
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

NEXT GENERATION SIMULATION ENVIRONMENTS FOUNDED ON OPEN
SOURCE SOFTWARE AND XML-BASED STANDARD INTERFACES

Thomas Wiedemann

Friedrich-List-Platz 1
HTW Dresden

Dresden 01069, GERMANY

ABSTRACT

During the Winter Simulation Conference 2001 the
OpenSML-project was presented and started. The
OpenSML-project is based on the Simulation Modeling
Language (SML™) and is an open source, web-based,
multi-language simulation development project guided by
a consortium of industrial, academic and government simu-
lation consultants, practitioners and developers. For the
simulation community, the open source movement repre-
sents an opportunity to improve the quality of common
core simulation functions, improve the potential for creat-
ing reusable modeling components from those core func-
tions, and improve the ability to merge those components
using XML, HLA and other simulation community stan-
dards. This paper extends the OpenSML-project by using
universal, language independent XML-descriptions and
code generators for converting OpenSML-models to pro-
grams in Java, VisualBasic or C++. This would be the first
time a simulation model could be transferred between dif-
ferent platforms without manual changes.

1 INTRODUCTION

In the last ten years simulation methods were successfully
introduced in nearly all areas of science and business
(Wiedewitsch and Heusmann 1995, Kuljis and Paul 2000).
The main algorithms and mathematical foundations are
well defined and efficient. But the real application of simu-
lation systems is still difficult and does not reach more than
10% of all industrial firms by a number of reasons:

• Unlike the continuous simulation marketplace

there is no leading discrete simulation system.
The market shares of the main tools (AutoMOD,
TAYLOR ED, Arena, SLX) are very different in
the global regions and industrial branches. As a
result, there is no universal standard for discrete
simulation. Models created with he main simula-
tion tools can not exchanged between the systems.

• As a result of the small market the prices of the

systems are very high. Typical prices of up to
$50,000 are too high for medium-sized firms.

• Especially in the area of optimization with simu-
lation models, there exists a performance prob-
lem. It seems like a paradox, that an older simula-
tion languages GPSS is significantly faster than
modern simulation systems.

These problems indicate the of a need of a new strat-

egy for the development of simulation tools. Like in the
database software domain, we need common accepted
standards for modeling and simulation. A first step
could be the application of the Open-Source-idea, which
was very effective and successful in the LINUX-
development. If this idea would be successfully adapted to
simulation software, the market for simulation tools and
projects could be substantially larger. As a result there
would be enough work for all simulation experts without
any need of the traditional competitive thinking.

2 OPEN SOURCE - A NEW OPTION FOR
DEVELOPMENT OF SIMULATION TOOLS

The main ideas of Open Source and the advantages for the
simulation area are discussed in detail by Kilgore in the
original paper outlining the OpenSML-project during the
Winter Simulation Conference 2001 (Kilgore 2001). The
most important facts are extracted from this paper include:

• The open source movement is a revolutionary per-

spective on how software should be created. While
the movement is most often associated with the
Linux operating system (Linux 2002), there are
open-source initiatives throughout the software in-
dustry and new projects are constantly emerging.

• There are already simulations projects in the Open
Source area. But no common and powerful simula-
tion standards will be developed by these projects.

ann
Wiedem

• Open source projects are a very fragile and sensi-
tive network of developers, deeply interested beta-
testers and end-users. In result of the non-
commercial aspect of the project there must be a
high degree of common understanding and social
interactions.

There are many more details about the culture and the

opportunities necessary for successful Open-source pro-
jects see (Raymond 1999). The main question of Open
Source is the copyright of the developed tools and simula-
tion models. In general, all Open-source code is free. But
the license agreements state, that code, which is developed
by using open source code must be also free of copyright
restrictions. This would be a disadvantage for the simula-
tion community, because any model developed by a free
open source tool must be free too.

A good solution was found in (Kilgore 2001): “The is-
sue of what to share and how to share it is an important
issue for distinguishing between free SML simulation
code and proprietary modeling code. The present plan for
SML is to distribute simulation language source code un-
der a modified Lesser/Library General Public License
(Free Software Foundation, 2001) that ends where the
SML simulation language ends and the SML-based simu-
lation model starts. Normally, all extensions and modifica-
tions of LGPL licensed software must be distributed under
the same LGPL license under which the software was ac-
quired. Obviously, this restriction cannot be applied to
software that uses the SML code to create a specific
model. The LGPL required that the user share improve-
ments by returning the revised code to the SML reposi-
tory. Proper SML sharing principles would require that the
user comply by depositing a generic or example version of
the method that does not contain proprietary property
names or ranking rules.

