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ABSTRACT

discrete event simulation packages are, however, not de-
signed to cooperate in a distributed computing environment.

Most discrete event simulation environments are based on There are several reasons why it would be interesting to
a process-oriented, and therefore multi-threaded paradigm. have a simulation environment that has a truly distributed
This results in simulation environments that are very hard nature.

to distribute over more computers, and not easy to integrate Simulation models of business processes may need to
with scattered external information sources. The architecture interact in complex ways with real-time information system
presented here is based on the event-based DES paradigncomponents (Fishwick 1995). It might for example save a
which is implemented by scheduled method invocation. simulation model builder a lot of time to reuse an existing
Objects used in the simulation environment interact with pricing component of a business system in a simulation
remote, a-synchronous subscribed clients in order to produce component. However, in order to do so, the simulation
representations of the simulated system. The environment, and business system components should interact using a
which is implemented in Java, consists of a simulation common communication protocol. Although such protocols
and representation library and is integrated with several (for inter-business component communication) have not yet
statistical libraries. matured, a simulation architecture can at least be expected
to be extendible with such interaction mechanisms. This
implies for example separating the core simulation service
from the model components that use it. In this way the
Discrete event simulation is used for dynamically modeling simulation will become a central service in a distributed,
complex systems in order to analyze and understand thesedynamic network where the exact capabilities and identity
systems, and in order to (re)design and engineer these sys-of the acting and reacting realtime components remains
tems (Shannon 1975, Banks 1998). Statistical information hidden for the simulation core. In the most extreme peer
is gathered and presented during and after the simulation run to peer case, objects will use the simulation service just as

1 INTRODUCTION

for providing insight into the most important performance

indicators. In most cases, animation and visualization are
added to provide insight and understanding into the system
modeled during the run. Currently we see a lot of interest in
object-oriented simulation environments, where real-world
objects can be captured in the simulation environment as
object representations. Many of the simulation applications
in logistics, business process engineering, and information
systems modeling deal with distributed systems with dis-
tributed information sources. Therefore, it seems logical
to strive for a simulation environment that truly captures

the distribution, and that does not reduce the effects of the
distributed nature to an artificial time delay. Most current
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another way of scheduling their interactions.

Another issue is the lack of separation between visual-
ization and simulation in current simulation environments.
First, the place where the simulation can best be run (e.g.
on a fast server) is not always the place where we want to
view the simulation (e.g. in a Web browser at a client’'s
location). Second, due to the global and complex nature of
current business systems or logistical systems, the number
of stakeholders involved in these systems is large. More-
over, these stakeholders do not reside in one location, but
are spread all over the world. In order to provide them
with a customized view on a simulation representing their
business, there is a need to decouple visualization from the
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Figure 1: Architecture of Fully Distributed Simulation Environment

simulation and to deliver this visualization in an interactive
way to distributed clients (e.g. aweb browser or pda). When
several stakeholders are in this way concurrently interact-
ing with the simulation, distributed simulation can become
distributed gaming.

Afinal argument for a distributed simulation architecture
is rooted in the need tepecifysimulations of complex busi-

architecture calledD-SOL, which stands forDistributed
Simulation Object Library In this section screenshots of

a distributed supplychain example are included. The final
section presents the conclusions and gives some pointers
for further research.

2 EXISTING SIMULATION ENVIRONMENTS

ness systems. Gathering data from systems and databases,

and carrying out measurements for the specification by hand This section gives an overview of current discrete event
is a costly procedure. However, most data needed for simu- environments. Focusing on the distributed goal of simulation
lation studies is available in some automated form, such as environments, three different levels of distribution can be
in datawarehouses, in ERP databases, or in legacy systemsdistinguished in these environments. These are:

Since these systems probably contain the most consistent,

accurate and actual information of the business system, it

seems logical to use that information to specify a simulation.
This implies the need to enable a simulation to interact with
(distributed) information systems, perhaps even during the
run of the simulation. In this way generators, statistical

* Integrated simulation environments
e Semi-distributed simulation environments
e Fully distributed simulation environments.

Integrated simulation environments are not suited for a

objects and even some of the transactional events could bedistributed deployment since visualization is strictly bound

automatically instantiated and initialized from underlying
data sources.

This section has clearly stated the need for a distributed
architecture on which discrete event simulations are built.
As indicated, current implementations of discrete event sim-
ulation software are not sufficiently capable to support this
distributed cooperation. The next section will present some

background on existing object-oriented simulation packages.

