
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

MANAGING EXTERNAL WORKLOAD WITH BSP TIME WARP

Malcolm Yoke Hean Low

Programming Research Group, Computing Laboratory
University of Oxford

Wolfson Building, Parks Road
Oxford, OX1 3QD, U.K.

t

e

f
-

of
re
a
-
rs

n

ta

r
.

r.

in-
ABSTRACT

This paper describes an extension to the existing BSP Time
Warp dynamic load-balancing algorithm to allow the man-
agement of interruption from external workload. Experi-
ments carried out on a manufacturing simulation model using
different partition strategies with and without interruption
from external workload show that significant performance
improvement can be achieved with external workload man-
agement.

1 INTRODUCTION

Most of the studies on parallel simulation are conducted on
dedicated systems and many experiments even go to gre
length to ensure minimum external interference on the sim-
ulation runs. As a result, most existing parallel simulation
protocols are designed with the assumption that uninter
rupted system resources are available to execute simulatio
runs.

With widespread use of large scale computing cluster, a
new approach in the design of parallel simulation protocols
is required. Very often computing resources in these cluster
are not dedicated and are usually shared among multipl
users. The workload on each computing node in the cluster
can fluctuate widely due to the presence of jobs from other
users.

This scenario poses a great challenge for any paralle
simulation protocol to run efficiently. In this paper, an
extension to the dynamic load-balancing (DLB) algorithm
for the Bulk Synchronous Parallel Time Warp (BSP-TW)
optimistic simulation protocol is described. Experiment
results on a manufacturing simulation model show that
significant performance improvement could be achieved
using the DLB algorithm for BSP-TW.

The rest of this paper is organized as follows. Sec-
tion 2 describes the BSP model and the BSP Time Warp
optimistic protocol. In Section 3, the existing DLB algo-
rithm for BSP-TW is described. An extension to the DLB
at

-
n

s
e
s

l

algorithm for BSP-TW that is capable of managing external
workload is then proposed. Section 4 presents experimen
results using the new DLB algorithm on a manufacturing
simulation model. Some related work is described in Sec-
tion 5. Section 6 summarizes the paper and outlines futur
research directions.

2 BSP TIME WARP

The BSP model (Valiant 1990) provides a general purpose
approach to parallel computing that allows the separation o
concerns between computation, synchronization and com
munication costs. It has a simple cost model for predicting
the performance of BSP algorithms on different parallel
platforms. A BSP programming model consists ofP pro-
cessors linked by an inter-connecting network and each with
its own pool of memory.

A BSP algorithm consists of a set of processors each
executing a series of supersteps. Each superstep consists
three ordered phases: 1) a local computation phase, whe
each processor can perform computation using local dat
and issue communication requests; 2) a global communi
cation phase, where data is exchanged between processo
according to the requests made during the local computatio
phase; and 3) a barrier synchronization, which waits for all
data transfers to complete and makes the transferred da
available to the processors for use in the next superstep.

The BSP-TW algorithm (Marín 1998) shown in Fig-
ure 1 is designed to be an efficient realization of an opti-
mistic synchronization protocol (Jefferson 1985, Jefferson
and Sowizral 1985) on the BSP model. Each processo
manages a group of logical processes (LPs) in the system
In BSP-TW, LPs are also referred to as simulation objects
and the two terms are used interchangeably in this pape
LPs in the same processor share a common event-list. A
series of supersteps are executed by each processor as
dicated by the outerwhile loop and thebsp_sync()
statement at the end of the loop.

Low

e

an

e

re
l

ll

r
f

h

r

-

t

bsp_begin();
[A] Initialization
while GVT < SimEndTimedo

[B] Receive external events and process rollback;
[C] Compute new GVT, perform fossil collection and

compute new event limitne every ng supersteps;
[D] Executene events;
bsp_sync();

endwhile
bsp_end();

Figure 1: Algorithm for BSP Time Warp

The global virtual time (GVT) measures the progress
of a simulation run. An estimate of GVT is computed after
everyng supersteps;ng is also known as the GVT update
interval. The body of the loop terminates when the GVT
value is greater than the simulation end time.

The algorithm provides an automatic means of throttling
the number of events,ne, being simulated per superstep
based on statistics from fossil collected events. The BSP
cost model for a BSP-TW algorithmS can be expressed as

cost(S) =
ns∑
i=1

(w(i)+ gh(i)+ L) (1)

where ns is the total number of supersteps;w(i) is the
computation cost for superstepi; and h(i) is the max-
imum number of messages sent or received respective
by any processor in superstepi. The architecture depen-
dent parametersg andL represent the communication and
synchronization costs respectively.

