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ABSTRACT 

Effective testing of software is an important concern in the 
software engineering community. While many techniques 
regularly used for testing software apply equally well to test-
ing the implementations of simulation models, we believe 
that testing simulations often raises issues that occur infre-
quently in other types of software.  We believe that many 
code characteristics that commonly occur in simulation code 
are precisely those that the software testing community has 
identified as making testing challenging.  We discuss many 
of the techniques that software engineering community has 
developed to deal with those features and evaluate their ap-
plicability to simulation development. 

1 INTRODUCTION 

Determining the correctness of a simulation is often a 
complex task.  Even a precise meaning of “correctness” is 
not easily formulated; it generally includes the idea of the 
implementation “correctly” implementing model behavior 
and the model “correctly” replicating salient features of the 
system it represents.  But it can include accuracy require-
ments, meeting performance goals, the usability of user in-
terfaces, the quality of graphics and many other aspects.  In 
this paper we focus primarily on issues in testing as one of 
several useful techniques for assessing the correctness of 
an implementation; see Sargent (2000), Sargent (2001) and 
Balci and Ormsby (2000) and Balci (2001) for broader dis-
cussions of issues in the verification, validation and ac-
creditation of simulation models. 

A comment on terminology: we use the term model to 
mean a representation of a system that utilizes some form of 
abstraction.  Thus models can be physical (for example 
made of plastic, wood, or paper), iconic (based on drawings 
or pictures), text based, or some combination of three.  
Source code in some general purpose or simulation pro-
gramming language is also a model of a system.  It may not 
be the idea model representation form since of necessity the 
source code often includes many implementation details that 
 
can obscure the underlying model.  Some simulation pro-
gramming languages incorporate iconic representations so 
that the model they implement is more easily communicated 
to a reader.  When we wish to emphasize the implementation 
characteristics of the source code, we use the term simula-
tion implementation, but this is still a model. 

The software engineering community has developed 
many techniques to help in determining the correctness of 
code.  In addition to testing, these include very different 
and often complimentary approaches such as the use of 
formal inspections of requirements, designs, test plans and 
code (Fagan 1976) and the use of formal methods (that is, 
formal mathematical proofs of correctness).  But the most 
widely used technique in industry is testing, though it may 
be used in conjunction with complementary techniques 
such as inspections. 

While testing has long been an important area in soft-
ware engineering, it is still an area of active research.  This 
is in large part due to its high cost, often cited as up to 50% 
of project development costs, even more if the software 
must be highly reliable, see, for example, Osterweil et al. 
(1996).  This high cost has caused interest in the potential 
ability of other less expensive techniques to improve soft-
ware quality; see Chillarege (1999), Hetzel (1993), Beizer 
(1990), and Roper (1994) for discussions on software test-
ing and other quality-improvement techniques. 

Many issues in the use of testing to establish charac-
teristics of code for both simulations and other types of ap-
plications are the same.  This is true in part since many 
simulation applications have requirements similar to other 
application domains and use similar implementation tech-
niques to meet these requirements,.  Thus testing to deter-
mine if these requirements are met is no different from 
testing in other application domains.  These include, 
among many possible examples, using testing to estimate 
performance or testing to evaluate user interfaces. 

We believe that many inherent characteristics of simu-
lations and the implementation techniques widely used 
simulation applications make testing difficult.  Many of 
these specific characteristics occur in other application 
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domains but the combination of issues frequently found in 
simulations seems to occur rarely if at all in other areas. 

In Section 2 we discuss some testing issues that have 
direct application to simulation.  In Section 3, we discuss 
some common aspects of simulation that make testing dif-
ficult, and follow this by conclusions. 

2 TESTING ISSUES 

A common problem in the testing of software is the diffi-
culty of detecting unanticipated interactions among com-
ponents.  Sometimes these unintended interactions only 
occur when the components execute in a particular order.  
This is particularly true of simulations.  The typical simula-
tion execution consists of a collection of components 
whose execution is managed by the modeler and by a 
simulation executive.  In some languages, these compo-
nents are called events, in others, activities.  If the lan-
guage is process interaction based, then each process typi-
cally consists of several components whose individual 
executions are managed by the simulation executive.  Un-
derstanding the possible execution orders of the compo-
nents can be difficult.  Adding to this difficulty is the sto-
chastic nature of many simulations. 

