently do not match the 
cycle length of the model.  For example, liver function may 
be recorded daily during a hospital admission, but not more 
than monthly or yearly in the outpatient setting.  When this 
occurs, we need an estimate of the clinical covariates at 
appropriate intervals matching the model’s cycle length.  
Third, data are not collected at random times during the 
pre-transplant period.  Instead, laboratory tests are typi-
cally ordered when patients experience problems and seek 
treatment, giving us the greatest level of detail during 
atypical, highly skewed periods (the sickest times in a pa-
tient’s natural history). Fourth, dimensionality of the vector 
Xi,t matters. Liver function, and the effect of liver disease 
on other important physiological functions, are not scalar 
measures; we define it in terms of four continuous meas-
ures that change over time (total bilirubin, creatinine level, 
albumin, and prothrombin time), as well as several binary 
variables indicating the presence of risk factors (e.g., dia-
betes, ascites).  The dimension of Xi,t is important both in 
terms of the number of values we must predict and because 
the covariates are correlated with one another (i.e., the off-
diagonal terms of the covariance matrix are not zero). 
Fifth, complete clinical data are not measured at every time 
point.  Our original natural history database contains more 
than 50,000 records, but whereas values for creatinine are 
available 80% of the time, information for albumin is com-
plete less than 30% of the time. 

Our approach for updating clinical covariates over 
time is to choose values from an “empirical distribution” of 
all similar types of patients.  An example of a single vari-
able in a single patient is illustrated in Figure 2.  We begin 
by using the patient’s pre-transplantation data for time pe-
riods t ∈ [1, Ti ] to estimate a spline function (either an in-
terpolating spline function that exactly connects the ob-
served data points or a smoothing spline function that 
chooses an approximate fitted value), spanning Ti days and 
providing us with an estimate of the vector Xi,t at any inter-
vening time point.  In our example, every patient has 4 
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Figure 2:  Hypothetical Example of Natural History Data 
Problems 
 
such spline functions, one for each continuous clinical co-
variate used to measure liver function (total bilirubin, 
creatinine level, albumin, and prothrombin time). 
 For patient i moving through the simulation model 
with Xi,t, we provide an estimate of Xi,t+∆t (where the inter-
val ∆t is based on the cycle length of the simulation model) 
in the following manner.  We choose all patients from the 
database with covariates that “look like” (according to a 
defined nearness criterion) those of patient i at some point 
during their natural history.  We randomly select one of 
these patients and use the values of his spline function ∆t 
days later as the updated values for Xi,t+∆t.  If patient i is 
not transplanted and does not die in the next cycle of the 
model, the covariate vector will again be updated by form-
ing a new empirical distribution based on patients who are 
now clinically similar to Xi,t+∆t. 
 There are several desirable features of this approach.  
First, the panel can be unbalanced and patients are not re-
quired to have the same number of timepoints, although they 
are required to have a minimum of two timepoints. Second, 
the interval ∆t between observations is not important be-
cause the spline function allows us to estimate values for 
clinical covariates for any desired cycle length.  Third, we 
do not need to know the covariance matrix among the clini-
cal covariates because all four spline functions for every in-
dividual are anchored at the same beginning and ending 
timepoints. Although we cannot specify the exact relation-
ship among the clinical measures, we know that they are 
correlated and the spline functions essentially provide us 
with an empirical estimate of how the measures move to-
gether over time. Fourth, although the vector for the first and 
last time point must contain complete data for all four co-
variates, partial data is acceptable for the intervening obser-
vations.  Certainly, more detail is always preferred, but we 
do not have to discard observations for encounters that per-
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formed only a subset of laboratory tests.  An obvious limita-
tion of this method is that our current measure of “nearness” 
only takes into account the level of the variables in the co-
variate vector and ignores the rate of change.  Future near-
ness measures will incorporate first derivative or rate of 
change in the parameter as well whenever a third timepoint 
for each patient is available.  

