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ABSTRACT scenario where an engagement comes at the expense of a
search agent. Further, this work needs to be extended for

There are currently several wide area search munitions in application in cooperative behavior algorithms. This paper

the research and development phase within the Departmentwill present some basic analytical results for simple search

of Defense. Progress on the individual technologies is scenarios in order to provide a setting for the numerical

promising, but there are insufficient analytical tools for simulation work.

evaluating the effectiveness of these concept munitions.

This paper examines some of the modeling aspects of wide 2 GOVERNING EQUATIONS

area search munitions with Autonomous Target Recognition

(ATR) capability. The unique aspectof the munition problem 2.1 Single Munition/Single Target Case

is that a search agent is lost whenever an attack is executed.

This significantly impacts the overall effectiveness in a A formula describing the probability of mission success for

multi-target/false target environment. ATR measures of the single munition/single target scenario is as follows:

performance will be introduced, and described in terms of a

confusion matrix for the sensor. The single munition/single Pys = Pk - Prgr - PLos - Pk Q)

target and general multi-munition/multi-target cases will be

discussed, and a simple application will be used to validate where

the modeling constructs.

Px = probability of target kill given
1 INTRODUCTION Target Report (TR)

Prg = prob. of correct Target Report given
Several types of wide area search munitions are currently clear Line of Sight (LOS) to the target
being investigated within the U.S. Department of Defense Pros = prob. of clear LOS given target
research labs. These munitions are being designed to au- is in the Field of Regard (FOR)
tonomously search, detect, recognize and attack mobile =~ Pe = prob. of encountering the target given
and relocatable targets. Additional work at the basic re- the target is in the search area.

search level is investigating the possibility of having these o _ ) )
autonomous munitions share information and act in a coop- "€ expression in (1) is not the most general, but is easily
erative fashion (see references for Gillen 2002 and JacquesShown to be equivalent to the more general equations. For
2002). While some of the research is promising, most of it €x@mple, Px represents the product of guidance, hit, and
is relying heavily on empirical algorithms and simulation kill probabilities. Prr represents the product of detection
to evaluate the performance of the multi-munition system. and confirmation probabilities, where confirmation could
Analysis appears to be lacking with regards to the funda- be either classification or identification depending upon the
mental nature of the wide area search munition problem, to 'evel of discrimination being employed by the munition
include identification of the critical munition and target en- P€ing consideredP, o5 can be included inPrg, and that
vironment parameters that must be adequately modeled for S the convention that will be followed for the remainder of
a valid simulation. Some classic work has been done in the the development. .

area of optimal search (see reference for Koopman 1980), With the exception ofPg, the other probabilities are
but this work does not address the multi-target/false target XPressed as single numerical values, or, in the case of
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Prg, atable of values sometimes referred to as a confusion
matrix, to be discussed in the next section. The term
confusion matrix stems from the fact that it represents the
probability of both correcand incorrect target reportsPg

is a function of the area to be searched, the density function
describing the probable target location, and the ordering
of the search process. Consider an autonomous munition
looking for a single target (see Figure 1). For now we shall
assume a single target is uniformly distributed amongst a
Poisson field of false targets in the aréa A false target is
considered to be something that has the potential for fooling
the Autonomous Target Recognition (ATR) algorithm (e.qg.,
similar size, shape). Because we are considering single shot
munitions, the probability of successfully engaging a target
in the incremental areA A is conditioned on not engaging

a false target prior to arriving ahA. The incremental
probability of encountering a target inA can be expressed
as:

AA
APg = Pprz(A)-——

)
where Pr74(A) is the probability of having no false target
attacks while searching the ardaleading up toAA. A
closed form expressioRg (As) can be obtained as follows.
Let

n = false target probability density
Prrairr = probability of false target attack
given encounter
o = False Target Attack Rate (FTAR)
PFrT; 4 = false target attack
probability distribution
and define

®3)

Prr; , represents the distribution gf the expected number

of false target attacks which would be reported by the seeker
in a non-commit mode, as a function of the area searched,
A. ltis a Poisson distribution with parametef,;;c = aA.

a =nPprrAFT-

(A) e—A

o @

Prr; . =

The probability of searchingt without executing a false
target attack is

—aA

Prrx(A) = Prp, = e (5)
We can now formulate and solve an expression for the
probability of encountering a target withisyg.