The economic vision behind SML will be to allow us-
ers to compete in a marketplace of models and modeling
components based on SML, but to cooperate in the devel-
opment of compatible, extendible SML objects and meth-
ods which support those models. The resulting “coopeti-
tion” among simulation companies and professionals will
be better for the long term viability and profitability of the
simulation industry than the current system of incompati-
ble products and lack of standards.”

This business model is similar to the industrial co-
operation that allows automotive companies to standardize
on lug nuts but compete on car models. hardware. It is an
imperfect and delicate alliance amongst opponents that is
viewed in advance as wishful folly and viewed in retro-
spect as insightful wisdom. Sometimes coopetition hap-
pens because governments decree that change should oc-
cur, but more often coopetition happens because
influential and powerful users decree that the change
should occur.
3 THE SML – LANGUAGE

Although open source development means that all specifi-
cations are developed by the whole development team,
Kilgore gave some main starting points in (Kilgore 2001):
“The mission of SML is to produce reusable simulation
software at both the simulation source code and modeling
source code levels. Reusability requires at a minimum that
the code be readable, modular and extendible. Contrary to
most simulation products, SML will sacrifice performance
to achieve reusability. “

Readability means that the target audience for the
code is the closer to the first-time reader with limited pro-
gramming background than to the experienced hacker.

Modularity is related to readability in that a part time
developer can make a change to the source code or replace
an entire SML module without having to understand or
modify large amounts of SML source code.

Extendibility means that SML is designed to be easily
modified and repackaged for specific applications. As
mentioned previously, simulation languages are usually
biased towards a particular target application based on the
experiences and anticipated needs of the modeler or de-
veloper. The best method of achieving the combination
of readable, modular and extendible that SML desires is
through object-oriented development. Even though the
original SML prototype is Java-based, any object-oriented
language is a potential candidate for an SML community
(Kilgore, Healy, and Kleindorfer 1998).

The main OpenSML-architecture is shown in Figure 1.
The actual state of the OpenSML-project is available at
(SML 2002). The discussion of the common process ori-
ented language is still in progress. It could be understand
as a summary of all basic objects and functions in the dif-
ferent SML-implementation languages without any lan-
guage specific details. The existence of such a common
language is an important fact for development of auto-
mated code transformation tools in this paper.

Figure 1: The OpenSML-architecture by (Kilgore 2001)

Common Process
oriented language

Java C++ VB.Net C#

SML-Language specific libraries

Java C++ VB.NET C#

SML Core Language Specification

ann
Wiedem

4 THE MAIN SML-CONTROL

AND DATA-ARCHITECTUR

The main goal of SML was a common and universal envi-
ronment for simulation and related services like optimiza-
tion and animation. Therefore it needs a common and stan-
dardized interface for controlling and accessing all
submodules of the system. The hierarchy of this interface
is shown in Figure 2.

Figure 2: A Universal Object Hierarchy for Modeling and
Optimization Tools

 This interface allows different access-schemes and in-
terfaces for all SML-modules. Depending on the used lan-
guage each node of this object model can be addressed by
a full reference

APP(“Simulation”).system(“SILK”).model(“Testm
odel”).object(“Machine1”)

or by shorter references :

set m= APP(“Sim”).system(“SILK”). model(“M1”)

m.object(“Machine1”).att(“Capacity”)=120

m.object(“Machine1”).att(“Worktime”)=12.0

The advantage of full reference is that a module can be

addressed any time and on any system. The disadvantage is
in performance as this creates slower and more expansive
programming representations. A common access standard
will be defined to accommodate of the most important lan-
guages like Java,C++,C# and VisualBasic.

Systems
 Simulation Systems
 Simulation Models
 Model Objects
 Model Attributes
 Attribute
 Subattributes
 Simulation Control
 Runtime Control
 Runtime Parameters ...
 Report and Result Analysis...
 Animation Systems
 Animation Objects
 Animation Attributes ...
 Optimization Systems
 Optimization Strategy Objects
 Optimization Attributes ...
 Other Systems ...
5 XML AS A SML-INTERCHANGE FORMAT

One main task is the definition of the SML base syntax. A
attempt to define the “SML-language” as something
unique to Java or C++ language would decrease the flexi-
bility and the acceptance between all developers. As a re-
sult of this situation, it would be beneficial to define SML
independent from any known language. At the present time
XML seems to be the best choice for this task (Phillips
2000). A initial prototype SML-model coded with XML-
statements is shown in Figure 3.

public void process()
{ // SML-JAVA-Model
create(expA.getValue());
qadd(queEntity);
waituntil(Server1.isIdle(this));

qremove(queEntity);

seize(Server1); // get resource

delay(expService.getValue());

release(Server1);// free

if (defects.getvalue<0,05)