Section 3 will point out the approach that we have taken
to develop a new distributed simulation and representation
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to the same runtime environment as the simulation. Fur-
ther characteristics are single-user, single-computer, single-
thread implementations of the environment. Most commer-
cially available simulation packages fall in this category.

Semi-distributed simulation environments share a web-
based characteristic. These packages can be divided in
simulation models that are executed on the client (Page et
al. 1997) and simulation models that are executed on the
server and present their output to the client.
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Examples of the first category of semi-distributed en-
vironments are most Java-based simulation environments
like Silk, JavaSim, SimJava and DESMO-J (Garrido 2001).
An example of the second category is the simulation pack-
age that can present its results during and after the run in
html-format to distant viewers on the web.

Fully-distributed simulation environments consist of
distributed simulation and visualization services. They pro-
vide integration with distributed information systems and
endless variations in configuration. Figure 1is anillustration
of this architecture.

Since the Java programming language has strong sup-
port for distributed interconnectivity, it is reasonable to
assume that current Java-based simulation languages char-
acterized as semi-distributed can easily be used to deploy

pability prevents this runtime learning mechanism
because processing and routing intelligence is not
stored in the stations or nodes but in the entities
flowing through the model.

Scalability limitations. Multithreading using op-
erating system threads is strictly limited by the
underlying operating system. Many of the current
implementations that use operating system threads
are therefore limited to around 2000 entities in the
model and consume large portions of the underlying
processing power.

Since component libraries such as Enterprise Java
Beans that are used in actual information systems
are not built upon a multithreading model, the in-
terchange of libraries between these realtime infor-

fully-distributed simulation models.
The next two sections will show though that current

Java-based simulations are either based on a worldview

that conflicts with the level of distribution that is sought

in this research or share design patterns that focus on the

easiness of model construction but conflict with a distributed
deployment.

2.1 Current Java-based Simulation Languages Based on
a Process Oriented Worldview

The main goal of environments like JavaSim, Silk, DESMO-
J, etc. is to create (re)usable object-oriented simulation

models and components while maintaining a natural process-

oriented modeling capability. Since entities in the model

mation systems and simulation models is limited.

e Since threads are fundamentally related to their
underlying operating system, entities in the model
cannot be streamed over networks.

2.2 Current Java-based Simulation Languages Based on
an Event Based Worldview

Another worldview adopted by some discrete event lan-

guages is DES and its accompanying Future Event List
on which object interaction is scheduled. Two of the core
notions most Object-Oriented implementations of this world-
view share are:

Objects involved in the simulation environment do not
interact with each other by a direct method invocation,

are alternately suspended and resumed to coordinate time-but schedule them by a constructing a simulation event.
ordered sequencing of entity movements in the model (Healy Such an event encompasses the execution time, a (remote)

and Kilgore 1998), multithreaded execution is an essen-
tial aspect of the implementation for this process-oriented
modeling capability. The implication of this multithreaded
approach for the distributed goal are:

» Starvation occurs when one or more threads in
a program are blocked from gaining access to a

pointer to the object on which the method is intended to
be invoked, the method itself and the arguments for the
method to be invoked. This mechanism is referred to as
scheduling method invocation.

Running a simulation model merely implies executing
the time-sorted simulation events. The absolute simulation
time therefore becomes the execution time of the last exe-

resource and thus cannot make progress. Deadlock cuted simulation event. Figure 2 illustrates this worldview

is the ultimate form of starvation; it occurs when
two or more threads are waiting on a condition that
cannot be satisfied. Deadlock most often occurs
when two (or more) threads are each waiting for
each other to do something (Sun Microsystems,
1995). In a flexible network with thousands of
entities it becomes nearly impossible to control
the stability of a multithreaded simulation model.
» Inflexibility of processing intelligence. In dis-
tributed networks, remote method invocation in
conjunction with dynamic class downloading has
facilitated dynamic transfer of business and routing
logic between the distributed nodes in a network
(Sing 2000). The process-oriented modeling ca-
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by focusing on the way simulation events are stored (1)
in the eventlist, ordered on time, retrieved (2) and finally
executed (3) on the objects referred to in the simulation
event. Examples of these simulation languages include
Simkit (Buss 2001).

The advantages of a DES implementation are its single
threaded approach, its increased flexibility (Buss 2001),
and the lack of requirements on objects involved in the
simulation.
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3 ARCHITECTURE OF A FULLY DISTRIBUTED As stated the disadvantage of DES-based simulation
SIMULATION ENVIRONMENT languages is the increased complexity in model construction.

