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ABSTRACT

There are currently several wide area search munition
the research and development phase within the Departm
of Defense. Progress on the individual technologies
promising, but there are insufficient analytical tools f
evaluating the effectiveness of these concept munitio
This paper examines some of the modeling aspects of w
area search munitions with Autonomous Target Recognit
(ATR) capability. The unique aspect of the munition proble
is that a search agent is lost whenever an attack is execu
This significantly impacts the overall effectiveness in
multi-target/false target environment. ATR measures
performance will be introduced, and described in terms o
confusion matrix for the sensor. The single munition/sing
target and general multi-munition/multi-target cases will
discussed, and a simple application will be used to valid
the modeling constructs.

1 INTRODUCTION

Several types of wide area search munitions are curre
being investigated within the U.S. Department of Defen
research labs. These munitions are being designed to
tonomously search, detect, recognize and attack mo
and relocatable targets. Additional work at the basic
search level is investigating the possibility of having the
autonomous munitions share information and act in a co
erative fashion (see references for Gillen 2002 and Jacq
2002). While some of the research is promising, most o
is relying heavily on empirical algorithms and simulatio
to evaluate the performance of the multi-munition syste
Analysis appears to be lacking with regards to the fun
mental nature of the wide area search munition problem
include identification of the critical munition and target e
vironment parameters that must be adequately modeled
a valid simulation. Some classic work has been done in
area of optimal search (see reference for Koopman 19
but this work does not address the multi-target/false tar
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scenario where an engagement comes at the expense o
search agent. Further, this work needs to be extended f
application in cooperative behavior algorithms. This pape
will present some basic analytical results for simple searc
scenarios in order to provide a setting for the numerica
simulation work.

2 GOVERNING EQUATIONS

2.1 Single Munition/Single Target Case

A formula describing the probability of mission success for
the single munition/single target scenario is as follows:

PMS = PK · PTR · PLOS · PE (1)

where

PK ≡ probability of target kill given
Target Report (TR)

PTR ≡ prob. of correct Target Report given
clear Line of Sight (LOS) to the target

PLOS ≡ prob. of clear LOS given target
is in the Field of Regard (FOR)

PE ≡ prob. of encountering the target given
the target is in the search area.

The expression in (1) is not the most general, but is easil
shown to be equivalent to the more general equations. Fo
example,PK represents the product of guidance, hit, and
kill probabilities. PTR represents the product of detection
and confirmation probabilities, where confirmation could
be either classification or identification depending upon the
level of discrimination being employed by the munition
being considered.PLOS can be included inPTR, and that
is the convention that will be followed for the remainder of
the development.

With the exception ofPE , the other probabilities are
expressed as single numerical values, or, in the case
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PTR, a table of values sometimes referred to as a confusio
matrix, to be discussed in the next section. The term
confusion matrix stems from the fact that it represents th
probability of both correctand incorrect target reports.PE
is a function of the area to be searched, the density functio
describing the probable target location, and the orderin
of the search process. Consider an autonomous munitio
looking for a single target (see Figure 1). For now we shal
assume a single target is uniformly distributed amongst
Poisson field of false targets in the areaAS . A false target is
considered to be something that has the potential for foolin
the Autonomous Target Recognition (ATR) algorithm (e.g.
similar size, shape). Because we are considering single sh
munitions, the probability of successfully engaging a targe
in the incremental area1A is conditioned on not engaging
a false target prior to arriving at1A. The incremental
probability of encountering a target in1A can be expressed
as:

1PE = PFTA(A) ·
1A

AS
(2)

wherePFTA(A) is the probability of having no false target
attacks while searching the areaA leading up to1A. A
closed form expressionPE(AS) can be obtained as follows.
Let

η ≡ false target probability density
PFTA|FT ≡ probability of false target attack

given encounter
α ≡ False Target Attack Rate (FTAR)
PFTj,A ≡ false target attack

probability distribution

and define

α = ηPFTA|FT . (3)

PFTj,A represents the distribution ofj , the expected number
of false target attacks which would be reported by the seeke
in a non-commit mode, as a function of the area searche
A. It is a Poisson distribution with parameterλf alse = αA.