{ seize(Repair);
delay(Repair.getValue());

release(Repair); }

dispose(); }

 <?xml ...>
<process name=“Process1”
 repeatinterval=“ expA” >
<use name=“queEntity” type=“Q”/>
 <func name=“waituntil”
par1=“Server1.isIdle()” />
 <leave name=“queEntity “
type=“Q”>
 <useentity name=“Server1”
type=“Server” />
 <func name=“delay”
par1=“expService()” />
 <leaveentity name=“Server1 “
type=“ Server “>
<if matchcondition= “defects()
>0.05”><match> <useentity
name=“ Repair” type=“Server” />
 <func name=“delay” par1=“exp
Repair ()” />
 <leaveentity name=“ Repair “
type=“ Server “></match> </if>
<func name=“dispose” /></process>

Figure 3: The Conversion of SML.JAVA to SML.XML

One difficult aspect to the conversion are descriptions
of dynamic actions and events. Tests with full XML-
encoded descriptions were long and hard to understand. A
better mix of XML-structures and traditional operators is
shown in Figure 4.

<object name=“Product11”>
 <attribute name=“Color”>
 <attribute name=“ Priority “>
 <process>
<actions>
 <event name=“OnInit”>
 set m= APP(“Simulation”).system(“SILK”).model(“Testmodel”)
 m.object(“Product11”).att(“Priority”)=10
 </event>
 <event name=“DuringSimulation”>
 generate 1 object(“ThisObject”) every 120 seconds
 m.object(“Buffer1”).store(“ThisProduct”)
 m.object(“Machine1”).workon(“ThisProduct”).fortime(10)
 </event>
 </actions>
 <options output=“tracelist” animation=“ON” >
 </process><object>

Figure 4: A Simplified XML-Format for Events and
Actions

Wiedemann

6 THE DATA FLOW AND SUBMODULES

The data flow of a SML-based simulation environment
with two different simulation languages is shown in Figure
5. Above the SML-level will be the GUI-interfaces or in-
terfaces to other information systems. The large block in
the center of the system controls all processes. It is also a
interfacing layer between the very specific tools at the tool
level and the universal and standardized modules at the
SML level.

The communication between all modules is based on
file or network techniques. The communication protocol
uses XML-coded information. In many cases the content of
the XML-databases or XML-encoded simulation results is
only wrapped by an additional XML-layer and transported
over the network. Larger amount of data, for example

simulation results, will be compressed by well-known
compression algorithms for better transportation speed.
For the end user this data conversions will be transparent.

7 AUTOMATIC TRANSFORMATION
OF SML-LANGUAGES

One main requirement for the SML-system was independ-
ence from specific implementation languages. In the first
draft of the SML-system this independence was seen as a
result of a common semantic scheme of all SML-dialects
in C++, C#, Java and VisualBasic. The same semantic
scheme allows the user a conversion from one SML-dialect
to an other programming language. The first draft of
OpenSML allows such conversions, but does not support
this idea with tools.
SML
Simulation Model

specification

Specific Simulation Sys-
tem I (e.g. SILK)

SML
Control Manager

SML
Simulation Experiment

specification

SML
Simulation Results

specification

Specific Simulation System
II (e.g. SLX)

SML -> SIM II
Interface

SML -> SIM I
Interface

Result Analysis
 Tools

Results -> SML
Interface

Simulation program
for System I

Simulation program
for System II

SML Interface
specifications

System specific results

SML
Level

Control
level

Tool Level

The OpenSML Pro-
ject

Figure 5: The Main Architecture of the SML-System

Wiedemann

With the increasing power of OpenSML new and
faster SML-implementations will be available. At that
stage of development, the availability of support for code
conversion will be very useful. For providing a practical
solution, a fully automated code conversion program is
currently under development. The module is controlled by
XML-code-templates and can convert SML-programs to
and from SML-XML (see Figure 6). The module will be
included in the main control module of OpenSML (see
Figure 5). The implementation of the transformation mod-
ule is not difficult as a result of the common semantic of all
SML-dialects and very similar syntax-structures. A similar
code transformation module was already presented in de-
tail in (Wiedemann 2000) .

The transformation of a model in a specific SML-
language to XML is done by a code parser. This code parser
is initialized also by XML-statements and generates the cor-
responding list of XML-statements for the SML-code.

A Java-SML-code like qremove(queEntity); is stripped
from any syntax specific characters like parentheses and
separators and is converted to a standardized XML-syntax
<leave name=“queEntity “ type=“Q”> . This syntax is used for
all object related code.