Many testing methodologies attempt to guide the test-
ing process so that these interactions are more likely de-
tected during testing. 

2.1 Using Coverage to Reduce Testing Costs 

A key concern in testing is cost.  One of many approaches  
to reducing these costs is identifying a smaller number of 
test cases that still effectively tests the code.  To do this, it 
is usually desirable that different tests have the possibility 
of revealing different problems.  A common approach for 
guiding the selection of test cases uses the idea of cover-
age.  In general coverage is intended to help with two 
complementary goals:  1) to ensure that all features of code 
are tested, and 2) to avoid duplicate tests that check the 
same feature.  The software engineering community has 
identified many types of coverage; the testing references in 
Section 1 discuss them. 

Because of common techniques used in simulation 
implementations and the basic characteristics of many 
simulations, achieving some widely advocated types of 
coverage is can be more complex than for many other ap-
plication domains. 

These coverage issues are particularly relevant for 
simulation since executions typically consist of a sequence 
of components whose order is determined by the modeler, 
the simulation executive and random numbers. 
2.2 Code Coverage Criteria 

A basic form of coverage is full statement coverage.  It in-
volves testing until every executable line of code in the 
program has run in at least one test case.  It is often rec-
ommended as a minimal testing goal.  But since some code 
problems are a result of unintended interactions among dif-
ferent code components, these problems may depend on 
the order of execution of those program components.  Thus 
other more ambitious coverage goals include the concept 
of testing many (ideally all) of the various possible execu-
tion orderings. 

A naive testing goal is to execute all program state-
ments in all the orders that are possible.  This is almost al-
ways infeasible for at least two reasons: one is that identi-
fying all achievable orderings can be difficult or 
impossible (determining that an apparently feasible execu-
tion sequence is in fact impossible can be difficult).  The 
second is that the number of possible orderings is often so 
large that executing a separate test run for each ordering 
would take more time than is practical. 

A closely related problem in testing is the oracle prob-
lem, that is, the difficulty of actually detecting incorrect 
output when a program is tested. A large number of test 
cases is an added problem from the oracle perspective 
since, in addition to the time required to design and run 
these test cases, the task of detecting when a test reveals 
incorrect behavior is often daunting.  In simulation, some-
times data from the system being simulation is available.  
If so, and if it can be compared with corresponding model 
output, the real system data can serve in part as an oracle.  
However, when models components are assumed to have 
random behaviors, this comparison may require use of ap-
propriate statistical tests. 

3 SIMULATION-RELATED  
TESTING PROBLEMS 

In this section we discuss several aspects of simulations 
that often make their testing more difficult.  While none of 
these issues are necessarily unique to simulation, they oc-
cur frequently in simulation testing. 

3.1 Access to Source Code 

If a simulation application is written in a general purpose 
programming language such as C++, Java, or Visual Basic, a 
tester typically have full access to all source code.  This 
source code can be used to guide the testing process; many 
commercial tools are available to facilitate testing and de-
pend on the source being available.  In many cases, how-
ever, the tester will not have access to some key code, for 
example, the executive that selects code components for 
execution.  If the application is written in a simulation pro-
gramming language, the compiler provides a simulation ex-
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ecutive that manages and schedules the execution of some 
code components.  Likewise, even if the application is writ-
ten in a general-purpose programming language, if it uses a 
package that supports the building of simulation models, the 
package likewise provides an executive that can manage the 
selection of components for execution.  The source code for 
the package may not be available to testers to assist in guid-
ing the testing process.  This “unpredictability” of execution 
orders of components due to lack of access of the details of 
the executive adds to the complexity of testing—if a testing 
goal is to test alternative orderings. 

Many models assume stochastic behavior of some be-
haviors.  This randomness can also add to testing complex-
ity similar to that discussed above since components may 
be invoked in a variety of orderings based, say, on the ran-
domness of an arrival process. 

3.2 Testing Concurrent Programs 

The testing community has frequently asserted that testing of 
parallel or distributed code is significantly more complex 
than testing sequential code.  We believe that these addi-
tional difficulties are due in part to the many possible execu-
tion orders, all possibly valid, of program components, 
where some may result in incorrect interactions among 
components.  This raises complex coverage issues if alter-
nate execution orderings are to be tested.  This is an active 
research area and several tools have been developed to assist 
in testing by identifying feasible execution paths; see, for 
example, (Naumovich et al. 1998), (Cleaveland and 
Smolka1996) (Cleaveland et al. 1994), (Yang et al. 1998). 