PFTj,A =
(αA)j e−αA

j ! . (4)

The probability of searchingA without executing a false
target attack is

PFTA(A) = PFT0,A = e−αA. (5)

We can now formulate and solve an expression for th
probability of encountering a target withinAS .

PE(AS) =
∫ AS

0

e−αA

AS
dA = 1− e−αAS

αAS
. (6)
t

r
,

AS

A

∆∆∆∆A

Figure 1: Single Target Search
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Figure 2: Single Target - Uniform Distribution

Note that the expression above assumes that the targe
contained withinAS with probability one. For the case of
uniform target/Poisson false target distribution,PE(AS) can
simply be multiplied by the probability that the target is
contained withinAS , PC . For cases of non-uniform target
distributions a simple multiplication factor is no longer
sufficient because the order of the search can affect th
probability of encountering the target.

Figure 2 shows the sensitivity of mission success to th
FTAR (α) and probability of correct target report (PTR) for
Pk = 0.8 andAS = 50 km2. As shown, the probability of
success begins to drop off rapidly forα > .01/km2. The
problem is more sensitive toPTR for low values ofα than
it is for higher values. While the probability of success
may seem low, it can be improved by assigning multiple
munitions to the same search area as will be discussed la

2.2 The Single Munition/Multiple Target Case

There are several ways of looking at the multiple target cas
If the objective is to find a specific target within a field
of other targets, this could be treated in the same mann
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as the single target case; the other targets merely serve
increase the density of false targets. If any of the targe
is considered valid then we need to be able to evalua
the probability of a successful encounter with any one o
the targets. The single target case allowed us to determi
the probability of finding and recognizing a target within a
searchable area as

PRT (AS) = PTR PE(AS). (7)

For that casePTR did not appear in the formulation for
PE(AS). For the multiple target case we will formulate
it in a slightly different fashion. Referring back to Figure
1, the ability to find and recognize a target in the elemen
of area1A is now conditioned on no false target attacks
and no real target declarations/attacks prior to getting t
1A. Assuming a Poisson distribution for both real and fals
targets (withλreal 6= λf alse), our new formulation for the
elemental probability of recognizing the target is

1PRT (A) = PTR PFTA(A) PRT (A) ηT 1A (8)

where ηT is the uniform target probability density. Im-
plicit in this formulation is the assumption thatηT 1A,
loosely interpreted as the probability of finding a target in
the elemental area1A, is sufficiently less than one. This
assumption is typically met for munitions with small in-
stantaneous sensor footprints relative to the average tar
density in the area.PRT (A), the probability of not having
recognized a real target after searchingA, is obtained in the
same manner asPFTA(A). Specifically,PRTk,A represents
the distribution ofk, the number of target recognitions that
would be reported by the seeker in a non-commit mode, as
function of the area searched,A. It is a Poisson distribution
with parameterλreal = PTR ηT A:

PRTk,A =
(PTR ηT PLOS A)

ke−PTR ηT A

k! . (9)

The probability of searchingA without executing a realor
false target attack is

PRT,FTA(A) = PRT0,A · PFT0,A = e−(PTR ηT + α) A. (10)

We can now formulate and solve an expression for th
probability of recognizing a target withinAS :

PRTm(AS) =
∫ AS

0
PTRηT e

−(PTRηT+α)A dA

= PTRηT
(PTRηT+α) (1− e−(PTRηT+α)AS ).

(11)

Figure 3 showsPMS vs. α for the Poisson distributed multi-
target case, withηT = .1/km2, PTR = 0.8 andPk = 0.8.
As one would anticipate, it is far less sensitive toα than the
to
s
e
f
e

t

et

a

10
−3

10
−2

10
−1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

False Target Attack Rate (/km2)

P
(m

is
si

on
 s

uc
ce

ss
)

Ptr=0.8
Ptr=0.9

Figure 3: Multi Target - Uniform Distribution

single target case. Of greater interest is that the sensitivi
to PTR is greater for low values ofα than it is for higher
values; the opposite of the trend for the single target cas
The reason for this is that a missed target is no longer a faile
mission because there are other targets to be found. Furth
the probability that these other targets will be encountere
is high if the FTAR is sufficiently low.