Most other implementations ease this complexity by one

The architecture presented in this paper and illustrated in or more pragmatic design patterns. Most of these patterns
Figure 1 focuses on two remote network services. The first conflict though with a truly distributed architecture.
service is a DES-based remote simulation service which is Examples of these patterns are a static eventlist, relative
described in subsection 3.1. The second service is a systemtime scheduling, non-serializable reflection classes, the lack
representation service described in subsection 3.2. of overloading primitive attributes, and the requirement

Before focusing on the internal structures of these ser- to extend from an abstract simCoreObject which prevents
vices, a notion must be made on the increased complexity interchange of simObjects and non-simulated components.
of autonomous components in runtime. The basic question Concluding one can state that the simulation service

regarding this complexity iSHow are distributed clients, is merely a remote service on which all objects are able
components, data sources, simulation services, etc. able toto schedule their interaction. There are no requirements
find each other in order to interact?" to objects either scheduling or being scheduled. Helper

The implementation presented in this paper made a classes are available to facilitate overloaded methods with
first step in solving this issue by defining a asynchronous primitive and wrapped arguments.
topic-subscription and lookup mechanism. The first step
occurs when objects involved in the architecture present 3.2 System Representation Implemented as a Remote
their characteristics and capabilities to lookup services. Network Service

The second step occurs when objects interested in others
define their interest by creating a topic object and presenting The introductory notes on simulation use for complex sys-
this inquiry to a lookup service. Based on this topic object, tems engineering has already revealed minimal requirements
lookup services are able to return all objects matching the for system representation. These can be summarized as fol-
characteristics described in the topic. More information on lows:
how objects initially find these lookup services can be found The representation of a (modelled) system should be
in (Sing 2000). made available fomultiple stakeholderghatinteract con-

currentlywith that system from a variety of possildgmote

3.1 Discrete Event Simulation Implemented as a Remote  locations.

Network Service However, some additional observations specific for sys-
tem representation can be made.
The simulation environment provided in this paper has A first observation is that a stakeholder interacting with

fully adopted DES as its underlying worldview. Distri- a system (model) is usually not interested in all the aspects
bution formed once again the basis for not using current of the system. This is especially true when large-scale,
implementations but to design a new architecture.
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complex systems are considered. This implies a need to
'browse’ the system (Spence 2001).

Secondly, a user may interact with a model in several
modes. We characterize the interactionpassive if the
user does not interact with the model during a run. In
this mode the user is still able to dynamically define his
area of interest (e.g. to 'browse’ the system representation).
However, these actions will not change the outcomes of
the simulation run. The interaction is characterized as
active if the user is able to interact with the model during
a run. The user's actions will then influence the actual
outcomes of the simulation run. The distinction between
passive and active model interaction has consequences for
the relation between representation and simulation. With
passive interaction, the representation data only needs to be
generated once by a simulation run. After that, many users
could concurrently iterate over the generated representation
data. Given the composition of the user group and the
ICT resources available, the representation data could be
distributed among the users in several ways, given criteria
like response time and effective and efficient resource usage.
With active interaction, in which user interaction causes
different simulation outputs, there is a tight link between
the simulation execution and the representation presented to
the user. This link becomes even more tight, when multiple
users are interacting with the model concurrently. Ideally,
the representation subsystem should be able to support both
modes of interaction.

Thirdly, system representation as such doesemtire
to be based on a simulation only. Instead, by separating
the system representation from the simulation components,
various combinations between real systems (e.g. informa-
tion system) and simulated systems become possible. The

representation presented to the user may be generated in

each of them.
Finally, the remote aspect of system representation poses
some challenges of its own. The devices and networks used

by the various users may be as diverse as the users them-

selves. They may range from smart mobile phones up to
powerful graphical workstations and use high speed LANs
or low speed modems. As a consequence, a user might
need to adapt the nature of the system representation to
the actual communication and information processing ca-
pabilities available. Such adaptions are possible, since state
change data can be represented in various ways. Infor-
mation on the movement of a transport vehicle might for
example be represented by a text message, but could also
be represented in a 3D virtual world. Obviously, these
representation modes pose different requirements on the
communication and information processing resources avail-
able. It follows that the (modeled) system should somehow
make these different kinds of representation available.

The system representation service has been developed
with these notions in mind. A first proof-of-concept imple-
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mentation has already been implemented. This implemen-
tation enabled various stakeholder to represent and simulate
an actual, real-time supply chain. A screenshot is shown in

Figure 4. In the remainder of the section, the representation
service and the accompanying representation process will
be described.

