
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

GENERIC SIMULATION MODELS OF REUSABLE LAUNCH VEHICLES

Martin J. Steele

YA-D6
Kennedy Space Center
KSC, FL 32899, U.S.A.

 Mansooreh Mollaghasemi
Ghaith Rabadi

Productivity Apex, Inc.

3403 Technological Avenue, Suite 7
Orlando, FL 32817, U.S.A.

Grant Cates

PH-M3
Kennedy Space Center
KSC, FL 32899, U.S.A.

ABSTRACT

Analyzing systems by means of simulation is necessarily a
time consuming process. This becomes even more pro-
nounced when models of multiple systems must be com-
pared. In general, and even more so in today’s fast-paced
environment, competitive pressure does not allow for wait-
ing on the results of a lengthy analysis. That competitive
pressure also makes it more imperative that the processing
performance of systems be seriously considered in the sys-
tem design. Having a generic model allows one model to
be applied to multiple systems in a given domain and pro-
vides a feedback mechanism to systems designers as to the
operational impact of design decisions.

1 INTRODUCTION

The typical scenario for a simulation study entails develop-
ing a specific model of an existing system for the purpose
of analysis. This begins with the capturing of knowledge
by the simulation analyst from the system expert, including
information on system structure and data, and continues to
the modeling of that information and data at some level of
abstraction, the running of model scenarios, and the subse-
quent analysis of the resulting model output data. Typi-
cally, this is accomplished of a system that is in existence,
or nearly so, that has the requisite details known by which
to construct and run a simulation.

Conducting a simulation study becomes more compli-
cated under two conditions: first, when details of the sys-
tem are as yet unknown because it is early in its design
phase, and second, when two or more competing systems
are to be compared. It is important to emphasize that this

second condition is different from the comparison of com-
peting configurations of the same system. In comparing
competing configurations, the same model may be used;
however, in comparing competing systems, different mod-
els are typically required. This necessitates the develop-
ment of separate simulation models of the competing sys-
tems with all the time and effort involved in each. In
addition, it is important in these circumstances to ensure
the simulation models are constructed at equivalent levels
of detail and abstraction to avoid introducing dissimilar
perturbations to one model over another.

The problem here is that it can take months to study a
system by the use of simulation modeling. Developing
multiple system-specific models becomes problematic due
to time and budget constraints. Some of the steps involved
in simulating multiple systems will be shared because of
the common objectives; however, many of the most time
consuming steps would be unique to each system modeled.
Therefore, the time for modeling and studying each indi-
vidual system becomes additive to the overall effort.

In a majority of cases, design projects are not willing
to wait for lengthy analyses. Especially in today’s com-
petitive global marketplace, months of analysis induces too
large a lag in production capability. Additionally, techni-
cal and market growth and change can make a system ob-
solete prior to operation. Finally, if system performance
analysis is too lengthy to be useful, the opportunity to in-
fluence the design of a system with respect to the opera-
tional impacts a particular design decision is eliminated.
On, the other hand, if it is possible to show the operational
implications of design alternatives through simulation in a
timely manner, it may be possible to influence the design
towards a more operational system. The benefit is that

Steele, Mollaghasemi, Rabadi, and Cates

these operational improvements/benefits will be experi-
enced iteratively throughout the operational life of a sys-
tem. From the life-cycle perspective, operational costs far
exceed those of design. So, preventing, eliminating, or re-
ducing the recurring costs of a system will be realized in
each year of operation and may far out-weigh the related
design costs.

The question is then, how to develop a valid and
credible model

• Of a non-existent system or a system in design,
• In a timely manner, and
• Compare it with similar models of competing sys-

tems

To this end, it is helpful to start with a baseline or bench-
mark, or at least a similar system.

One consideration is to develop a generic simulation
environment of the domain at hand. Because this approach
is more general, additional care must be taken in its devel-
opment to ensure its applicability to all instances in the cho-
sen domain, while also capturing enough specific system de-
tail so as to be credible. This has two benefits. First, though
a more generally applicable model is more difficult to con-
struct and validate, the result may be used (amortized) across
more than a single implementation. Second, the time re-
quired in the simulation study should be reduced because the
model need only be populated with data from various sys-
tems and not constructed from scratch.