One of the assumptions stated earlier was that of Poi
son fields of false targets and, for the multi-target case
valid targets. Although a Poisson distribution will yield
an expected number of false and/or valid targets within
specified area, the actual number in that area is a rando
variable. This is important from a simulation standpoin
because too often Monte Carlo simulations are performe
with the same number of targets and false targets for ea
repetition. Assuming a Poisson field of false targets,
uniform distribution ofN targets will yield a higher prob-
ability of mission success than a Poisson field of targe
with an expected number of targets equal toN . As N
gets large, the two cases will converge. Similar difference
can be shown for uniform distribution (fixed number) vs
a Poisson field of false targets. AlthoughPFTA|FT and
η appear in equation (6) as the productα = PFTA|FT · η
only, it is incorrect to simulate the process by settingη = α
and PFTA|FT = 1. This effectively simulates a uniform
distribution of false targets as opposed to a Poisson fiel
The more accurate way to simulate the Poisson distributio
is to specifyPFTA|FT using a Confusion Matrix (described
in the next section) and distribute a sufficient (and variable
number of false targets to achieve the prescribed false targ
attack rate. Recall thatη represents the expected spatia
density of objects that could possibly be confused as re
targets. Operationally it is determined by what target yo
are looking for and the environment in which you are look
ing. PFTA|FT is a measure of performance for the senso
and ATR algorithm. Becauseη is scenario dependent, the
false target attack rateα will also be scenario dependent.
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3 THE CONFUSION MATRIX

The typical means for describing the ability of an ATR
based system to make correct decisions, whether ba
on classification or identification, is the confusion matrix
To start, consider the simplest confusion matrix where t
only discrimination is between target and non-target. T
confusion matrix for this simple case is shown in Table 3.
a simulation, the numbers in the confusion matrix are us
to determine the outcome of a random draw each time
object, target or otherwise, is encountered. The probabi
numbers in the matrix can vary between 0 and 1, with
perfect algorithm having a value of 1 forPTR and a value
of 0 for PFTA|FT . Note that since an encountered targ
must be declared either a target or a non-target, the s
of the probabilities in any column must sum to one. Als
note that the ATR terms required for evaluation of equatio
(3) appear in the confusion matrix.

Table 1: Binary Confusion Matrix

Encountered Object
Target Non-Target

Declared Object
Target PTR PFTA|FT

Non-Target (1− PTR) (1− PFTA|FT )

A more complex confusion matrix for several targe
and non-target types is depicted in Table 3. The mat
can be expanded to accommodate any number of tar
types (TP1, TP2, etc.), any number of non-target typ
(NT1, NT2, etc.) assumed to be of similar characteristi
to the mission targets, and a category of clutter targets t
includes everything else. The zeroes in the rows of t
declared objects for NT1, NT2, etc. indicates that the
are no templates or models that would enable the ATR
make an NT declaration. Any encountered object is eith
declared one of the mission target types or clutter. If
template or model is included to aid recognition of certa
non-targets, non-zero numbers would appear in the r
associated with that non-target type. As in the simple ca
any encountered object must be declared something, so
columns must sum to one. This requires

PTRC|T P i = 1 −
NTP∑
j=1

PTRj |T P i , (12)

PTRC|NT i = 1 −
NTP∑
j=1

PFTAj |NT i , (13)
ed
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PTRC|CT = 1 −
NTP∑
j=1

PFTAj |CT (14)

whereNTP is the number of mission target types. At this
point there are some subtleties which need to be clarifie
for the equations above. For purposes of this paper and t
modeling approach described herein, an attack on a targe
typeT Pi is not considered a false target attack just becau
it was identified as typeT Pj , i 6= j . They are both valid
mission targets. Having said this, the equivalent probabilit
of target report for a given target type can be expressed

PTR|T P i =
NTP∑
j=1

PTRj |T P i . (15)

The FTAR for this more complex scenario can also b
evaluated, but we now require spatial densities for clutter an
all non-target types not included in the clutter description
The expression for FTAR is as follows:

α =
NNT∑
i=1

((

NTP∑
j=1

PFTAj |NT i) · ηi) + (

NTP∑
j=1

PFTAj |CT ) · ηc .
(16)

Including multiple non-target types allows evaluation
of the expectation for collateral damage on civilian vehicle
or objects expected to be in the target area. Further, multip
non-target types allows us to include correlated behavi
at false target encounters, as will be discussed in a la
section. For higher fidelity modeling, any number of non
target types may be included. However, the mission targe
in the simulation should be restricted in both type an
number according to what the munition is capable of. Fo
example, if a given munition is only capable of processin
a single model or template for a given mission, there mu
only be a single target type declaration in the confusio
matrix.

One way of increasing the fidelity of the simulation is to
consider target orientation in the definition of the confusio
matrix. Any ATR based seeker will have some aspect angl
for which it performs better than others. If the targets in
the simulation have orientation, it makes sense to spec
a confusion matrix that varies with aspect angle, assumin
of course the availability of data and or analysis to suppo
how it varies. This could be done with a separate matrix fo
each quantized aspect angle, or a single matrix specified a
function of aspect angle. This will also produce correlate
behavior for the multi-munition simulation. Once again
the correlated behavior aspects will be discussed in a la
section.
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Table 2: Multi-Target Type Confusion Matrix

Encountered Object
TP1 TP2 NT1 NT2 CT

Declared
Object

TP1 PTR1|T P1 PTR1|T P2 PFTA1|NT 1 PFTA1|NT 2 PFTA1|CT
TP2 PTR2|T P1 PTR2|T P2 PFTA2|NT 1 PFTA2|NT 2 PFTA2|CT
NT1 0 0 0 0 0
NT2 0 0 0 0 0
CT PTRC|T P1 PTRC|T P2 PTRC|NT 1 PTRC|NT 2 PTRC|CT
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4 ANALYTIC MULTI-MUNITION EXTENSIONS

The single target scenario can be extended to the mu
munition case in several ways. The easiest way is to divid
the total search area by the number of munitions, and d
termine thePK for the munition searching the subarea tha
the target appears in. All other munitions find nothing fo
the single target case.PMS will increase becauseAS will
decrease for all munitions, including the munition search
ing the subarea where the target happens to be. Howev
because this method assumes zero overlap in the sub
eas being searched, the probability of mission success
ultimately limited by thePTR andPK for the single mu-
nition. If the product of these is not sufficient to provide
the desired probability of mission success from a sing
munition-target engagement, then overlapping search ar
and multi-munition engagements must be considered.

Extending expressions (1) and (6) above for multipl
munitions becomes quickly complicated by path consider
tions and the degree of correlation assumed for the behav
of the munitions as they encounter either real or false ta
gets. Considering only the terminal engagement for the tim
being, we can assume independent events for each warh
shot yielding an expression forP [N ]K , the probability of kill
for the case ofN munitions finding the target:

P
[N ]
K = 1 − (1− PK)N . (17)

Of course the assumption of independent warhead eve
means it does not account for cumulative damage resulti
from multiple munition attacks. One could (incorrectly)
assume a similar roll-up ofPMS for the case ofN munitions
all searching the same area for a single target:

P
[N ]
MS = PC(1− (1−

PMS

PC
)N) . (18)

The reason this formulation is incorrect is because it assum
the placement of clutter, non-targets and the real target
re-randomized for each munition. This can never be true f
the case of several munitions looking for the same targ
,
-

s

d

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FTAR (/km2)

P
(m

is
si

on
 s

uc
ce

ss
)

single munition
2 munitions, same path
2 munitions, opposing paths
simple roll−up

Figure 4: Path Considerations for Multi-Munition Case

in the same location. To address the problem correc
requires some consideration of the search path followed
the individual munitions. For the distributions discusse
in this paper, analytic expressions have been derived
the case of 100% overlap with identical paths, and 100
overlap with opposing paths (see Jacques, 2002). For
same total number of munitions, the opposing path case w
produce the highest mission success value, the same p
case will produce the lowest mission success value, a
the simple multi-munition roll-up will produce a value in
between the other two. The graph shown in Figure 4 is f
two munitions, but it should be noted that the difference
between the curves increases with the number of munitio
used in the analysis.