As ,
Pp(As) = /
0

—aA l_ e*OtAS

dA =
aAg

(6)
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Figure 1: Single Target Search
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Figure 2: Single Target - Uniform Distribution

Note that the expression above assumes that the target is
contained withinAg with probability one. For the case of
uniform target/Poisson false target distributidz,(As) can
simply be multiplied by the probability that the target is
contained withinAg, Pc. For cases of non-uniform target
distributions a simple multiplication factor is no longer
sufficient because the order of the search can affect the
probability of encountering the target.

Figure 2 shows the sensitivity of mission success to the
FTAR («) and probability of correct target repo®£ ) for
P, = 0.8 andAg = 50 km?2. As shown, the probability of
success begins to drop off rapidly far> .01/km?2. The
problem is more sensitive tBy for low values ofa than
it is for higher values. While the probability of success
may seem low, it can be improved by assigning multiple
munitions to the same search area as will be discussed later.

2.2 The Single Munition/Multiple Target Case
There are several ways of looking at the multiple target case.

If the objective is to find a specific target within a field
of other targets, this could be treated in the same manner
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as the single target case; the other targets merely serve to "= =
increase the density of false targets. If any of the targets
is considered valid then we need to be able to evaluate
the probability of a successful encounter with any one of ‘
the targets. The single target case allowed us to determine
the probability of finding and recognizing a target within a
searchable area as

°
>
T

°
o
T

P(mission success)

°
S
T

Prr(As) = Prr Pr(As). 7)

02

For that casePrr did not appear in the formulation for " ‘
Pr(Ag). For the multiple target case we will formulate w et et et et G o’

it in a slightly different fashion. Referring back to Figure

1, the ability to find and recognize a target in the element Figure 3: Multi Target - Uniform Distribution

of areaAA is now conditioned on no false target attacks

and no real target declarations/attacks prior to getting to

AA. Assuming a Poisson distribution for both real and false  single target case. Of greater interest is that the sensitivity
targets (Withicar 7 A raise), our new formulation for the o p;., is greater for low values of than it is for higher

elemental probability of recognizing the target is values; the opposite of the trend for the single target case.
The reason for this is that a missed target is no longer a failed
APRr(A) = Prr Pprz(A) Pep(A) nr AA - (8) mission because there are other targets to be found. Further,

_ ) - _ the probability that these other targets will be encountered
where n7 is the uniform target probability density. Im- g high if the FTAR is sufficiently low.
plicit in this formulation is the assumption that AA, One of the assumptions stated earlier was that of Pois-
loosely interpreted as the probability of finding a target in - son fields of false targets and, for the multi-target case,
the elemental area 4, is sufficiently less than one. This  yajid targets. Although a Poisson distribution will yield
assumption is typically met for munitions with small in-  an expected number of false and/or valid targets within a
stantaneous sensor fOOtprIntS relative to the average targetspeciﬁed area, the actual number in that area is a random
density in the areaPz7(A), the probability of not having  yariable. This is important from a simulation standpoint
recognized a real target after searchings obtained inthe  hecause too often Monte Carlo simulations are performed
same manner aBrr;(A). Specifically, Pry, , represents it the same number of targets and false targets for each
the distribution ofk, the number of target recognitions that  repetition. Assuming a Poisson field of false targets, a
would be reported by the seeker in a non-commit mode, as a yniform distribution of N targets will yield a higher prob-
function of the area searched, It is a Poisson distribution ability of mission success than a Poisson field of targets

with parametet,cq; = Prr nr A: with an expected number of targets equalNo As N
k. —Pre nr A gets large, the two cases wiII_ converge. Similar differences
o (Prr nt PLos A)"e _ ©) can t_)e shov_vn for uniform distribution (fixed number) vs.
* k! a Poisson field of false targets. Althoudtyrrarr and

n appear in equation (6) as the product= Prrarr - 1

only, it is incorrect to simulate the process by setting o

and Prrairr = 1. This effectively simulates a uniform

distribution of false targets as opposed to a Poisson field.