2 LITERATURE REVIEW

The research accomplished in the area of generic simulation
models falls into two primary areas: that of developing mod-
els applicable to more than one system and of simulation
models that are uniquely composed from a library of previ-
ously developed modules. Both approaches have their asso-
ciated benefits and detriments, but those are strictly relative
to the purpose to which each method is applied.

One of the risks in developing systems of any kind, and
simulations of systems are no exception, is requirements
creep, i.e., the steady growth of requirements as the system is
being developed. Projects subject to this single ailment al-
most always exceed their projected budget and schedule, and
many do not continue to fruition. This is experienced in
simulation systems as developing beyond the initial required
level of abstraction. In other words, lower levels of detail are
added beyond that required to, for example, experiment with
the overall throughput of the system under study. Two ways
of avoiding this pitfall and producing the results of a simula-
tion study in a timely manner is by strictly enforcing only the
requisite level of detail or constricting the scope of study to a
manageable size. To this end, Brown and Powers (2000)
limit their F-16 Air Force Wing simulation model to those
components and processes required for operations and main-
tenance. To further concentrate their efforts, the focus was
specific to the maintenance that had a critical impact on op-
erations. This “simulation in a box,” as they call it, is generic
in its applicability to something on the order of an Air Force
wing operation. Other important issues in any type of simu-
lation modeling that are discussed include the following.

• Focusing on important factors – this helps to man-

age the complexity of the model and helps to
keeps costs in-line.

• Simplifying input – the input of knowledge and
data to the generic simulation model should be
easy for the user and widely available

• User-friendly output – graphs and charts should
be what is needed and useful to the user

Mackulak, Lawrence, and Colvin (1998) also make the

case for generally applicable models that can be configured
to more specific cases in the design analysis of Automated
Material Handling Systems (AMHS). Such design envi-
ronments require the quick turnaround of analyses to sup-
port the production of their AMHS’s at rates up to one to
two per week. The more traditional development of a
simulation model specific to a single system simply does
not meet the need of this environment. The IntelliSim pro-
ject (Mackulak and Cochran 1990) indicated that 45% of a
simulation project’s effort is in model building, formula-
tion, and translation. Therefore, implementing a generic
model that is applicable to many systems can save a sig-
nificant portion of time in a simulation study. In addition,
such models, once developed, are already debugged and
can be optimized for quicker run times.

The area of composing simulation models from a li-
brary of previously developed modules is generic at the
module level but is more specific to the system under
study. This method too can save time and money in a
simulation study, and result in a system that is less abstract
than a wholly generic simulation. This has the added bene-
fit of being easier to validate because the resulting model
can be more recognizable than the system-level generic
model. Many considerations between the two methods are
similar, but some are applied at the system level, while
others are applied at the module level.

The Winter Simulation Conference of 2000 had a ses-
sion on composable and reconfigurable simulations. All of
the papers (Diaz-Calderon, A., Paredis, C. J. J., and Khosla,
P. K. 2000; Kasputis, S. and Ng, H. C. 2000; Davis, P. C.,
Fishwick, P. A., Overstreet, C. M., and Pegden, C. D. 2000;
Son, Y. J., Jones, A. T., and Wysk, R. A. 2000) addressed
the importance of less expensive and quicker simulation
analysis that is possible with this type of simulation devel-
opment and that also promotes model or more correctly
module reuse. The requirement for this approach, however,
is that such a library of modules must exist. The purpose of
this study is directed towards a system level generic model.

 Rabadi, and Cates

Steele, Mollaghasemi,

3 METHODOLOGY

Implementation of the steps in a simulation study can take
on many forms and are discussed in the textbooks of discrete
event simulation. However, several key steps become im-
portant when attempting to construct a simulation model that
is generic to all the systems in a broader domain.

The first step is to select the domain of interest. The
considerations here are similar to those of addressing the
problem to be analyzed but with a broader perspective.
The problem and domain must be identified to adequately
address the objectives of the study. It is important to in-
clude only the requisite details of the systems in the do-
main. It is easy when working with system experts to in-
clude lower levels of detail than necessary for the
objectives of the simulation project. Keeping only the ap-
propriate level of detail is another aspect of abstraction in
modeling. On the other hand, a domain that is too broad
can lead to exceedingly large models that become difficult
to understand and maintain.