It is worth repeating that the assumption of uncorrelate
behavior (at either a real or false target) is not strictly valid
and we should expect a high degree of correlation for the ca
where the munitions are traversing the same path in the sa
direction. For scenarios where the potential false targe
greatly outnumber the real targets, correlated behavior w
degrade the overall mission success rate. For this reas
search patterns should be planned which decrease the de
of correlated behavior at false targets. This can be do
through the use of lateral offsets between munitions and
different approach vectors. While this does not make th
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assumption of uncorrelated behavior valid, it can reduce
degree of correlation at both targets and false targets.

Analytically it becomes intractable to define an expre
sion for arbitrary numbers of munitions executing arbitrar
specified search patterns and degrees of correlation. H
ever, for any realistic effectiveness analysis these are
cases we are most interested in. A numerical simula
with Monte-Carlo runs is the only practical way of pe
forming this more general analysis, and the remainde
this paper will concentrate on the required elements o
practical yet realistic simulation.

5 MULTI-MUNITION/MULTI-TARGET
MODELING

The preceding discussion provides all the elements nee
for a reasonable simulation of the ATR processes in a mu
munition/multi-target scenario. As each munition mov
around the search area, either independently or coo
atively, it encounters targets, non-target vehicles and
clutter objects. Upon encountering any object, a rand
draw is accomplished and the confusion matrix is used
determine the outcome of the encounter and any subseq
engagement. What remains is to show that this appro
is valid and will capture some of the known effects su
as correlated behavior.

As in any modeling approach, the end result will be
better than the numbers we put in the simulation. Howe
we are not trying to simulate the inner workings of t
munitions, merely those statistical processes that drive
resulting effectiveness. For this reason we can get by w
limited data requirements and still be able to capture
important results. Certainly we will need basic informati
regarding vehicle speed, sensor field of regard, and se
patterns in order to support the dynamic elements of
simulation. Additional data such as munition reliabilit
dispense accuracy and delivery timelines may also impr
the fidelity of the simulation. Beyond these basic data
quirements, we need the values for the terms in equa
(3) and the confusion matrix. From flight test, hardware
the loop (HIL), and/or 6-DOF simulations we can obta
estimates of guidance accuracy. Further, warhead tests
lethality analysis can provide estimates ofPK for given
targets and given warhead/guidance accuracy. Captive
sor/ATR flight tests can provide data to fill out the confusi
matrix, including sensitivity to target aspect angle, if an
The captive test results can also evaluate FTAR, altho
it is worth repeating that FTAR is both a function of wh
you are looking forand the terrain where you are searchin
for it. For example, the FTAR associated with looking f
a SCUD missile launcher in the desert will be significan
lower than the FTAR associated with looking for a comma
van around a highway intersection. ThePFTA|FT numbers
can typically be estimated from sensor/ATR captive te
e
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but the density values,η, must be varied according to the
different types of objects and terrain expected in the sear
area. Previous analyses have shown FTAR to be the sin
most critical factor determining the success rate of wid
area search munitions, and any serious effort should inclu
a sensitivity analysis for FTAR by varyingPFTA|FT or η.
Such a sensitivity analysis should consider the affects
PTR, PK and other critical factors as well.

5.1 Correlated Weapon Behavior

There are two types of correlation that we are concern
with. Correlation at a target and correlation at a clutter o
false target object. At a real target, a situation which caus
a first munition to miss a target is more likely, but no
certain, to cause a second munition to miss if the situatio
still exists when the second munition arrives at the sam
target. Similarly, whatever might cause a first munition t
falsely attack a non-target may cause a second muniti
to do the same. We will certainly want to account for th
case where the conditional probability of false target atta
given one or more previous false attacks is higher than t
a priori probability PFTA|FT . Conversely, the conditional
probability given that previous encounters did not resu
in a false target attack should be lower than thea priori
probability.