Figure 1 already introduced the relationship between
model, simulation and representation components. Several
of these components have a role in the system representation
process:

Model componentepresent the state of the system.
They are sources of state change updates (events),
which encompasses the basic data needed to up-
date their system representation. The information
system shown in Figure 1 is one potential source
for state update events.

Representation componenémable clients to re-
trieve variousevent handlersthus implementing

the representation service. Event handlers can
transform incoming state change updates into (vi-
sual) representations and may provide interaction
with an underlying model component.

Clients contain representation contextsised by
event handlers to provide representations to the
user. For visual representation such a context is a
graphical region where the event handler can paint.
The clients are able to find the other components
using the lookup mechanism described previously.

The arrows in Figure 1 also show some interactions
that take place between the various groups of components.
This interactions are described in more detail in Figure 3.

The left side of Figure 3 illustrates the representation
update process. Model components broadcast events to
interested clients, that place received events in a local visu-
alization event-list. Conceptually, the state update event-list
does not need to reside client-side. Several clients could
share one server-side event list. It may be noted that this
event list contains state update events, in contrast with the
simulation event list, that contains events triggering an ac-
tion. Since they both contain time-ordered events they are
similar components. The client-side dynamic representation
process is then controlled by an EventController component,
that iterates through the event-list usually in a time-ordered
manner. Such a controller object may itself be controlled
by some kind of timer, that updates the representation time
of the system. By changing the properties of this timer, the
user is able to control the speed and period of the system
representation.

The process described thus far provides a mechanism
to process a state-update event on the correct representation
time. However, since these events basically only contain the
state-change information itself, additional components are
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needed to transform this information in an actual, dynamic original model component that created it. In this way active
representation. This is illustrated on the right side of Figure user-system interaction can be implemented.

3, by the interaction between the client-side visualization

manager and the representation components in the network.4  OBTAINING THE SOFTWARE

Initially, the client has no event handlers available. When

an event needs to be processed for which no event handlerThe latest version of the software including
is yet available, the client tries to retrieve this event handler its code, can be downloaded from the web at

from the representation components, based on: http://www.simulation.tudelft.nl/research/d-sol/index.html
License information, tutorials and examples can be
« The event's source model component downloaded and reactions are welcome.

» Local representation contexts available
* Local information & communication processing 5 DISCUSSION AND CONCLUSIONS
resources available.
) . First of all this paper has resulted in "&eady to use"

As a result, an event handler component is retumed, that is jmpjementation of both a remote network simulation service
able to process the incoming state-update event. as a remote network visualization service. The architecture

The event handler may consist of a controlling part  yresented here has shown the endless possibilities in both
and a representation part. The representation part Shown iny,e gistribution of simulation models as the integration
Figure 3 s a graphical representation of an airplane, thatwill 54 interaction of these models with realtime information
be added to the client’s visual representation context. The systems.
controlling part of the event handler' can be an intelliggnt Several topics remain though for further research and
component: the movement of the airplane representations ;i niementation. First of all the implementation of architec-
shown in Figure 3 could be extrapolated by the event handler ;.o presented in this paper has not yet completed a basic

unFiI the time fche next 'move’ event arrives for that airplane. library of ready to use simulation components. Neither has
This mechanism reduces the amount of events that needsyhe cyrrent implementation resulted in a graphical model

to be communicated to represent dynamic processes. ThiSgnyironment. Both issues a very welcome for rapid model
controlling part may also be enabled to interact with the development and will become available soon.
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As described the architecture has only partly resolved
the"searching and browsingissues by implementing a flex-
ible topic-subscription model. These issues remain complex
though. Bounded searching, federative grouping, flexible
boundaries, and selective pattern recognition are still un-
reached.

A second research topic encompastiege synchro-
nizationbetween remote services. With respect to different

mechanisms of distributed loosely coupled networks. His e-
mail address isp.h.m.jacobs@tbm.tudelft.nl>

NIELS A. LANG is a Ph.D. student at Delft Uni-

versity of Technology. His research focuses on using
ICT’s information and communication processing capa-
bilities to support multi-actor decisionmaking processes
on complex, dynamic systems. His e-mail address is

simulation services, synchronization has not been touched <n.a.lang@tbm.tudelft.nl>

by this paper.

Though only partly mentioned in this paper, synchro-
nization also remains unsolved between visualization and
simulation services. The lack of this synchronization has
lead to visualization a%eplaying" the simulation while a
controlled synchronization might lead to distributed inter-
action or gaming.

Especially due to conflicts resulting from distributed
concurrent model interaction, for now gaming remains be-
yond the scope of our horizon.
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