The second step is to draw a conceptual level diagram
of a generic system in the domain. These diagrams show
the processes of the systems and their interrelationships as
entities flow through the system (an example is shown in
the following section). Developing a generic model from
scratch can be overwhelming (Brown and Powers 2000)
and so it can be beneficial to start with a representative
system that is subsequently broadened to the domain level.
Once a system specific conceptual diagram is constructed,
careful consideration of the processes and entities is re-
quired to make the shift to the generic level. This is the
point where model abstraction increases and face-
validation with system and domain experts becomes criti-
cal. Implementing abstraction in a model is the realm of
the simulation analyst, but is typically contrary to the
thinking of system experts. In order to keep model size
and focus under control, communication of system abstrac-
tion is crucial to maintaining model validity from the per-
spective of the system expert and is always an iterative
process. The trick here is to include enough detail to be
useful, but have enough abstraction to be generic.

Once the conceptual diagram is completed, it should
be a fairly straight forward task to identify the constructs
that make up the system and relate them to the constructs
of a simulation model. The constructs of a system process
are, generically, things that flow through the system, ac-
tions that occur to those things, and assets that are required
to perform the actions. These system or domain constructs
must be mapped to the constructs of a simulation model
(Table 1) for the translation of the system/domain into a
computer simulation model.

Translating the conceptual model into a computer
simulation model is at this point typical to other simulation
studies and so is mentioned only for completeness. Proc-
esses, entities, and resources are defined and related in the

Table 1: Simulation Model Constructs
Entity
• Arrival time model
• Attributes
• Sequence/Routing

− Per entity type
− Time

Process (Server)
• Process time model
• Queue size & protocol
• Resource requirements
Resource
• Types
• States
• Daily Schedules
• Maintenance Schedules
• Reliability (MTBF)
• Quantity

General Simulation/System Characteristic
• Terminating
• Steady State

simulation environment of choice with generic variable
names, so that specific system data may be loaded for run-
ning of the model with information from a system within
the domain.

Another key aspect of developing generic models is in
the method of eliciting the requisite information from the
now broader scope of many different system experts within
the selected domain. More traditional simulation model
development obtains this information on a very limited
scale, specific to one system. What is interesting at this
point is to elicit this same information, but of various sys-
tems that may use very different terminology. One of the
tasks of any product or service is to get the product used.
To this end, the user interface must allow the system ex-
perts to enter information into the generic simulation using
terminology with which they are familiar. Subsequently,
this same system specific terminology should also be used
in displaying the output results from running the model.
The user interface must, therefore, provide a structure by
which information is solicited, independent of the underly-
ing generic model. Entry of this information should allow
specification of specific system components in the termi-
nology native to that system. Because this generic envi-
ronment will be used on many different systems, a simple
and intuitive user interface is imperative.

This methodology resulted from the development of a
generic simulation model of reusable launch vehicles
(RLVs) for the National Aeronautics and Space Admini-
stration (NASA). This example is discussed in the follow-
ing section.

Steele, Mollaghasemi, Rabadi, and Cates

4 AN EXAMPLE GENERIC MODEL

NASA’s Space Launch Initiative (SLI) program is cur-
rently studying various architectures for the next genera-
tion reusable launch vehicle (RLV). Several competing
companies are developing designs that address the aggres-
sive requirements of that program in the area of cost, reli-
ability (safety), and availability with the goal of having
magnitudes improvements over the first generation RLV
(i.e., the Space Shuttle). When these proposals are submit-
ted, it is necessary to compare the competing designs by as
similar means as possible, and in a timely manner.

The concept of availability is directly related to a
specified launch rate, and is also a direct factor in the eco-
nomical case for any launch vehicle. Because of the great
expense of acquisition and operation of space launch vehi-
cles, one way to justify the expenditure is with the ability
to amortize those costs across a greater number of
launches. The maximum launch rate achieved by the
Space Shuttle was approximately 10 flights per year, but
this was not for a sustained period. So, one way to im-
prove the economical argument for the next generation
RLV is to increase the number flights that vehicle is able to
make in a given year. A way, one may argue, the best
way, to analyze the operations performance of a RLV is by
discrete event simulation (DES).