Although the cost model is relatively simple, we can
see that the performance of a BSP-TW algorithm relies on
three factors: a) computation balance; b) communication
balance; and c)ns , the total number of supersteps.

Computation and communication imbalance can resul
from the dynamic changing nature of the workload of the
simulation model and interruption from external workload.
The total number of supersteps required to complete the sim
ulation depends on the lookaheads on the links between LP
on different processors. Lookahead is defined as the min
mum simulation time interval between event arrival, from
the source to a destination LP. A dynamic load-balancing
algorithm can reduce both computation and communica
tion load-imbalance, as well as optimize lookaheads by
migrating simulation objects between processors.
ly

t

-
s

i-

-

3 DYNAMIC LOAD-BALANCING FOR
BSP TIME WARP

The BSP-TW DLBccl algorithm first described in Low (2002)
has facilities to dynamically balance computation and com-
munication load-imbalance, as well as optimize lookaheads
between processors. However, the algorithm does not tak
into account interruption from external workload. For ex-
ample, Figure 2a shows the computation workload of five
processors in a superstep. The shaded boxes show that
external workload is present in processorP0. Although
all five processors have the same computation workload
(represented by the white boxes, each white box can b
considered a simulation object), processorP0 takes twice
as long to complete the supersteps since the CPU cycles a
shared between the simulation workload and the externa
workload.

Figure 2b shows how BSP-TW DLBccl algorithm bal-
ance the computation workload in the superstep across a
processors. All the simulation workload on processorP0
would be distributed to other processors. Note that in
this case BSP-TW DLBccl carries out computation load-
balancing based purely on the length of time each processo
takes to complete the superstep. It has no knowledge o
the presence of external workload on processorP0.

Since processorP0 is now without any computation
workload, it can complete each subsequent superstep wit
minimum delay. However, without any knowledge of the
presence of external workload on processorP0, the BSP-TW
DLBccl algorithm will considerP0 to be idle and assume
that there is an imbalance in computation workload. It will
proceed to migrate simulation objects back into processo
P0. The load configuration of the system again returns to
that shown in Figure 2a. This results in a thrashing situation
in which simulation objects are migrated in and out of the
processor plagued by external workload.

3.1 BSP-TW DLBccle Algorithm

In this section, we propose an extension to the BSP-TW
DLBccl algorithm to allow external workload management.
The new algorithm is referred to as BSP-TW DLBccle. Fig-
ure 3 shows the pseudo-code for the new BSP-TW DLBccle

algorithm. The BSP-TW DLBccle algorithm consists of four
modules and is executed at each migration point, which oc
curs everyλng supersteps (λ ≥ 1). We also refer to theλng
supersteps between two migration points as a migration
interval. At each migration point, one of the four mod-
ules will be activated based on factors such as the amoun
of external workload, computation imbalance as well as
communication imbalance.

The computation load-balancing in module D1 is car-
ried out by transferring simulation objects from processors
with high computation workload to processors with low

Low

e,

-

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

P0 P2P1 P3 P4

External workload

of simulation objects
Computation workload

(a)

P0 P2P1 P3 P4

(b)

Figure 2: Example of Interruption from External Workload

bsp_begin();
[A] Initialization;
while GVT < SimEndTimedo

[B] Receive external events and process rollback;
[C] Compute new GVT, perform fossil collection and

compute new event limitne every ng supersteps;
[D] After eachλ GVT computation:

D0 balance_extLoad();
D1 balance_computation();
D2 balance_communication();
D3 optimize_lookahead();

[E] Executene events;
bsp_sync();

endwhile
bsp_end();

Figure 3: Algorithm for BSP-TW DLBccle
balance_extload()
foreach processorPi do

if Pi .loadavg> θ then
migrate_all(Pi);
setPi as inactive;

else if Pi .loadavg< θ
2 then

setPi as active;
endif

endfor

Figure 4: Algorithm for Balancing External Workload

computation workload. For module D2, communication
load-balancing is carried out by exchanging simulation ob-
jects between processors. The module uses load exchang
rather than load transfer to preserve the computation balance
achieved in module D1, at the same time improving the
balance in communication workload. The lookaheads opti-
mization in module D3 is carried out by merging simulation
objects with small lookaheads into the same processor. For
more detailed explanation of these three modules, readers
are referred to Low (2002).