The more accurate way to simulate the Poisson distribution

is to specifyPrr 4|7 Using a Confusion Matrix (described

in the next section) and distribute a sufficient (and variable)

number of false targets to achieve the prescribed false target

As attack rate. Recall thaj represents the expected spatial

Prr. (As) = Prrure” FrRITHOA 44 density of objects that could possibly be confused as real

" (11) targets. Operationally it is determined by what target you

The probability of searching without executing a readr
false target attack is

Pm(A) = Pry, - Prrp, = e~ (PrR 1T + @) A (10)

We can now formulate and solve an expression for the
probability of recognizing a target withiAg:

0
— PrRur )(1 — e~ (Prenr+a)Asy

(Prenr+a are looking for and the environment in which you are look-

ing. Prrajrr IS @ measure of performance for the sensor
Figure 3 ShOWSDMS vs. « for the Poisson distributed multi- and ATR a|gorithm_ Becaus@ is scenario dependent' the
target case, withyr = .1/km?, Prg = 0.8 and P, = 0.8. false target attack rate will also be scenario dependent.

As one would anticipate, it is far less sensitivextthan the
880
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3 THE CONFUSION MATRIX Nrp
Prreier =1 — Y Prrajicr (14)
The typical means for describing the ability of an ATR j=1

based system to make correct decisions, whether basedwhereNTp is the number of mission target types. At this

on classification or identification, is the confusion matrix. point there are some subtleties which need to be clarified
To start, consider the simplest confusion matrix where the {q the equations above. For purposes of this paper and the
only discrimination is between target and non-target. The m,deling approach described herein, an attack on a target of
confusion matrix for this simple case is showninTable 3. In ne 7 p. is not considered a false target attack just because
a S|mulat|9n, the numbers in the confusion matrix are used jt was identified as typ@ P; , i # j. They are both valid

to determine the outcome of a random draw each time an issjon targets. Having said this, the equivalent probability

object, target or otherwise, is encountered. The probability ¢ target report for a given target type can be expressed as
numbers in the matrix can vary between 0 and 1, with a

perfect algorithm having a value of 1 f@tr g and a value Nrp
of 0 for Prrajrr. Note that since an encountered target Prri7pi = Z PrRj|TPi- (15)
must be declared either a target or a non-target, the sum =

of the probabilities in any column must sum to one. Also
note that the ATR terms required for evaluation of equation The FTAR for this more complex scenario can also be
(3) appear in the confusion matrix. evaluated, but we now require spatial densities for clutter and
i i . all non-target types not included in the clutter description.
Table 1: Binary Confusion Matrix The expression for FTAR is as follows:

Encountered Object

Target Non-Target NNt Nrp Nrp
Declared Object a = Z((Z PrrajiNTi) - i) + (Z Prrajicr) - ne -
Target Prg PFTA|FT i=1 j=1 Jj=1
Non-Target (1 — Prgr) (A — PrralFT) (16)

Including multiple non-target types allows evaluation
of the expectation for collateral damage on civilian vehicles
or objects expected to be in the target area. Further, multiple
non-target types allows us to include correlated behavior
at false target encounters, as will be discussed in a later
section. For higher fidelity modeling, any number of non-
target types may be included. However, the mission targets
in the simulation should be restricted in both type and
number according to what the munition is capable of. For
example, if a given munition is only capable of processing
a single model or template for a given mission, there must
only be a single target type declaration in the confusion
matrix.