For any system, the issue of performance is multifac-
eted and may be viewed on three general levels. The first is
does it work at all. This might be considered the physics
level of performance in that the system is able to work to any
degree (e.g., the system does something, the system works
correctly). Secondly, at the engineering level, the concern is
for how well the system works. Systems always have some
level of performance specification to which they are de-
signed (e.g., a communication system must transmit data at
so many bits per second, a structural system must withstand
so much force, a rocket must produce so much thrust in or-
der to lift so much weight). The world of design engineering
is saturated with such thinking, and for some systems this is
to the exclusion of operations performance.

This is also typically dependent on the maturity of a
given technology and the market demand. The Space Shut-
tle is a first generation RLV and so the primary focus of the
program was to simply make it work to some level of engi-
neering specification. To this end, it is successful with over
100 flights to its credit. However, the operations perform-
ance, that is, the desired flight rate and resource require-
ments for turnaround processing, is not what was desired.
Program requirements for the second generation RLV place
a much greater focus on operational performance.

The issues precipitating the need for a generic RLV
simulation model were to analyze the operations perform-
ance of several architectures in a timely manner, and to
provide feedback to the design community as to the opera-
tional ramifications of design decisions. To this end, the
Generic Simulation Environment for Modeling Future
Launch Operations (GEMFLO) was developed.

Following the methodology of the previous section,
the first task is to determine the domain of interest. When
starting this project, the goal was to develop a generic
model applicable to any reusable launch vehicle or launch
vehicle with both reusable and expendable components.
Upon completion of the first phase of the project, it is pos-
sible that GEMFLO can simulate any launch vehicle turn-
around process (reusable or expendable), but this has not
yet been verified.

In developing the generic conceptual flow diagram,
the diagram used in developing the simulation model of
Shuttle ground processing (Cates, Steele, Mollaghasemi,
Rabadi 2002) was used as a starting point. This proved a
very useful exercise, required several iterations, and re-
quired some additional abstraction than would be found in
a model of a single system. What resulted from this ex-
pansion from specific system level to domain level is an
understanding of the processes that are generic to any
launch vehicle flight hardware element (FHE). Table 2
lists the processes in order, arbitrarily starting with ascent.
The conceptual flow diagram is shown in Figure 1.

Table 2: Generic Flight Hardware Element Processes

1. Ascent
2. Staging
3. On Orbit
4. Landing Site Decision
5. Descent
6. Landing
7. Post-Flight Safing
8. Transport
9. Post-Flight Processing
10. Depot Maintenance Decision
11. Normal Processing
12. Integration
13. Launch

Normal Ground
Processing

Vehicle
Integration

Launch
Flow

Ascent
Phase

Landing

(X)th
Flight?

P/L Launch Site
Processing

 Yes

Depot
Maintenance

Post Flight
Safing

Staging

Orbital Ops

External
Mission Ops

Descent
Phase

Landing
Location

Post Flight
Deconfig

Manifest

PLS
Landing

?

Post-Ferry
Operations

 Yes

Ferry

Ferry
Preparation

Pre-
Maintenance

Preps

No

No
Launch

.

.

.

Post-
Maintenance

Ops

Figure 1: Generic RLV FHE Conceptual Flow Diagram

Steele, Mollaghasemi, Rabadi, and Cates

It is important to point out one manner of abstraction in
this diagram for reusable or partially reusable launch vehi-
cles. Taking the Space Shuttle as an example, the Solid
Rocket Boosters (SRBs) and External Tank (ET) do not
reach orbit (i.e., reach the orbital operations process). Yet,
after staging of the individual FHEs, they all show the simi-
lar flow of going “on orbit.” This is a level of abstraction
required for this model to be generic, but is compensated by
the fact that zero process times are inserted for those generic
processes that in reality do not occur. This keeps the overall
flow generic, but does not affect the statistics kept while
running the model. As another example, some future RLV
may have a single stage to orbit architecture. In the concep-
tual flow, integration of FHEs and staging during ascent
would not occur in reality, but in the running model, they
would occur with zero delay or process time.

With the conceptual flow diagram in hand, the RLV
processing constructs are enumerated. These include
FHEs, ground processes, and ground resources, examples
of which are shown in Table 3. This information is what is
translated into a generic simulation.