This identifying and testing of many different possible 
statement execution orderings, while a problem for several 
types of applications, can be a central problem in testing 
simulations.  Models often depict a system as having many 
activities occurring in parallel.  In a distributed simulation 
implementation, several activities may truly occur simulta-
neously.  But valid single processor executions, which 
must serialize the apparent parallel executions, can have 
many possible alternative orderings for the execution of 
code components, all valid.  A particular implementation 
(possibly provided by the simulation executive) will select 
one of several possible orderings.  If so, it could be point-
less to test other feasible orderings since the executive will 
never select them. 

3.3 Implications of Abstraction and Simplification 

In a traditional view of building simulations, models 
should be as simple as possible, at the highest-level ab-
straction possible provided the behaviors produced are suf-
ficient to satisfy the model objectives.  Thus, the behavior 
of some aspects of a model may not resemble the corre-
sponding behavior of the system being simulated.  Like-
wise, simplifications are usually desirable as long as they 
do not compromise the ability of the model to meet simula-
tion objectives.  This “Occam’s Raiser” principle of using 
the simplest possible simulation model is in part motivated 
by the belief that less complex models will typically be 
easier and faster to code, easier and faster to test, and often 
run faster than a more complex version of the same model. 

This implies that it is sometimes desirable for simula-
tion models to produce “incorrect” behaviors for some as-
pects of the system being simulation.  These intentionally 
incorrect (or too simplistic) behaviors can be revealed in 
testing.  The tester must then understand that these appar-
ently incorrect behaviors are acceptable. 

We note that in some domains, particularly where the 
reuse of existing model components is used to reduce the 
cost of developing new simulations, this minimalist view 
may conflict with the advantage of using the same compo-
nent in multiple simulations.  In an environment in which 
execution time or memory requirements are not a primary 
concern, the development cost of new, more optimally tai-
lored components can easily exceed the added overhead of 
using of components that do more than is needed for the 
new simulation objectives. 

Closely related to the principle of using the most ab-
stract model possible is the issue of the accuracy of each 
component in a simulation.  Both accuracy and execution 
overheads can be affected by the simplifying assumptions of 
an underlying model.  The runtime overhead of a model that 
produces more accurate behaviors is generally assumed to be 
higher.  In some simulations it is difficult to anticipate what 
accuracy will be required of various components without 
performing sensitivity analysis.  Thus during testing, decid-
ing if outputs are sufficiently accurate, causing the simula-
tion to fail a test, can be difficult.  While this flexibility in 
accuracy is not unique to simulation (it is an issue with nu-
meric methods), it is often an issue in simulations. 

3.4 Delayed Component Execution 

In simulations, one code component can explicitly cause a 
second to execute in two ways, either immediately (at least 
in simulation time), or after a simulation time delay, either 
time- or state-based.  The testing issue this raises is that if 
the component execution is scheduled for a future simula-
tion time, a variety of code components that effect the cor-
rectness of the scheduled component may sometimes (due, 
say, to random scheduling) execute before it.  Ensuring 
that in one test case the possibly interfering component 
runs in the delay interval while in another test it does not 
run can be difficult.  This scheduling is typically imple-
mented through two data structures, often called a future 
events list (components waiting for a particular simulation 
time) and a current events list (components waiting for a 
particular state).  While these types of delayed invocations 
are not unique to simulation, it is unusual and commer-
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cially available test generation or monitoring coverage 
tools are unlikely to detect this missing test case. 

In some sense, this is similar to the forced serialization 
of code components that are thought of as executing in 
parallel.  The simulation executive performs this serializa-
tion when the program is run on a single processor, and the 
programmer may not know the how an ordering is  selected 
by the executive.  However, this serialization is typically 
deterministic and has little effect on testing complexity 
since the same sequence should be used for each run (as-
suming all code used for testing is compiled with the same 
compiler).  However, when testing code in which other 
components may run randomly between the scheduling and 
the execution of a particular component, say due to random 
scheduling of some event, to continue testing until most 
possible order have been tested may be infeasible. 