The model is represented inside the code parser as a
tree, with additional links between the list elements. The
user interface of the transformation module shows this tree
and allows changes on the data.

The transformation from a XML-model back to a
SML-language is similar. Although this task can be solved
by freely available XSL-filters, the code generator is a spe-
cifically developed software. The main goal is a consis-
tency between the control information for the code-parser
and the code-generator. With only one definition of a
keyword in the XML-Codetemplates, like “qremove”, both
directions of the code transformation are controlled. This
allows for better management of the control data and keeps
changes at only one place.

Currently the XML-tools are based on the SAX-API,
which is faster and smaller than the DOM-API. During the
parsing process all SAX-events are saved in an internal
memory model of the parsers and code generators. Al-
though this procedure is similar to the DOM-tools, the re-
sulting data structures are already prepared and optimized
for the code transformation process. Regarding a future
usage on a internet server all tools are divided in a pure
command-line module and additional user interface, which
can be removed easily.

8 SUMMARY

The OpenSML open source simulation project could be a
potentially beneficial evolution in the simulation software
development model.

The first advantage is the larger flexibility from the
use of standard commercial programming languages and
development tools. Instead of having only one system the
end-user can select the best solution depending on the
needed interfaces and performance aspects.

The second advantage is the Open Source
Lesser/Library General Public License licensing model.
This license model is a good mix of the Open source prin-
ciples and the requirements of simulation customers.

The third advantage is the usage of an universal, lan-
guage independent XML-description, which is presented by
this paper. Code parsers and generators convert OpenSML-
models to programs in Java, VisualBasic or C++ and also
back to XML. With two sequential transformation processes
a simulation model can be transferred between different plat-
forms without manual changes. Together with the basic
SML-idea a universal and non-language-dependent system
can be provided in the near future.

The actual state of the OpenSML-project is ongoing
and further information is available at (SML 2002). Its fu-
ture development will provide the first time in simulation
history a universal and open simulation system. Any inter-
ested simulation expert or user is invited by the authors for

Model
in

XML-code

Transformation module

DTD of
XML-syntax

XML-Code-templates
of SML-dialects

Model
in a specific

SML language

Code-Parser

XML-Parser Code-generator

XML-Generator
Internal data

structures

Figure 6: Automatic Code Conversion from and to SML

Wiedemann

sharing his ideas, experience and cooperation inside the
OpenSML-consortium.

ACKNOWLEDGMENTS

I would like to thank Rich Kilgore of ThreadTec for all of
his help and support in discussing the SML-project and the
main ideas of this paper.

REFERENCES

Linux 2002, www.linux.org [accessed August 2002]
Kilgore, R. A. 2001. Open source simulation modeling

language (SML). In Proceedings of the 2001 Winter
Simulation Conference, ed., B. Peters,J. Smith. Pis-
cataway, NJ: 2001

Kilgore, R. A., Healy, K. J. and Kleindorfer, G. B.
1998.The future of Java-based simulation. Proceedings
of the 1998 Winter Simulation

Kuljis, J. and R. J. Paul, 2000: A Review of web based
simulation: whiter we wander?, Proceedings of the
2000 Winter Simulation Conference, Orlando Florida,
page 1872-1881

Phillips, L. A. 2000. Special Edition using XML. Que
Bestseller Edition, 2000

Raymond, E. 1999. The Cathedral & The Bazaar. O’Reilly
SML, Simulation Modeling Language. Available online

via http://www.threadtec.com/sml [accessed
August 1, 2002].

Wiedemann. T., 2000. VisualSLX – an open user shell for
high-performance modeling and simulation, Proceed-
ings of the 2000 Winter Simulation Conference, Or-
lando Florida, 1865-1871

Wiedewitsch J.; and Heusmann J. 1995. “Future Directions
of Modeling and Simulation in the Department of De-
fense”, Proceedings of the SCSC’95, Ottawa, Ontario,
Canada, July 34-26, 1995

AUTHOR BIOGRAPHY

THOMAS WIEDEMANN is a professor at the Depart-
ment of Computer Science at the HTW Dresden. He has
finished a study at the Technical University Sofia and a
Ph.D. study at the Humboldt-University of Berlin. His re-
search interests include simulation methodology, tools and
environments in distributed simulation and manufacturing
processes. His teaching areas include also intranet solu-
tions and database applications. Email : <wiedem
@informatik.htw-dresden.de>

http://www.linux.org/
http://www.threadtec.com/sml
mailto:wiedem@informatik.htw-dresden.de
mailto:wiedem@informatik.htw-dresden.de

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 623
	02: 624
	03: 625
	04: 626
	05: 627
	06: 628