Table 3: Generic RLV Simulation Construct Examples

FHEs Ground Resources for
Crew Vehicles
Payload Vehicles
Boosters
Tanks
Payloads

Processing
Integration
Launch
Landing
Retrieval
Safing

In conjunction with the development of the generic

simulation model, a mechanism for eliciting the requisite
information from individual system experts to input to the
simulation must also be developed. As previously dis-
cussed, this is a crucial part of the generic system devel-
opment in that the intuitive appeal of the product will go a
long way to getting it used, thus, amortizing its longer de-
velopment time across a greater number of customers. For
this particular product a Visual Basic user interface was
developed. It starts out with generic RLV terminology in
requesting the number of FHE included in a single RLV,
but allows the naming of those elements and other related
resources to user specific instances. In this way the results
of a simulation run will show, for example, utilization of
an Orbiter Processing Facility for processing the Shuttle
instead of just a generic processing resource. The underly-
ing model is generic, but it is populated with system spe-
cific information so that the results are reported as if a sys-
tem specific model were developed.

One measure of validation of this system was to take
the data from a previous simulation model of Space Shuttle
processing and use it as input to this generic RLV model.
The results of both the generic and specific models were
the same. Though this is encouraging, it is as yet only one
data point. Continuing use and development of this ge-
neric system will refine these results.

One difference between the specific Shuttle simulation
and the generic RLV simulation is that the FHEs were
treated differently in each model. The previously devel-
oped Shuttle model treated the FHEs as entities that were
processed by the system. For example, the orbiter enters
the system and is processed in the orbiter processing facil-
ity. In the generic model, FHEs are treated as resources
that are requested by certain processes to service the mis-
sion entities that are created by a defined input process.
This second approach is a more accurate and more useful
rendition because it allows the collection of utilization sta-
tistics on the FHEs and the experimentation with the quan-
tities of FHEs in the fleet. This will be a great assistance in
determining the correct complement of flight and ground
resources to meet a given mission manifest.

5 DISCUSSION

The investment in generic models of many systems within
a given domain appears worthwhile, with supporting cases
from the F-16 Wing and AMHS venues. The case for the
generic RLV simulation model will be made with applica-
tion to the forthcoming next generation RLV designs.

Comparing the generic development process with that
of specifically focused simulation models points out the
values of each approach. This comparison of the different
aspects is given in Table 4.

It is especially beneficial to organize and communicate
the pertinent aspects of operations performance to the de-
sign community. From the design process, bad decisions
are paid for and good decisions are reaped in the much
longer operations life-cycle of any product. Generic mod-
eling is one method that can assist in communicating the
operations ramifications of design decisions.

6 CONCLUSIONS

The longer development time of generic models is out-
weighed by the benefit of amortizing the use of those mod-
els across many systems in the chosen domain and the
shortened experimentation phase once the mode is devel-
oped. Generic models also offer the opportunity to organ-
ize operationally pertinent information on systems in a
domain so they may be compared on a more level playing
field than is easily possible with differing models. The ad-
dition of domain specific details could enhance the fidelity
of generic models if deemed necessary. Specific models
do provide an easier path to higher fidelity analyses and
more representative animation, which can be crucial to ob-
taining face validity.

Steele, Mollaghasemi, Rabadi, and Cates

Table 4: Specific & Generic Aspect Comparison
Aspect Specific Sim. Generic Sim.
Development Focused on a sin-

gle system
Attempts for gen-
eral application
make development
more complicated;
requires more time

Domain Narrow – Single
System

Broader

Abstraction More system
specific – can get
as detailed as de-
sired

More abstract rela-
tive to any one sys-
tem

Animation As much as de-
sired by devel-
oper & customer

Only minimally
present unless
manually added for
each specific sys-
tem addressed

Validation Standard simula-
tion techniques

More difficult to
validate due to
higher degree of ab-
straction

Use Can be easier
due to focusing
on a single sys-
tem. May be
more difficult if
ease of user input
not considered.

Most likely easier
due to the need for
structured knowl-
edge capture in the
generic venue.

Invested
Time

Development
time is shorter
but must be re-
peated for each
system modeled

Development time
is longer but has
broader application
(Mackulak, et al.
1998). Once devel-
oped, time required
of the simulation
study is shorter than
that required in de-
veloping and ana-
lyzing the single
system simulation

REFERENCES

Brown, N. and Powers, S. (2000). Simulation in a Box (A
Generic Reusable Maintenance Model). In Proceed-
ings of the 2000 Winter Simulation Conference, ed.
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fish-
wick, 1050 - 1056.

