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ABSTRACT 

There is a lack of prescriptive methods for setting lot sizes 
and planned lead times effectively in MRP systems.  Re-
cent research has suggested the application of queuing rela-
tionships.  This study experimentally investigates the use 
of GI/G/1 relationships for lot size selection along with the 
use of exponentially smoothed feedback for dynamic 
planned lead time setting.  Results show that assumptions 
regarding lot interarrival time variability have a large effect 
on lot sizes and performance.   

1 INTRODUCTION 

Material Requirements Planning (MRP) logic is pervasive in 
manufacturing planning systems for batch production envi-
ronments.  However, there is currently a lack of good pre-
scriptive methods for setting various tactical parameters, 
such as lot sizes and planned lead times.  It is well recog-
nized that these can have a very significant effect on per-
formance.   In fact, much of the criticism related to MRP, 
such as high work-in-process inventory and long lead times, 
results from the improper setting of tactical inputs. 

The study of work flow in production systems is often 
undertaken using discrete-event simulation.  Simulation is 
especially appropriate where the production environment is 
stochastic, exhibits non-stationary loading patterns, and re-
lies on complex planning and control systems.  These char-
acteristics apply to typical batch production systems using 
MRP.  In particular, the need to model both material and 
information flow makes the use of simulation attractive 
and perhaps necessary. 
 However, simulation is an experimental approach that 
can provide little direct guidance as to appropriate settings 
for MRP tactical parameters.  Although extensive experi-
mentation is possible to find good combinations of settings 
in a very small system, this is not feasible for real world 
systems.  A better alternative is to discover analytical rela-
tionships that provide insight and guidance.  Recently there 
has been interest in using queuing relationships to develop 

 

methods for lot size selection and planned lead time set-
ting.  This approach relies on developing appropriate rela-
tionships for multi-item capacity-constrained systems 
where the entities are lots of parts.  An important objective 
is to then determine optimal lot sizes for all item types, 
based on lot flowtime (and work-in-process inventory) 
minimization.  Furthermore, the predicted lot flowtimes 
may guide in setting planned lead times.  Some success has 
been achieved at developing relationships for single re-
source systems.  However, the problem becomes much 
more complicated when there are networks of resources 
and when part commonality, hierarchical coordination, as-
sembly operations and time-phased order releases come 
into play.  Investigation is required to determine whether 
relatively simple models based on queuing relationships 
can be effectively applied in complex production environ-
ments using MRP logic. 
 A number of studies have provided foundations for 
exploratory work with MRP systems.  Jonsson and Silver 
(1985) demonstrated that inventory in queue is an impor-
tant component of costs in capacity-constrained systems, a 
fact that most discussions on MRP lot sizing tend to ig-
nore.  Lambrecht and Vandaele (1996) developed a search 
procedure for determining optimal lot sizes for the multi-
item, single resource problem under GI/G/1 queuing as-
sumptions.  Lambrecht, Iven and Vandaele (1998) ex-
tended the investigation to look at the multi-item, multi-
resource problem in a job shop context.  Hill and Raturi 
(1992) developed an approach, based on M/G/c queuing 
assumptions, to set the reorder intervals for the POQ lot 
sizing policy.  Their study suggested the queuing relation-
ships could also be used in planned lead time setting but 
did not experimentally test the performance. 
 This study examines MRP performance effects when lot 
sizes are based on minimizing lot flowtimes under GI/G/1 
queuing assumptions.  One of the main difficulties is that 
non-stationary arrival patterns and part coordination issues 
make it difficult to determine appropriate lot interarrival 
time distributions in an MRP context.  Delays due to the 
time-phased nature of releases further complicate flowtime 
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prediction.  In this research the interarrival time coefficients 
of variation are assumed.  The objective is to determine how 
these affect performance and whether the use of M/G/1 
queuing assumptions, which are much easier to deal with, 
provide lot sizes that lead to satisfactory performance.   
 As well, performance is compared using dynamically 
set planned lead times based on order flowtime feedback 
and shop flowtime feedback.  

2 EXPERIMENTAL METHODOLOGY 

This section briefly describes the simulation test bed, the 
scenarios for the production and planning systems, the lot 
size selection process, the planned lead time setting 
mechanisms, and the experimental design. 