3 SURVIVAL AFTER TRANSPLANTATION 

There are two survival issues: pre-transplant survival and 
post-transplant survival. The pre-transplant survival issue 
considers the possibility of patient death prior to transplanta-
tion, typically due to a complication of end-stage liver dis-
ease. Our model must accurately estimate the post-transplant 
survival given biological characteristics of the patient, the 
quality of the graft (transplanted organ), and patient-graft 
interactions at time of transplant. Furthermore, any model of 
post-transplant survival must consider the possibility that the 
graft will fail, requiring further transplantation. 
 Because of its prevalence in estimating patient sur-
vival, our model uses a Cox Proportional Hazards model to 
estimate the survival probability distributions (Cox 1972). 
The Cox model produces a baseline hazard function, and 
then adjusts this function depending on the covariates that 
describe the patient and organ characteristics. While the 
Cox model is frequently utilized in the medical literature to 
estimate patient survival, most of these models are used to 
compare survival between groups or describe survival as a 
function of covariates.  Our model requires a specific sur-
vival time for an individual given a set of clinical charac-
teristics for each patient who receives a transplant.  There-
fore, our model  generates a pseudorandom observation 
from the survival function. One advantage of our approach 
is that the entire distribution is considered rather than just 
its mean.  To simulate the possibility of rejection and organ 
loss, the model generates two survival times: one for the 
patient, and another for the graft. If the patient survival is 
shorter than the graft survival, the patient dies and is no 
longer considered in the system. The graft is discarded as 
well since organs are never transplanted more than once. 
If, however, the graft fails before the patient, then the pa-
tient requires another transplant and is relisted in the simu-
lation. This is not an insignificant possibility; approxi-
mately 11% of transplanted patients are later retransplanted 
(UNOS 1999). Clearly, simply replacing the survival times 
by their expectations is unsatisfactory. 

4 MODEL OUTPUTS AND APPLICATIONS 

Once a working model incorporates biology, we can use it 
to calculate survival both with and without a transplant at 
any (every) point in the patient’s trajectory and optimize 
the timing decision for choosing to transplant. This clearly 
ignores the donor organ shortage and the fact that a donor 
, Bryce, and Roberts 

liver may not be available at the time considered optimal; 
nevertheless, it provides a much-needed clinical bench-
mark by which we can compare current practice. 
 After validating the model by replicating the existing 
liver allocation system, we can test the effects of changing 
the liver allocation policy. 

5 LIMITATIONS AND FUTURE DIRECTIONS 

There are several difficulties in modeling natural history.  
The procedure above describes estimating the natural his-
tory of a homogeneous condition, but it becomes more 
complicated for heterogeneous conditions.  ESLD has 
more than 60 diagnoses and etiologies; the rate of liver de-
terioration varies with diagnosis. A national clinical over-
sight committee of transplant clinicians aggregated these 
clinical diagnoses into 10 categories for the purpose of es-
timating survival.  For modeling purposes we have 
grouped those into 5 broad diagnostic categories.  In addi-
tion, we apply different cycle lengths depending on 
whether the patient is out of the hospital (cycle length = 30 
days) or in either the hospital or the intensive care unit (cy-
cle length = 1 day).  Therefore, we  have created 15 (5 ag-
gregate diagnoses × 3 locations) empirical distributions 
from which we draw the updated covariate vectors.  As a 
result, there are less data (fewer patients, fewer timepoints) 
on which to develop the empirical distribution and com-
pute the updated vectors. 
 The other major limitation associated with the natural 
history model is the availability and completeness of data 
for estimating spline functions and updating the clinical 
covariates.  The transplant candidate registry maintained 
by UNOS provides a list of all liver transplant candidates, 
but currently records no clinical data until transplantation.  
The Liver Transplant Database developed by NIDDK only 
collects natural history data at  two timepoints, the time of 
listing and at transplantation. Therefore, the only database 
available to us with sufficient natural history detail is based 
on patients at our own institution, the University of Pitts-
burgh Medical Center (UPMC).  UPMC is historically the 
largest transplant center in the country; however, its pa-
tients may not represent the ESLD population in general, 
biasing our current estimates of disease progression to-
wards sicker patients. Nevertheless, the work presented 
here serves as a “proof of concept” for estimating natural 
history and incorporating disease progression into DES 
models. Our future research agenda includes efforts to con-
struct a multi-site database across several representative 
transplant centers nationally and collect standardized clini-
cal data on liver transplant candidates throughout the pre-
transplant period. 

In addition, Chang, Weissfeld and Valenta have shown 
that Cox models may contain biases in those variables that 
vary dynamically (Weissfeld et al. 2000). Basic assumptions 
imposed by Cox models, such as proportional hazards, may 
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not be satisfied when modeling post-transplant survival. Fur-
ther enhancements to the survival model component  will 
allow the effect of covariates to vary over time. 
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