Cates, G. R., Steele M. J., Mollaghasemi, M., and Rabadi, G.
(2002). Modeling the Space Shuttle. In Proceedings of
the 2002 Winter Simulation Conference, ed. E. Yücesan,
C.-H. Chen, J. L. Snowdon, and J. M. Charnes.

Davis, P. C., Fishwick, P. A., Overstreet, C. M., and Peg-
den, C. D. (2000). Model Composability as a Research
Investment: Responses to the Featured Paper. In Pro-
ceedings of the 2000 Winter Simulation Conference,
ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fish-
wick, 1585 – 1591.

Diaz-Calderon, A., Paredis, C. J. J., and Khosla, P. K.
(2000). Organization and Selection of Reconfigurable
Models. In Proceedings of the 2000 Winter Simulation
Conference, ed. J. A. Joines, R. R. Barton, K. Kang,
and P. A. Fishwick, 386 – 392.

Kasputis, S. and Ng, H. C. (2000). Composable Simula-
tions. In Proceedings of the 2000 Winter Simulation
Conference, ed. J. A. Joines, R. R. Barton, K. Kang,
and P. A. Fishwick, 1577 – 1584.

Mackulak, G. T. and Cochran, J. K. (1990). The Generic-
Specific Modeling Approach: An Application of Arti-
ficial Intelligence to Simulation. In 1990 IIE Inte-
grated Systems Conference & Society for Integrated
Manufacturing Conference Proceedings, 82 – 87. San
Antonio, TX: IIE.

Mackulak, G. T., Lawrence, F. P. , and Colvin, T. (1998).
Effective Simulation Model Reuse: A Case Study for
AMHS Modeling. In Proceedings of the 1998 Winter
Simulation Conference, ed. D. J. Medeiros, E. F. Wat-
son, J. S. Carson, and M. S. Manivannan, 979 – 984.

Son, Y. J., Jones, A. T., and Wysk, R. A. (2000). Auto-
matic Generation of Simulation Models from Neutral
Libraries: An Example. In Proceedings of the 2000
Winter Simulation Conference, ed. J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick, 1558 – 1567.

AUTHOR BIOGRAPHIES

MARTIN J. STEELE (Ph.D.) is an engineer with NASA at
the Kennedy Space Center (KSC) with a wide range of ex-
perience, from shuttle and payload operations to ground sys-
tems and facilities development. He is currently leading
several efforts at KSC to employ simulation modeling in the
operations analysis of existing and future launch vehicles.
His research interests include simulation modeling and
analysis of complex systems, simulation input modeling,
generic system simulations, and neural networks. His email
address is <martin.steele-1@ksc.nasa.gov>.

MANSOOREH MOLLAGHASEMI (Ph.D.) is the presi-
dent and CEO of Productivity Apex, Inc. and an associate
professor in the Industrial Engineering and Management
Systems Department at UCF. Her research and teaching
interests include simulation modeling and analysis of com-
plex systems, statistical aspects of simulation and simula-
tion optimization, operations research, probability and sta-
tistics, neural networks, and multiple criteria decision
making. Her email address is <mmollagha@produc-
tivityapex.com>.

mailto:martin.steele-1@ksc.nasa.gov
mailto:mollagha@mail.ucf.edu

Steele, Mollaghasemi, Rabadi, and Cates

GHAITH RABADI (Ph.D.) is an assistant professor at
Engineering Management Department at Old Dominion
University. He was a visiting assistant professor at the In-
dustrial Engineering Department at the University of Cen-
tral Florida, and a vice president for R&D at Productivity
Apex, Inc. where he managed simulation and risk analysis
research projects funded by NASA. His main research in-
terests are Operations Research, Scheduling, Simulation,
and Machine Learning. His email address is <grabadi
@productivityapex.com>.

GRANT R. CATES has 20 years of experience working
on the space shuttle in various capacities including con-
struction and activation of the launch complex, payload in-
tegration and processing, and space shuttle vehicle ground
operations. His email address is <grant.cates-
1@ksc.nasa.gov>.

mailto:grabadi@productivityapex.com
mailto:grabadi@productivityapex.com
mailto:mollagha@mail.ucf.edu
mailto:mollagha@mail.ucf.edu
mailto:grant.cates-1@ksc.nasa.gov
mailto:grant.cates-1@ksc.nasa.gov

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 747
	02: 748
	03: 749
	04: 750
	05: 751
	06: 752
	07: 753