The BSP-TW DLBccl algorithm described in Low
(2002) is enhanced with module D0 in order to handle
computation and communication load-imbalance due to the
presence of external workload. The pseudo-code for module
D0 is shown in Figure 4.

The state variablePi .loadavg is used to track the aver-
age load of processorPi . We classify the set of processors
with average load greater than the processor load threshold
parameter,θ , as heavily loaded. The average load of a pro-
cessor is obtained by a UNIX system callgetloadavg() .
This system call returns the number of processes in the sys
tem run queue averaged over various periods of time. The
1 minute sample returned by the system call is used in the
experiments.

At each migration point, the BSP-TW DLBccle al-
gorithm attempts to evict all the simulation objects
out of these heavily loaded processors. The method
migrate_all(Pi) evicts all the simulation objects in
processorPi to other processors with normal workload in a
round-robin fashion. The status of processorPi is then set
to inactive. As the dynamic load-balancing modules D1 to
D3 only consider the set of active processors, simulation
objects will not be migrated back to the processors that
are still heavily loaded with external workload. When a
previously heavily loaded processor’s average load drops
below θ

2, the status of the processor is reset to active. This
causes the computation and communication load-balancing
modules to detect the idle processor and allows simulation
objects to be moved back to the processor.

Low

ls

d

-

n
d

d.

l

l

T
d

-

4 EXPERIMENTS WITH MANUFACTURING
SIMULATION MODEL

4.1 Simulation Model

In order to study the efficiency of the BSP-TW DLBccle
algorithm, experiments are carried out on a manufacturing
simulation model. The same model was used in Lim et al.
(1998) to study different runtime systems for a conservative
simulation protocol. The manufacturing model consists
of different entities of a typical production line with an
assembly and test facility. Figure 5 shows the layout of
a production line and an assembly and test facility. The
configuration of the manufacturing model consists of a total
of seven production lines. Each production line consists
of 100 production stages. The assembly and test facility
consists of 100 assembly stations and 100 testing stations
There are a total of 2417 simulation objects in this model.

This manufacturing model is a challenging model for
optimistic simulation protocol such as BSP-TW due to the
presence of many zero lookahead links on thefork and
join nodes. Lookahead is crucial to the performance of
the BSP-TW protocol since processors with many incoming
communication links with small or zero lookaheads are likely
to suffer from high event rollback rates.

For all the experiments, the GVT computation interval
ng is fixed at 50 supersteps. The migration intervalλ is
set to 5. A load threshold parameter ofθ=1.5 is used. The
experiments are conducted on a cluster of eight 350MHz Sun
UltraSparc workstations connected via a 100Mbits TCP/IP
network. All execution times shown are the average of 10
runs. Unless stated otherwise, the simulation run length of
the experiments are 104 time unit.

Experiments are carried out using BSP-TW on the man-
ufacturing model with two different partitioning methods.
The first partitioning method is to assign simulation objects
in a round-robin fashion to the processors. This model is re-
ferred to asMu. The second method is to assign consecutive
block of 25 simulation objects onto the same processors
This model is referred to asMb. Both modelsMu andMb

have well balanced computation and communication work-
load in the absence of external workload. However, model
Mu is expected to perform worse thanMb since the round-
robin assignment onMu will result in many zero-lookahead
links between processors.

Besides using different partitioning strategies, external
workload is also introduced onto different numbers of pro-
cessors. Two types of external workload are used: persisten
and transient workload. The persistent external workload is
introduced from the start of the simulation and lasts through
the entire simulation duration. The transient external work-
load is introduced sometime after the simulation is started
and lasts for a fixed duration.
.

.

t

Table 1: Execution Times (sec.) with Persistent
External Workload
Ext. Load Protocol Mb Mu

0 BSP-TW 394.4 1730.0
BSP-TW DLBccl 386.4 642.8
BSP-TW DLBccle 392.0 628.3

1 BSP-TW 646.6 2541.8
BSP-TW DLBccl 572.0 1082.4
BSP-TW DLBccle 495.1 818.7

2 BSP-TW 983.8 4102.2
BSP-TW DLBccl 723.1 1034.0
BSP-TW DLBccle 527.1 888.1

4.2 Persistent External Workload

For the first set of experiments, the manufacturing mode
Mb andMu are executed using the original BSP-TW, BSP-
TW DLBccl , and BSP-TW DLBccle protocols. External
workload is applied throughout the entire simulation duration
on one of the processors. The number of external workloa
is varied from 0 to 2.