3.5 Use of Nonprocedural Languages 

While nonprocedural (also called fourth generation) lan-
guages) are widely used in some application areas (data base 
applications, and protocol specifications, for example), they 
are frequently used in simulation.  This use began early in 
the simulation community with the widespread and still 
common use of GPSS.  Similar newer language are also in 
wide use in simulation and include, for example Arena 
(Swets and Drake 2001), Extend (Krahl 2001), and Pro-
Model (Harrell and Field 2001).  (Some have been incor-
rectly advertised as allowing modelers to build and run 
simulation models without programming; however pro-
gramming in nonprocedural languages, even if the language 
is icon rather than text-based, is still tedious and subject to 
programmer errors just as with text-based languages). 

Since the execution order of components written in 
nonprocedural languages are not under the explicit control 
of the programmer and are handled implicitly by the lan-
guage designers, building test cases with an objective of 
covering possible execution paths requires that the tester 
understand many implementation details. 

3.6 Effects of Nondeterminism 

For many application types, testing is performed by the 
tester providing a collection of test cases that consists, at 
least conceptually, of pairs:  <program inputs, expected 
program outputs>.  For each test case, the procedure con-
sists of running the program to be tested with the program 
inputs, then comparing the actual output produced by the 
program with the expected program outputs.  Mismatches 
indicate an error, either in the program or in the expected 
program outputs. 

Since many simulations contain stochastic compo-
nents, their specified behavior is really nondeterministic.  
Since the stochastic behavior is usually based directly or 
indirectly on a random number stream, theoretically a 
tester could provide a seed for that stream, but this is often 
infeasible.  The implication for this discussion is that, since 
model behavior is nondeterministic, a single set of inputs 
can produce a possibly wide variety of equally correct out-
puts.  While this adds to the complexity of testing, it is well 
understood in the simulation community; it is usually dealt 
with by treating a particular model output as a single ob-
servation from a sample space and statistical analysis of 
outputs is needed. 

3.7 Similarities to Requirements Analysis 

An area of software engineering that has received signifi-
cant attention is analysis of requirements to determine their 
correctness.  This can be similar to simulations written in 
nonprocedural languages in that both the simulation pro-
gram and requirements are typically nonprocedural, speci-
fying what a system is to do, but not how it should do it.  
Nonprocedural simulation languages, while often requiring 
a programming to provide details about some aspects of 
the implementation, have a similar goal. 

A commonly advocated technique for detecting errors 
in requirements specification is the use of formal inspec-
tions described by Fagan (1976).  These have been shown 
to be cost effective in a variety of application areas but are 
labor intensive since they are manual procedures that re-
quire the participation of experienced and trained person-
nel.  Formal inspections can be used for most artifacts pro-
duced in a software development process, including 
requirements, designs, code and test plans.  Their effec-
tiveness and applicability in the simulation domain should 
be similar to other software development areas. 

The software engineering community is developing 
tools to partially automate analysis of requirements since 
inspections can be tedious and problems easily overlooked.  
A standard technique for analyzing requirements is to use 
simulation to generate behaviors.  For this reason, the use 
of executable specifications have been advocated in some 
areas.  This allows the specifier to observe the behavior, 
that can be generated by the specifications.  If any incor-
rect behaviors are observed, it is assumed that the require-
ments are in error.  Many types of incorrect behaviors can 
be revealed through watching the sequence of actions pro-
duces by the simulation.  While the simulation can rarely 
produce all possible sequences of behaviors that are consis-
tent with the specification, use of simulation is regarded as 
useful for revealing errors.  Note that if the requirements 
are executable, coverage issues similar to what has been 
discussed arise.  Determining that sufficient simulating has 
occurred to ensure that all important and feasible behaviors 
have been observed is the same problem as determining 
when an implementation has been adequately tested.  It 
also has the same the similar oracle problem. 
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3.8 Static Analysis 

Another approach for discovering errors in requirements is 
through the use of static analysis techniques.  Forms of 
static analysis are performed by many compilers (for ex-
ample, flagging of some initialized variables or unused 
functions), but only as an incidental activity to code gen-
eration.  Tools such as Lint for C demonstrate that static 
analysis can be a useful tool for software developers when 
dealing with source code.  Static analyzers for require-
ments can check for such properties as consistency and 
completeness (Heimdahl and Leveson, 1995; Chan et al. 
1998) or reachability of identified global states (Holzmann 
1987).  To do so, the requirements must be expressed in a 
formal language.  Analysis tools can also used to assist in 
construction of test data and compare the consistency of 
designs with requirements (Adrion 1982).  Atlee and 
Gannon (1991) have used static analysis of event-oriented 
requirements specifications to check safety requirements. 