One way of increasing the fidelity of the simulation is to
consider target orientation in the definition of the confusion
matrix. Any ATR based seeker will have some aspect angles
for which it performs better than others. If the targets in

A more complex confusion matrix for several target
and non-target types is depicted in Table 3. The matrix
can be expanded to accommodate any number of target
types (TP1, TP2, etc.), any number of non-target types
(NT1, NT2, etc.) assumed to be of similar characteristics
to the mission targets, and a category of clutter targets that
includes everything else. The zeroes in the rows of the
declared objects for NT1, NT2, etc. indicates that there
are no templates or models that would enable the ATR to
make an NT declaration. Any encountered object is either
declared one of the mission target types or clutter. If a
template or model is included to aid recognition of certain
non-targets, non-zero numbers would appear in the row
associated with that non-target type. As in the simple case,
any encountered object must be declared something, so all
columns must sum to one. This requires

Npp the simulation have orientation, it makes sense to specify
Preeirpi=1 — Z PrRjiTpi (12) a confusion matr|?< th.a}t varies with aspect ang'le, assuming
= of co_urse_the avz_;ulablllty of data an_d or analysis to support
how it varies. This could be done with a separate matrix for
each quantized aspect angle, or a single matrix specified as a
Nrp function of aspect angle. This will also produce correlated
Prreivrti =1 — Z PrrAjINTI (13) behavior for the multi-munition simulation. Once again,
j=1 the correlated behavior aspects will be discussed in a later

section.
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Table 2: Multi-Target Type Confusion Matrix

Encountered Object

TP1 TP2 NT1 NT2 CT
Declared
Object
TP1| Prryrei Prryrp2 PrraynT1 PrrALNT? Prraycr
TP2| Prrarei Prrojrp2 PrraznT1 Prra2NT?2 Prrazcr
NT1 0 0 0 0 0
NT?2 0 0 0 0 0
CT| Prrerri PrrciTP2 PrrcinT PrrciNT2 Prrcict

4  ANALYTIC MULTI-MUNITION EXTENSIONS

The single target scenario can be extended to the multi-
munition case in several ways. The easiest way is to divide
the total search area by the number of munitions, and de-
termine thePg for the munition searching the subarea that
the target appears in. All other munitions find nothing for
the single target casePy s will increase becausds will
decrease for all munitions, including the munition search-
ing the subarea where the target happens to be. However,
because this method assumes zero overlap in the subar- ‘
eas being searched, the probability of mission success is oa
ultimately limited by thePrgr and Pk for the single mu-
nition. If the product of these is not sufficient to provide
the desired probability of mission success from a single
munition-target engagement, then overlapping search areas
and multi-munition engagements must be considered. in the same location. To address the problem correctly
Extending expressions (1) and (6) above for multiple requires some consideration of the search path followed by
munitions becomes quickly complicated by path considera- the individual munitions. For the distributions discussed
tions and the degree of correlation assumed for the behavior iy this paper, analytic expressions have been derived for
of the munitions as they encounter either real or false tar- the case of 100% overlap with identical paths, and 100%
gets. Considering only the terminal engagement for the time overlap with opposing paths (see Jacques, 2002). For the
being, we can assume independent events for each warheadsame total number of munitions, the opposing path case will
shot yielding an expression faty"!, the probability of kill produce the highest mission success value, the same path
for the case ofV munitions finding the target: case will produce the lowest mission success value, and
the simple multi-munition roll-up will produce a value in
between the other two. The graph shown in Figure 4 is for
two munitions, but it should be noted that the differences
Of course the assumption of independent warhead events between the curves increases with the number of munitions
means it does not account for cumulative damage resulting used in the analysis.
from multiple munition attacks. One could (incorrectly) It is worth repeating that the assumption of uncorrelated
assume a similar roll-up afy, s for the case ofV munitions behavior (at either a real or false target) is not strictly valid,
all searching the same area for a single target: and we should expect a high degree of correlation for the case
where the munitions are traversing the same path in the same
PIE\/S] = Pe(l—(1— %)N) . (18) direction. For scenarios where the potential false targets
Pc greatly outnumber the real targets, correlated behavior will
degrade the overall mission success rate. For this reason,
The reason this formulation is incorrect is because it assumes ggarch patterns should be planned which decrease the degree
the placement of clutter, non-targets and the real target is of correlated behavior at false targets. This can be done
re-randomized for each munition. This can never be true for through the use of lateral offsets between munitions and/or
the case of several munitions looking for the same target gifferent approach vectors. While this does not make the
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assumption of uncorrelated behavior valid, it can reduce the but the density values;, must be varied according to the
degree of correlation at both targets and false targets. different types of objects and terrain expected in the search