2.1 Experimental Test Bed 

An experimental test bed to explore MRP performance re-
quires two modules; a planning system and a simulation 
program to emulate production activity.  A test bed espe-
cially designed to be simple, flexible and transparent was 
used in this research.  The planning module was developed 
within an Excel workbook.  Worksheets were used for the 
user interface, while the MRP logic was implemented 
through extensive use of Visual Basic for Application 
(VBA) macros. The production simulation module was 
implemented in ARENA 5.0 software (Kelton et. al, 2002).  
Communication between the two modules was facilitated 
using VBA.     

Figure 1 provides an illustration of the test bed com-
ponents.  The solid arrows represent information flow 
while the dashed arrows represent material flow.  The 
lower section of the diagram represents the shop being 
simulated.  Batches, or lots, of parts are represented as cir-
cles while resources are represented as squares. Further de-
tails of the test bed may be found in Enns (2001 or 2002a). 

2.2 Production Scenario 

The material plan was regenerated once per period, with the 
period assumed to be one week.  The MRP system was op-
erated as a bucketed system with 20 time buckets per period 
(bpp=20).  Assuming 5 working days per period, this is the 
equivalent of 4 time buckets per day.  One fifth of the period 
requirements, as determined by the MPS, was assumed to be 
required at the start of each day.  The shipping policy was 
such that one fifth of actual demand was shipped at the start 
of each day.  Therefore, the timing of MPS planned re-
quirements and demand shipments coincided.  
 Two finished goods (independent-demand) products, 
P1 and P2, were assumed.  The demand patterns were as-
sumed to be sinusoidal, with a cycle length of 52 periods 
(one year).  The mean demand was assumed to be 1500 
units per period and the amplitude of the demand pattern 
was assumed to be 360 units, for both products.  However, 
the demand patterns for the two products were offset 26 
periods from each other.  This allowed a reasonably stable 
shop load to be maintained, even though the product mix 
varied considerably through time.  No forecast error was 
assumed since it was desirable not to confound the ob-
served behavior by introducing effects due to demand un-
certainty.  Figure 2 illustrates the demand patterns used. 
 The product structures for the two finished goods 
products are shown in Figure 3.  This figure also provides 
information on the lot setup times and part processing 
times for all part types.  
 The shop was assumed to have four machines, with 
each machine processing two part types.  Routing informa-
tion is also shown in Figure 3. Each part type was assumed 
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Figure 1:  MRP Test Bed 
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Figure 2:  Finished Goods Demand Patterns 
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Figure 3:  Product Structure 
 
to have only one processing stage.  An average scrap rate 
of three percent, with a negative exponential distribution, 
was assumed at each processing stage. 

2.3 Lot Size Setting 

The Fixed Order Quantity (FOQ) lot sizing policy was 
used for all parts.  The size of lots was based on minimiz-
ing the weighted average lot flowtimes at each machine m, 
Wm, under GI/G/1 queuing assumptions.  The following 
simple approximation was used to estimate the weighted 
average flowtimes (Whitt, 1983).  This relationship is exact 
under M/G/1 queuing assumptions, where Poisson arrivals 
mean the variation of lot interarrival times, ca,m, is 1.   
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 The weighted mean lot service time, including setup 
times, for n part types processed on machine m is given by 
the following, 
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where j is the part type index, 
jD is the average demand 

rate, Qj is the part type lot size, Pj is the part processing 

rate and jτ is the lot set up time.  
jD is based on average 

demand for independent demand products and average 
requirements for dependent demand parts, adjusted for 
average scrap rates. 
 The utilization rate, including setup times, on machine 
m is then given by the following. 
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 If it is assumed the lot setup times and part processing 
times are deterministic, the coefficient of variation of lot 
service times squared is expressed as follows, 
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 Following substitution, the wieghted mean lot 
flowtime at machine m can be written as follows,  
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 The GI/G/1 approximations, given by Equations (1) to 
(5),  allow average flowtimes to be estimated (Whitt, 1983).  
To find lot sizes that minimize average flowtimes, we need to 
find the partial derivative of Wm with respect to the lot size 
for each part type j processed on machine m.  The resulting 
set of simultaneous equations can then be set equal to zero 
and solved to determine optimal lot sizes.  The differential 
equations to minimize lot flowtimes as a function of lot sizes 
for each part type were derived as follows,  
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The resulting set of j simultaneous equations were used to 
solve for the optimal lot sizes of all parts processed on 
machine m.  The Excel Solver add-in was used for this 
purpose. 