The discussion of the multi-target confusion matrix pre
sented an expression for the overall FTAR, equation (16
For the present discussion we will ignore the separate ca
gory of clutter targets; they are considered to be represen
as one or more of theNT i’s. Given a non-target encounter
of a specific non-target type, we can express the probabil
of false target attack as

PFTA|NT i =
NTP∑
j=1

PFTAj |NT i . (19)

We will also need to define the probability that an encoun
tered non-target is of a given type,PNT i|FT . This is merely
the proportion of the total expected number of non-targe
in the area that will be of typei. We can express thea
priori probability of false target attack given an unknown
non-target type is encountered as

PFTA|FT =
NNT∑
i=1

PFTA|NT iPNT i|FT (20)

=
NNT∑
i=1

((

NTP∑
j=1

PFTAj |NT i) · PNT i|FT ) .

This is the a priori probability that results from using
a random draw and confusion matrix at each non-targ
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encounter of unknown type. The correlated behavior
sulting from this approach is due to the fact that a giv
non-target will be of a specific type where, in general, eit
PFTA|NT i < PFTA|FT or PFTA|NT i > PFTA|FT . There-
fore, all munitions encountering this non-target will have
probability of false target attack either less than or grea
than, respectively, thea priori value. Viewed another way
if a first munition has falsely reported an unknown no
target as a real target, there is a greater probability th
is a non-target type that has a higher probability of fa
target attack associated with it, and a second munition
countering this same non-target will therefore have a gre
probability of falsely reporting it as a real target. To sho
this, we can derive the probability of false target attack fo
second munition given two scenarios. The first scenario
assume a first munition encountering the same non-ta
falsely reported it as being a target, and the second scen
will assume the first munition did not falsely report th
non-target as a target.

Suppose there are a total ofNNT non-target objects
in the scenario. Define the following quantities:

NNTj ≡ expected # false targets of typej

= PNTj |FT · NNT
NFTAj ≡ expected # false target attacks of typej

= PFTA|NTj ·NNTj
= PFTA|NTj · PNTj |FT · NNT

NFTA ≡ expected total # false target attacks

= ∑NNT
j=1 NFTAj

= NNT ·∑NNT
j=1 (PFTA|NTj · PNTj |FT )

= NNT · PFTA|FT .

With these, we can state the probability that a given fa
target attack is of non-target typej as

PNTj |FTA = NFTAj

NFTA
(21)

= PFTA|NTj · PNTj |FT
PFTA|FT

and the probability that a given non-target is of typej given
that a first munition did not falsely report it as a target

PNTj |FTA =
(1− PFTA|NTj ) · PNTj |FTA

1− PFTA|FT (22)

whereFTA indicates a false target attack did not occ
With these expressions, we can now state the two conditio
probabilities we are interested in. First, the condition
probability of falsely reporting a target at a non-target giv
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that a first munition also falsely reported it as a target.

PFTA|FTA1 =
NNT∑
j=1

(PFTA|NTj · PNTj |FTA) (23)

= 1

PFTA|FT

NNT∑
j=1

((PFTA|NTj )2PNTj |FT ) .

The conditional probability of falsely reporting a target at a
non-target given that a first munition did not falsely report
it as a target is given as:

PFTA|FTA0 =
NNT∑
j=1

(PFTA|NTj · PNTj |FTA) (24)

= 1− PFTA|FTA1

1− PFTA|FT · PFTA|FT .

Note that for both of these equations, it does not matte
which of the munitions arrives first. We have symmetry with
respect to the individual munitions (as we should). Also
note that the correlated behavior is automatic as long as w
have different values in the confusion matrix for different
target and non-target types. We can use the values in th
confusion matrix to create almost any degree of correlation
that we wish. This holds for different target types as well
as different angles of approach for the same target type.

A simple example will serve to illustrate the point.
Consider a scenario where there are three types of non
targets, withPFTA|NT 1 = 0.05, PFTA|NT 2 = 0.1, and
PFTA|NT 3 = 0.2 . Further suppose that 60% of the non-
targets are of typeNT 1, 10% are of typeNT 2, and the
remaining 30% are of typeNT 3. For a non-target encounter
of unknown type,PFTA|FT = 0.1. If a first munition has
a false target report on the unknown non-target, it is twice
as likely that the non-target is of typeNT 3 than it is of type
NT 1, even though there are expected to be twice as man
targets of typeNT 1 as compared toNT 3. Because of this
increased likelihood of the non-target being of typeNT 3,
the probability of a second munition falsely reporting the
non-target (given that a first munition did) is 0.145, which
is significantly higher than thea priori probability of 0.1.
The probability of a second munition falsely reporting the
non-target given that a first munition did not falsely report
it is 0.095.