Table 1 shows the execution times for modelsMb andMu

using different BSP-TW protocols under different numbers
of external workload. For the case with no external work
load, the performance for all three protocols on modelMb is
similar since the model has both well-balanced computatio
and communication workload, as well as good lookahea
configuration. For modelMu, the lookahead optimization
module in both the BSP-TW DLBccl and BSP-TW DLBccle
protocols yields significant improvement in performance
compared to the BSP-TW protocol.

In general, we expect the performance of BSP-TW
DLBccl and BSP-TW DLBccle to be similar in the absence
of external workload. The small difference in execution
times between BSP-TW DLBccl and BSP-TW DLBccle for
modelMu is attributed to the variation in system load.

Table 1 shows that the performance of BSP-TW on
both models deteriorates as external workload is introduce
While the performance for modelMb is only affected by the
presence of external workload, the performance for mode
Mu is affected both by the presence of external workload
as well as the poor lookahead configuration.

Figure 6 shows the GVT rates for the different algo-
rithms on both models under different numbers of externa
workload for the first 1000 units of execution time. GVT
rate is defined as the ratio between the advancement of GV
between two migration points and the amount of elapse
wall-clock time. We see that both BSP-TW DLBccl and
BSP-TW DLBccle significantly improve the GVT rates of
the simulation.

For the case with only one external workload, the BSP
TW DLBccl improves the GVT rates of modelMu to the
same level as that of the BSP-TW on modelMb. This shows

Low

fork forkprocessing
station station

control control
station

processing
station fork

join station

assembly
station

collect

assembly

station

station

station

testing

testing

testing

collect

join

fork

fork

fork

production line

production line

Figure 5: Layout of a Production Line and an Assembly and Test Facility

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

G
V

T
 R

at
e

Execution Time (sec.)

Number of External Workload = 1

Mu using BSP-TW
Mu using BSP-TW DLBccl

Mu using BSP-TW DLBccle
Mb using BSP-TW

Mb using BSP-TW DLBccl
Mb using BSP-TW DLBccle

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

G
V

T
 R

at
e

Execution Time (sec.)

Number of External Workload = 2

Mu using BSP-TW
Mu using BSP-TW DLBccl

Mu using BSP-TW DLBccle
Mb using BSP-TW

Mb using BSP-TW DLBccl
Mb using BSP-TW DLBccle

Figure 6: GVT Rates for ModelsMb andMu with Persistent External Workload
.
o

t

e
f

r

t

that the improvement is attributed mainly to the lookahead
optimization. On the other hand, the BSP-TW DLBccle

is able to both optimize lookahead as well as handle the
presence of the external workload. This is evident from the
much higher GVT rates for BSP-TW DLBccle on model
Mu in Figure 6 compared to that for BSP-TW on model
Mb.

When the number of external workload is increased
to two, the load-balancing capability of BSP-TW DLBccl
becomes apparent. This enables BSP-TW DLBccl to achieve
a much higher GVT rate on modelMu compared to BSP-TW
on modelMb.

4.3 Transient External Workload

In the second set of experiments, we examine the effect
of loading one of the processors in the simulation system
with transient external workload to observe the behaviour
of the system in the presence of the external workload
and after the workload has been removed. This set o
experiments is performed only on modelMb and the length
of the simulation is extended from 104 to 2×104 time unit.
The external workload is applied 200 seconds after the
simulation begins. We experimented with transient externa
s

f

l

workload that last for 200 and 600 seconds respectively
The number of external workload on each processor is als
varied from 1 to 4.

Table 2 shows the execution times for the model using
BSP-TW, BSP-TW DLBccl and BSP-TW DLBccle algo-
rithms. The performance of BSP-TW DLBccle degrades
compared to BSP-TW and BSP-TW DLBccl for the set of
experiments with transient workload of 200 seconds. The
effects of external workload management are more eviden
when the duration of the transient external workload is
increased to 600 seconds. The increased duration of th
presence of the external workload makes the eviction o
simulation objects by BSP-TW DLBccle worthwhile and al-
lows it to obtain better performance compared to the othe
two protocols.

Figure 7 shows the GVT rates for different numbers
of external workload that last for 600 seconds. The GVT
rate for the BSP-TW algorithm drops proportionally to the
number of external workload but returns to its original level
once the external workload is removed.

The sharp drop in GVT rates for BSP-TW DLBccle
protocol in both sets of graphs indicates the migration
point at which simulation objects are moved back to the
processor that was previously loaded with the transien

Low
Table 2: Execution Times (sec.) with Transient External Workload
Duration = 200 sec. Duration = 600 sec.