Analytically it becomes intractable to define an expres- area. Previous analyses have shown FTAR to be the single
sion for arbitrary numbers of munitions executing arbitrarily most critical factor determining the success rate of wide
specified search patterns and degrees of correlation. How- area search munitions, and any serious effort should include
ever, for any realistic effectiveness analysis these are the a sensitivity analysis for FTAR by varyingrrajrr Of 1.
cases we are most interested in. A numerical simulation Such a sensitivity analysis should consider the affects of
with Monte-Carlo runs is the only practical way of per- Prg, Px and other critical factors as well.
forming this more general analysis, and the remainder of
this paper will concentrate on the required elements of a 5.1 Correlated Weapon Behavior
practical yet realistic simulation.

There are two types of correlation that we are concerned
5 MULTI-MUNITION/MULTI-TARGET with. Correlation at a target and correlation at a clutter or

MODELING false target object. At a real target, a situation which causes

a first munition to miss a target is more likely, but not
The preceding discussion provides all the elements neededcertain, to cause a second munition to miss if the situation
for a reasonable simulation of the ATR processes in a multi- still exists when the second munition arrives at the same
munition/multi-target scenario. As each munition moves target. Similarly, whatever might cause a first munition to
around the search area, either independently or cooper-falsely attack a non-target may cause a second munition
atively, it encounters targets, non-target vehicles and/or to do the same. We will certainly want to account for the
clutter objects. Upon encountering any object, a random case where the conditional probability of false target attack
draw is accomplished and the confusion matrix is used to given one or more previous false attacks is higher than the
determine the outcome of the encounter and any subsequenta priori probability Prr4jrr. Conversely, the conditional
engagement. What remains is to show that this approach probability given that previous encounters did not result
is valid and will capture some of the known effects such in a false target attack should be lower than ¢eriori
as correlated behavior. probability.

As in any modeling approach, the end result will be no The discussion of the multi-target confusion matrix pre-
better than the numbers we put in the simulation. However, sented an expression for the overall FTAR, equation (16).
we are not trying to simulate the inner workings of the For the present discussion we will ignore the separate cate-
munitions, merely those statistical processes that drive the gory of clutter targets; they are considered to be represented
resulting effectiveness. For this reason we can get by with as one or more of th& T'i’'s. Given a non-target encounter
limited data requirements and still be able to capture the of a specific non-target type, we can express the probability
important results. Certainly we will need basic information of false target attack as
regarding vehicle speed, sensor field of regard, and search

patterns in order to support the dynamic elements of the Nrp
simulation. Additional data such as munition reliability, Prrainti = Y PETajINTI - (19)
dispense accuracy and delivery timelines may also improve j=1

the fidelity of the simulation. Beyond these basic data re- _ _ N

quirements, we need the values for the terms in equation e will also need to define the probability that an encoun-
(3) and the confusion matrix. From flight test, hardware in tered non-target is of a given typByr; rr. This is merely
the loop (HIL), and/or 6-DOF simulations we can obtain the proportion of the total expected number of non-targets
estimates of guidance accuracy. Further, warhead tests andin the area that will be of typé. We can express tha
lethality analysis can provide estimates Bf for given priori probability of false target attack given an unknown
targets and given warhead/guidance accuracy. Captive sen-Non-target type is encountered as