Several authors, to establish important characteristics 
of simulations, have explored static analysis of the simula-
tion implementation.  Several characteristics of model 
specifications can be established through static techniques.  
Some of these analyses may identify problems with the 
specification; for example lack of connectedness (see 
Overstreet, et al. (1994) for definitions and discussion).  
Likewise other analysis can provide potentially useful in-
formation to a modeler that the modeler can use to confirm 
that some correct characteristics exist or identify problems.  
For example data flow techniques (determining what lines 
of code use or modify particular variables, directly or indi-
rectly) can by used to identify causality (what can trigger 
specific events).  The modeler can then judge whether eve-
rything that should appear does or that items that should 
not appear are omitted; see Overstreet et al. (1994). 

While automated determination of many characteris-
tics related to the correctness of model specifications are 
either intractable or NP-hard; (see, for example, Overstreet 
1982, Jacobson and Yŭcesan 1995, Page and Opper 1999) 
others have developed tractable solutions, for example, see 
Yŭcesan and Jacobson (1996). These algorithms are typi-
cally conservative, that is, if they cannot conclude that an 
important property holds for a component, they assume it 
does not.  For example, in performing data flow analysis, if 
source is not available for a component or the analysis is 
inconclusive, typically an analyzer will conclude that com-
ponent both uses and changes the value of a variables of 
concern just to be safe.  Thus in many cases the results are 
often of little use. 

3.8.1 Reliance on Subject Matter Experts 

The correctness assessment of simulation models may rely 
in part on statistical analysis of program outputs and other 
comparisons with real-world data. While not necessarily 
unique to simulation, a standard technique is the use of 
subject matter experts (SMEs) who observe the behaviors 
to assess the believability of those behaviors.  This ap-
proach is similar to a Turing test, discussed in the artificial 
intelligence community. 

This is really a form of testing and its effectiveness 
depends both on making important behaviors visible to 
SMEs and the coverage achieved; that is, ideally sufficient 
tests should be run so that an SME can observe the full 
range of possible model behaviors; the SME is functioning 
as a test oracle, identifying some forms of incorrect model 
behavior.  Our experience in the use of SMEs that they 
may not understand the benefits of abstraction and simpli-
fication, often insisting that the model behave like the real 
system even when that more realistic behavior does not 
contribute to the goals of the simulation. 

3.8.2 Data Intensive Models 

The correctness of many simulation models depend heavily 
on the data that are incorporated into the code, in simple 
cases, the numeric values used parameters for speed, range 
or parameters of statistical distributions.  If a model is data 
intensive, determining the correctness, or even the usabil-
ity, of the data can be difficult to determine by testing. 

4 SUMMARY AND CONCLUSIONS 

In the software engineering community, issues related to 
verification and validation are an active research topic.  
Finding less expensive ways to determine that software can 
be used for its intended purpose is an important focus.  
Many proposed techniques are not widely used by software 
developers either because their effectiveness has not been 
conclusively demonstrated (they may not work outside of 
research labs) or the cost effectiveness of the techniques is 
unknown.  Some proposed techniques may be worth the 
additional expense when used for safety critical applica-
tions, but are generally perceived as uneconomical for use 
in most application domains. 

Too often it seems that available automated techniques 
that can help to help with determining the correctness of a 
simulation implementation only work for very small or very 
simple simulations (where little help is needed) and do not 
scale up to large applications where errors are more likely 
and correctness assessment is more difficult and often more 
crucial.  Part of the problem is that to use some of the tech-
niques, the behaviors of the simulation needed to be restated 
in a formal language (this can easily cost more that the value 
of the answer produced by the simulation), or the runtime 
complexity of the technique goes exponentially with the size 
of the state space and this size often grows exponentially 
with the size of the requirements.  So again, the technique 
may only work when it is least needed. 
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Many of the testing techniques developed by the soft-
ware engineering community are used by parts of the simu-
lation community.  Manual techniques such as inspections 
can be used directly in simulations.  Static analysis tech-
niques are promising, but likely need additional develop-
ment before they are useful to significant portions of the 
simulation community.  Others developments are likely to 
be useful to the simulation community if they mature.  
These include the testing of distributed and parallel code 
and the checking of requirement specifications. 
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