No. of Ext. Workload No. of Ext. Workload
1 2 3 4 1 2 3 4

BSP-TW 920.3 964.0 990.9 1014.1 1087.5 1209.3 1262.1 1311.0
BSP-TW DLBccl 929.8 1014.6 1048.5 1108.8 1065.4 1163.0 1215.8 1305.8
BSP-TW DLBccle 1063.9 1099.7 1104.5 1129.51067.4 1078.6 1112.8 1165.4

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

G
V

T
 R

at
e

Execution Time (sec.)

Number of External Workload = 1

BSP-TW
BSP-TW DLBccl

BSP-TW DLBccle

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400
G

V
T

 R
at

e

Execution Time

Number of External Workload = 2

BSP-TW
BSP-TW DLBccl

BSP-TW DLBccle

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400

G
V

T
 R

at
e

Execution Time

Number of External Workload = 3

BSP-TW
BSP-TW DLBccl

BSP-TW DLBccle

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400

G
V

T
 R

at
e

Execution Time (sec.)

Number of External Workload = 4

BSP-TW
BSP-TW DLBccl

BSP-TW DLBccle

Figure 7: GVT Rates for ModelMb with Different Numbers of Transient External Workload
e

workload. The re-population of simulation objects onto a
processor requires a new event limit to be computed. Thi
resulted in high event rollback rate during the first few GVT
computation intervals immediately after the migration point.
The movement of simulation objects into the processor als
destroys the optimized lookahead configuration betwee
processors. Both the high event rollback rate and the ruine
lookahead configuration contribute to the sharp drop in GVT
rates.

The graphs show that the BSP-TW DLBccle algorithm
is able to restore the GVT rate to its previous high level
However, a considerable amount of time is required to
accomplish this. For the case with a short transient workloa
of 200 seconds, this means that the benefits obtained fro
s

o
n
d

.

d
m

migrating simulation objects out of the loaded processor
do not justify the cost of re-populating simulation objects
and re-optimizing lookaheads once the external workload
is removed.

4.4 External Workload On Multiple Processors

In the final set of experiments, we examine the effects of
artificially applying external workload on more than one
processor. This set of experiments is conducted using only
modelMb with two external workload applied on each of
the designated processors throughout the duration of th
simulation. The experiments are repeated by loading two
processors followed by four processors.

Low

Table 3: Execution Times (sec.) with External Work-
load on Multiple Processors

No. of Processor Loaded
Protocol 0 1 2 4
BSP-TW 394.4 983.8 1002.4 1025.1
BSP-TW DLBccl 386.4 723.1 1050.3 1357.3
BSP-TW DLBccle 392.0 527.1 609.6 949.3

Table 3 shows the execution times for the different
algorithms on modelMb with different numbers of pro-
cessors being loaded. We first note that the performanc
of the original BSP-TW algorithm is not affected by how
many processors are loaded with external workload. This is
expected since the BSP cost model predicts that the perfo
mance of the BSP-TW protocol is affected by the processo
that is the most loaded rather than the number of processo
that are loaded.

The performance of BSP-TW DLBccl deteriorates as
more processors are loaded with external workload. While
the load-balancing modules try to balance load by migrating
simulation objects from heavily loaded processors to less
loaded ones, the effects of external workload are not take
into account. The result is that simulation objects are
migrated to and fro between heavily loaded and less loade
processors.

Figure 8 shows the accumulated workload of each
processor between migration points for the experiment with
four processors loaded with external workload. External
workload is applied to processorsP2,P3,P4 andP5. The
thrashing behaviour of BSP-TW DLBccl is evident from the
workload of processorsP4 andP5 from time 300 to time
800.

The BSP-TW DLBccle does not suffer from the thrash-
ing behaviour observed in the BSP-TW DLBccl algorithm
since all heavily loaded processors are not considered fo
load-balancing purpose. However, as more processors a
excluded from computation, the individual workload of the
remaining active processors increases and the performan
of BSP-TW DLBccle approaches that obtained using original
BSP-TW.