sor/ATR flight tests can provide data to fill out the confusion

matrix, including sensitivity to target aspect angle, if any. Nur

The captive test results can also evaluate FTAR, although Prrajrr = Z PETAINTI PNTiIFT (20)
it is worth repeating that FTAR is both a function of what i=1

you are looking forandthe terrain where you are searching Nyt Nre

for it. For example, the FTAR associated with looking for = Z((Z PrrajiNTi) - PNTiFT) -

a SCUD missile launcher in the desert will be significantly =1 j=1

lower than the FTAR associated with looking for a command
van around a highway intersection. TRgr 4|7 numbers
can typically be estimated from sensor/ATR captive tests,
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encounter of unknown type. The correlated behavior re-
sulting from this approach is due to the fact that a given
non-target will be of a specific type where, in general, either
PrraNTi < PrrAFT OF PRTAINT: > PrRTA|FT. There-
fore, all munitions encountering this non-target will have a
probability of false target attack either less than or greater
than, respectively, tha priori value. Viewed another way,

if a first munition has falsely reported an unknown non-
target as a real target, there is a greater probability that it
is a non-target type that has a higher probability of false

target attack associated with it, and a second munition en-

es

that a first munition also falsely reported it as a target.

Nyt
PrralFTAL = Z(PFTA\NTj - PnTjiFTA) (23)
j=1
1 NntT
= ———> ((PrraNtj)*PN1jIFT) -
PrraFT ]

The conditional probability of falsely reporting a target at a
non-target given that a first munition did not falsely report

countering this same non-target will therefore have a greater it as a target is given as:

probability of falsely reporting it as a real target. To show
this, we can derive the probability of false target attack for a
second munition given two scenarios. The first scenario will

assume a first munition encountering the same non-target
falsely reported it as being a target, and the second scenario

will assume the first munition did not falsely report the
non-target as a target.

Suppose there are a total 8fNT non-target objects
in the scenario. Define the following quantities:

Nyr; = expected # false targets of type
= PyrjirT + NNT
NFra, expected # false target attacks of type
= PrranTj - NNT;
= PrranTj - PnTjiFT - NNT
Nrra = expected total # false target attacks
= 27:”{ NFT4;
NNT - Z?]glr(PFTA\NTj - PNTjIFT)
= NNT - PrraFT -

With these, we can state the probability that a given false
target attack is of non-target typeas

Nrra;
PNTjIFT A WTAJ (21)

PrraINTj * PNTjIFT

PrrAFT

and the probability that a given non-target is of tyjpgiven
that a first munition did not falsely report it as a target is

(1 — PrraNTj) - PNTjIFTA

Prrjirra = 1— PrraFr 22)

where FT A indicates a false target attack did not occur.
With these expressions, we can now state the two conditiona

probabilities we are interested in. First, the conditional
probability of falsely reporting a target at a non-target given

884
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Z(PFTA\NT]' “PyrjFran)  (24)
i=1

PrrA|FTAO

1— PrrajFTal
——————— - PrrA|FT -
1— Prrarr

Note that for both of these equations, it does not matter
which of the munitions arrives first. We have symmetry with
respect to the individual munitions (as we should). Also
note that the correlated behavior is automatic as long as we
have different values in the confusion matrix for different
target and non-target types. We can use the values in the
confusion matrix to create almost any degree of correlation
that we wish. This holds for different target types as well
as different angles of approach for the same target type.
A simple example will serve to illustrate the point.
Consider a scenario where there are three types of non-
targets, WithPrrA|nT1 0.05, PrranT2 0.1, and
Prrainta = 0.2 . Further suppose that 60% of the non-
targets are of typevVT1, 10% are of typeNT2, and the
remaining 30% are of typ& 73. For a non-target encounter
of unknown type,Prrairr = 0.1. If a first munition has
a false target report on the unknown non-target, it is twice
as likely that the non-target is of typeéT 3 than it is of type
NT1, even though there are expected to be twice as many
targets of typeNT'1 as compared t&/ 7'3. Because of this
increased likelihood of the non-target being of typ& 3,
the probability of a second munition falsely reporting the
non-target (given that a first munition did) is1@5, which
is significantly higher than tha priori probability of Q1.
The probability of a second munition falsely reporting the
non-target given that a first munition did not falsely report
it is 0.095.