6 APPLICATION

While the focus of this paper is clearly on the modeling
considerations themselves and not the simulation results,
is useful to compare analytical and simulation results for
the simple scenarios discussed here. A simple simulatio
was developed that allowed one or more munitions to searc
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for a single target along either the same or opposing path
A binary confusion matrix was implemented as the senso
model, and varying levels of warhead lethality and false
target density were considered. The results of the simula
tion were compared to the analytical formulations discusse
earlier. Table 3 shows the comparison results. There is goo
agreement between analytical prediction and the simulatio
results. Some differences between the two approaches a
expected, as the simulation approximates a Poisson distr
bution of false targets with a uniform spatial distribution of
a normally distributed number of false targets.

This basic simulation can also be used to evaluate th
expected benefit of cooperative classification. A simple
scenario consists of two munitions searching along the
same path for a single target. For the non-cooperativ
case, any munition that declares an object to be a targ
will immediately initiate an attack. For the cooperative
case, an initial target declaration by one munition must be
confirmed by the second munition. If not confirmed, both
munitions continue to search. If the target declaration is
confirmed (correctly or incorrectly) by the second munition,
both munitions initiate an attack with a combined lethality
calculated asPK2 = 1− (1−PK)2. Assuming independent
events, the effective probability of target report and false
target attack rate of the two munition system is

PTR2 = (PTR)
2 (25)

α2 = (PFTA|FT )2η (26)

respectively. Table 4 shows a comparison of results for th
cooperative and non-cooperative case. While the cooperativ
case typically outperforms the non-cooperative case, ther
are scenarios characterized by high warhead lethality an
low false target attack rate where cooperative classificatio
is detrimental to mission effectiveness. The reason fo
this is that, for these scenarios, the reduction in FTAR is
not sufficient to offset the detrimental effects of a reduced
probability of target report for the two munition system.

7 CONCLUSIONS

This paper has presented modeling considerations for wid
area search munition effectiveness analysis. Governin
equations have been presented to provide a means for va
idating simulation results. Critical parameters were iden
tified, and their role in the simulation were defined. Path
dependence and the effect of correlated behavior on simu
lation results were discussed. Finally, it was demonstrate
that the simulation approach described herein will provide
a degree of correlated behavior at either false or real ta
gets, and simulations resulting from this approach can b
validated against analytical models.
.
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Table 3: Simulation Result vs. Analytical Calculation

Expectation of Mission Success

Search Sim Calc
Pattern PTR FTAR PK Result Result 1 (%)

Same Path 0.8 0.005 0.5 .516 .528 2.3
Same Path 0.8 0.005 0.8 .723 .748 3.4
Same Path 0.8 0.05 0.5 .143 .143 -0.1
Same Path 0.8 0.05 0.8 .204 .213 4.4

Opposing Path 0.8 0.005 0.5 .541 .533 -1.6
Opposing Path 0.8 0.005 0.8 .760 .759 -0.2
Opposing Path 0.8 0.05 0.5 .171 .162 -5.5
Opposing Path 0.8 0.05 0.8 .261 .252 -3.8

Table 4: Cooperative vs. Non-cooperative Classification

Expectation of Mission Success

Search PMS PMS
Pattern PTR FTAR PK Non-coop Coop 1 (%)

Same Path 0.8 0.005 0.5 .516 .547 6.0
Same Path 0.8 0.005 0.8 .723 .703 -2.8
Same Path 0.8 0.01 0.5 .419 .523 24.8
Same Path 0.8 0.01 0.8 .613 .674 9.9
Same Path 0.8 0.05 0.5 .143 .375 162.2
Same Path 0.8 0.05 0.8 .204 .485 137.5
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