There was assumed to be no uncertainty in setup and 
processing times and machines were assumed not to break 
down.  Lots in queue were processed on the basis of earli-
est part due date.  No lot splitting was allowed. 

2.4 Planned Lead Time Setting 

The planned lead times were set dynamically based on ex-
ponentially smoothed feedback.  The two feedback alterna-
tives were to base planned lead times on the order flow-
times or on the shop floor flowtimes.  The order flowtimes 
are defined to be the time between an internal order re-
lease, generated by the MRP system, and the time the order 
is completed.  The shop floor flowtimes are defined to be 
the time between when all component parts required for a 
given internal order are ready and the time the order is 
completed.  If the component parts are available at the time 
an order is released, the order flowtime and the shop flow-
times will be equal.  However, if at least one component 
part is not available to meet the order release requirements, 
the order flowtime will be longer than the shop flowtimes.  
The assumption was made that component parts entered 
the queue for the next stage of processing only when all 
components were available in sufficient quantities to com-
plete the lot for the released order.   
 The relationships used in dynamic planned lead time 
setting can be clarified by referring to Figure 4.  Further 
analysis of exponential smoothing applied to dynamic 
planned lead time setting can be found in Enns (2002b). 
 The order, F(R)i,j, and shop, F(A)i,j, flowtimes for lot i 
of part type j are determined as follows, 
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Figure 4:  Flowtime and Planned Lead Time references 
 

where Ci,j is the completion time for the lot, Ri,j is the order 
release time and Ai,j is the time all components are avail-
able to process the order. 
 The exponentially smoothed estimate of future order 
and shop flowtimes for each part type j can then be deter-
mined as follows,  
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where α is the smoothing constant. 

The planned lead time for part type j at any given time 
t, PLTt,j, can then be determined for the two methods 
respectively as follows,  
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where bpp is the number of buckets per period and Sj is a 
safety flow allowance for part type j, equal the time 
interval for an integer number of buckets.  The planned 
lead times are rounded to the nearest time bucket by 
subtracting 0.5 and then rounding up the the nearst integer, 

as designated by the    brackets.  These equations assume 
that the exponentially smoothed flowtimes, planned lead 
times and safety allowances are specified in terms of 
periods.  

2.5 Experimental Design 

The experimental design consisted of three factors.  The 
first factor was the coefficient of variation of lot interarri-
val times at each machine, ca,m, used to determine lot sizes 
for each part type.  These values were set at levels 0.25, 
0.50, 0.75 and 1.00.  The values of ca,m were assumed to be 
equal for each of the four machines at any given combina-
tion of experimental settings.  The optimal lot sizes for part 
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types P1 to P8, using Equation (6) with each ca,m value, are 
shown in Table 1.  The shop utilization rates ranged from 
91.5% when lot sizes were based on a  ca,m of 0.25 to 84% 
when lot sizes were based on a ca,m of 1.00. 

 
Table 1:  Lot Sizes for various ca,m values 

 Lot Sizes 

 ca,m =0.25 ca,m =0.50 ca,m =0.75 ca,m =1.00 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
P8 

266 
401 
536 

1316 
773 

1892 
2789 
4708 

345 
438 
674 

1690 
907 

1974 
3703 
5039 

420 
442 
791 

2025 
988 

1879 
4615 
4792 

497 
423 
891 

2379 
1020 
1713 
5586 
4255 

 
The second factor was the method of dynamic planned 

lead time setting.  This factor was run at two levels.  The 
first used order flowtime feedback, as given by Equation 
(11).  The second used shop flowtime feeback, as given by 
Equation (12).  The smoothing constant,α , was set at 0.05 
in both cases.   

The third factor was the safety flow allowance setting, 
Sj, used to control delivery performance for finished goods.   
This factor was set at eight levels for both P1 and P2.  These 
levels ranged from 0 to 0.35 time periods, in increments of 
0.05 periods.  This increment corresponded to the length of 
one time bucket in the MRP planning system.  The value of 
Sj for all dependent demand parts was set to zero. 

The 64 combinations of experimental settings (4 levels 
of lot interarrival time variability, 2 planned lead time set-
ting approaches, and 8 safety factor settings) were each run 
for three replications.  These replications were 260 periods 
long (5 years).  The first 52 periods were used for initiali-
zation, while the remainder of the run was used for data 
collection.  Common random numbers were used for the 
distribution parameters used to determine scrap quantities.  
Within-group variance was low.  