5 RELATED WORK

Past studies of DLB algorithm for optimistic parallel simu-
lation protocols have typically focused on which metrics to
use to measure the actual workload of the system. Burdor
and Marti (1993) presented a dynamic load-balancing strat
egy based on local simulation times matrix. The scheme
moves objects from processors that are far behind in sim
ulation time to processors that are further ahead. The aim
is to “slow down” the fast processor in order to reduce the
amount of rollback. Burdorf and Marti observed that this
scheme leads to better load-balance in the presence of e
e

r-
r
rs

n

d

r
re

ce

f
-

-

x-

ternal workload. Carothers and Fujimoto (1996) presented
an approach for background execution of Time Warp. The
scheme allows a Time Warp system to execute in the back-
ground and consume unused CPU cycles across a collection
of heterogeneous machines. The metric used is “Processor
Advance Time” (PAT), which reflects the amount of real
time needed to advance the virtual time of a logical process
by one unit.

In this paper, the metrics used are the computation and
communication workload. The rate of progress in simulation
time between supersteps for each processor in BSP-TW is
automatically controlled by the adaptive event limit set for
each superstep. A comparison of some of the metrics used
for DLB of optimistic simulation can be found in El-Khatib
and Tropper (1999).

6 CONCLUSION

The BSP-TW DLBccle described in this paper has facili-
ties to handle computation and communication imbalance,
optimize lookahead as well as manage interruption from
external workload. The experiment results on a manufac-
turing simulation model show that significant performance
improvement can be achieved using BSP-TW DLBccle over
the original BSP-TW algorithm. However, the presence of
transient external workload can result in high overhead in
migrating simulation objects to and fro between processors.
Further work will involve studying techniques to reduce this
overhead as well as preserving the lookahead configuration
when migrating simulation objects.

ACKNOWLEDGMENTS

This work is supported by Singapore Institute of Manufac-
turing Technology.

REFERENCES

Burdorf, C., and J. Marti. 1993. Load Balancing Strate-
gies for Time Warp on Multi-User Workstations.The
Computer Journal36 (2): 168–176.

Carothers, C. D., and R. M. Fujimoto. 1996. Background
Execution ofTimeWarp Programs. InProceedings of the
1996 Workshop on Parallel and Distributed Simulation,
12–19.

El-Khatib, K., and C. Tropper. 1999. On Metrics for the
Dynamic Load Balancing of Optimistic Simulation. In
Proceedings of the 32nd Hawaii International Confer-
ence on System Sciences.

Jefferson, D. 1985. Virtual Time. InACM TOPLAS, Vol-
ume 7, 404–425.

Jefferson, D., and H. Sowizral. 1985. Fast Concurrent Sim-
ulation Using Time Warp Mechanism. InDistributed
Simulation 1985, ed. P. Reynolds, 63–69. La Jolla, Cal-

Low
0

5

10

15

20

0 200 400 600 800 1000

W
or

kl
oa

d

Execution Time (sec.)

BSP-TW

P1
P2
P3
P4
P5
P6
P7
P8

0

5

10

15

20

0 200 400 600 800 1000

W
or

kl
oa

d

Execution Time (sec.)

BSP-TW DLBccl

P1
P2
P3
P4
P5
P6
P7
P8

Figure 8: Workload of Individual Processor with Persistent Workload on Four Processors
-
s

ifornia: SCS-The Society for Computer Simulation,
Simulation Councils, Inc.

Lim, C.-C., Y.-H. Low, W. Cai, W.-J. Hsu, S.-Y. Huang,
and S. J. Turner. 1998. An Empirical Comparison of
Runtime Systems for Conservative Parallel Simulation
In 2nd Workshop on Runtime Systems for Parallel Pro-
gramming (RTSPP 1998), 123–134. Orlando, Florida,
USA.

Low, M.Y. H. 2002. Dynamic Load-Balancing for BSP Time
Warp. In Proceeding of the 35th Annual Simulation
Symposium, 267–274. San Diego, California.

Marín, M. 1998.Discrete-Event Simulation on the Bulk-
Synchronous Parallel Model. Ph. D. thesis, Oxford
University.
.

Valiant, L. G. 1990. A Bridging Model for Parallel Com-
putation.Communications of the ACM33:103–111.

AUTHOR BIOGRAPHY

MALCOLM LOW received his Bachelor and Master of
Applied Science in Computer Engineering from Nanyang
Technological University, Singapore, in 1997 and 1999 re-
spectively. He is currently a DPhil student in the Oxford
University Computing Laboratory. His research interests are
in the areas of adaptive tuning and load-balancing of par
allel discrete event simulation systems. His email addres
is <mlow@comlab.ox.ac.uk> .

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 704
	02: 705
	03: 706
	04: 707
	05: 708
	06: 709
	07: 710
	08: 711