6 APPLICATION

While the focus of this paper is clearly on the modeling
considerations themselves and not the simulation results, it
| is useful to compare analytical and simulation results for
the simple scenarios discussed here. A simple simulation
was developed that allowed one or more munitions to search
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for a single target along either the same or opposing paths.
A binary confusion matrix was implemented as the sensor
model, and varying levels of warhead lethality and false

target density were considered. The results of the simula-
tion were compared to the analytical formulations discussed
earlier. Table 3 shows the comparison results. There is good
agreement between analytical prediction and the simulation

results. Some differences between the two approaches are

expected, as the simulation approximates a Poisson distri-
bution of false targets with a uniform spatial distribution of
a normally distributed number of false targets.

This basic simulation can also be used to evaluate the
expected benefit of cooperative classification. A simple
scenario consists of two munitions searching along the
same path for a single target. For the non-cooperative
case, any munition that declares an object to be a target
will immediately initiate an attack. For the cooperative
case, an initial target declaration by one munition must be
confirmed by the second munition. If not confirmed, both
munitions continue to search. If the target declaration is
confirmed (correctly or incorrectly) by the second munition,
both munitions initiate an attack with a combined lethality
calculated asPk, = 1— (1 — Pk)?. Assuming independent
events, the effective probability of target report and false
target attack rate of the two munition system is

(Prr)?
(PFTA|FT)277

(25)
(26)

Prg,
a2

respectively. Table 4 shows a comparison of results for the
cooperative and non-cooperative case. While the cooperative
case typically outperforms the non-cooperative case, there
are scenarios characterized by high warhead lethality and
low false target attack rate where cooperative classification
is detrimental to mission effectiveness. The reason for
this is that, for these scenarios, the reduction in FTAR is
not sufficient to offset the detrimental effects of a reduced
probability of target report for the two munition system.

7 CONCLUSIONS

This paper has presented modeling considerations for wide
area search munition effectiveness analysis. Governing
equations have been presented to provide a means for val-
idating simulation results. Critical parameters were iden-
tified, and their role in the simulation were defined. Path
dependence and the effect of correlated behavior on simu-
lation results were discussed. Finally, it was demonstrated
that the simulation approach described herein will provide
a degree of correlated behavior at either false or real tar-
gets, and simulations resulting from this approach can be
validated against analytical models.
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Table 3: Simulation Result vs. Analytical Calculation

Jacques

Expectation of Mission Success

Search Sim Calc
Pattern  Prg FTAR Px Result Result A (%)
Same Path 0.8 0.005 0.5 .516 .528 2.3
Same Path 0.8 0.005 0.8 723 .748 3.4
Same Path 0.8 0.05 0.5 .143 .143 -0.1
Same Path 0.8 0.05 0.8 .204 213 4.4
Opposing Path 0.8 0.005 0.5 541 .533 -1.6
Opposing Path 0.8 0.005 0.8 .760 .759 -0.2
Opposing Path 0.8 0.05 0.5 A71 .162 -5.5
Opposing Path 0.8 0.05 0.8 .261 .252 -3.8

Table 4: Cooperative vs. Non-cooperative Classification

Expectation of Mission Success

Search Pys Pys

Pattern  Prg FTAR Px Non-coop Coop A (%)
Same Path 0.8 0.005 0.5 .516 .547 6.0
Same Path 0.8 0.005 0.8 723 .703 -2.8
Same Path 0.8 0.01 0.5 419 .523 24.8
Same Path 0.8 0.01 0.8 .613 674 9.9
Same Path 0.8 0.05 0.5 .143 .375 162.2
Same Path 0.8 0.05 0.8 .204 485 1375
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