Performance analysis was based on inventory and cus-
tomer delivery measures.  The primary inventory measure 
was based on processing time invested.  This measure is 
preferable to inventory counts because it weights inventory 
according to the amount of value-added activity completed.  
The customer delivery performance was measured in terms 
of both delivery mean tardiness and the proportion of cus-
tomer orders delivered immediately from stock. 

3 DISCUSSION OF RESULTS 

Figure 5 shows the delivery mean tardiness versus inven-
tory investment results when order flowtime feedback was 
used to set planned lead times.  The individual lines repre-
sent performance when ca,m values of 0.25, 0.50, 0.75 and 
1.00 were used to set lot sizes.  The points moving right 
along the curve correspond to increasing values of Sj.  Fig-
ure 6 is similar to Figure 5 except that the proportion of de-
liveries on time is plotted versus inventory investment. 
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Figure 5:  Delivery Mean Tardiness vs Inventory 
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Figure 6:  On Time Delivery vs Inventory 

 
The results showed improved performance as the ca,m 

values used to determine lot sizes were reduced.  Figure 5 
shows that delivery mean tardiness was substantially lower 
for a given level of inventory investment when lot sizes 
were based on a ca,m of 0.25 versus 1.0.  Likewise, the pro-
portion of deliveries on time, shown in Figure 6, increased 
for a given level of inventory investment when lot sizes 
were based on a ca,m of 0.25 versus 1.0.  When ca,m values 
were decreased below 0.25 (not shown), performance dete-
riorated and became erratic.  It appeared this was due to 
queues building up as a result of excessively small lot sizes 
and correspondingly high utilization levels.  Therefore, it 
seems that using a ca,m value somewhere around 0.25 for 
determining lot sizes resulted in the best performance for 
the production scenario tested. 

The results obtained using shop flowtime feedback to 
set planned lead times followed very similar patterns.  
However, the performance was not quite as good, espe-
cially when lot sizes were based on high ca,m values.  Fig-
ure 7 shows a comparison of the delivery mean tardiness 
versus inventory investment results when the two types of 
feedback were used for planned lead time setting.  For clar-
ity, only the results when ca,m values of 0.25 and 1.00 were 
assumed are shown.  The line marked A_1.00 designates 
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that a ca,m value of 1.00 was used along with planned  lead 
times based on shop flowtime feedback, while R_1.00 des-
ignates that a ca,m value of 1.00 was used along with 
planned lead times based on order flowtime feedback.  
Similarly, A_0.25 and R_0.25 indicate a ca,m of 0.25 was 
assumed.  Figure 8 shows similar results for the proportion 
of deliveries on time versus inventory investment.   

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

40.0 60.0 80.0 100.0 120.0

Inve ntory Inve stm e nt

D
e

l.
 M

e
a

n
 T

a
rd

in
e

ss

A_1.00

R_1.00

A_0.25

R_0.25

 
Figure 7:  Delivery Mean Tardiness Comparison 
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Figure 8:  On Time Delivery Comparison 

 
From these results it can be observed that dynamic 

planned lead times set on the basis of order flowtimes re-
sulted in better performance than those set on the basis of 
shop flowtimes.  Therefore, it is better to monitor the time it 
takes to complete an order released to the shop floor rather 
than the time it takes to process the lot once all the compo-
nents are available.  However, Figures 7 and 8 show that the 
differences between performance using planned lead time 
settings based on order flowtime versus shop flowtime feed-
back decreased as the ca,m values used for lot sizing de-
creased.   This suggests that choosing the method of feed-
back used to dynamically set planned lead times is less 
important when lot sizes are properly set.  In other words, 
appropriate lot size selection means there will be less differ-
ence between order flowtimes and shop flowtimes.    

4 CONCLUSIONS 

This research has shown that assumptions regarding lot in-
terarrival time variability make a big difference when 
queuing relationships are used for lot sizing.  Significant 
differences in lot sizes affect both inventory and delivery 
performance.  It further appears that the assumption of 
Poisson arrivals and use of M/G/1 queuing relationships 
may lead to excessively large lot sizes.  When lot sizing is 
based on properly selected interarrival time variability, dy-
namic planned lead time adjustment based on either order 
flowtime feedback or shop flowtime feedback would ap-
pear to work well.  Further research is required to measure 
and select ca,m values that can be used effectively in MRP 
lot sizing. 
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