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ABSTRACT 

More efficient and effective control of supply networks is 
conservatively worth billions of dollars to the world econ-
omy. Adopting an approach by which the basic disciplines 
of Industrial Engineering, Control Engineering, System 
Simulation and Business Re-Engineering are integrated 
into one comprehensive system has been known to produce 
impressive results. This paper discusses a modular ap-
proach to develop a discrete event simulation model that 
has the appropriate level of abstraction to capture the in-
herent complexities that exist in a supply chain and is yet 
simple, fast and produces results of high fidelity. It dis-
cusses a method to parameterize each module by fine-
tuning a few parameters to make it represent an entire fac-
tory, a warehouse or a transportation link. 

1 INTRODUCTION 

High value products that quickly become obsolete! A vast 
manufacturing network! Rapidly declining prices! A de-
manding customer base! The supply chain challenges fac-
ing the semiconductor industry are complex and difficult!  
In today’s globally competitive business world, the net-
work of companies that band together to create an end 
product or service are not restricted to a sub-continent. The 
world is moving from single enterprise mass production to 
multiple enterprise customizations. Why? The strengths 
strategic alliances have to offer, which include higher mar-
gins, shorter development cycles, higher quality, lower 
overall costs, and the ability to meet demand on a single-
customer basis. The key to gaining this competitive advan-
tage is integrating decisions across the supply network. 
across geographically dispersed facilities, and across time.  
  The essence of Supply Chain Management is integrated 
planning, which has three important dimensions (Shirodkar 

 

1999). The first dimension is functional integration, involv-
ing decisions about purchasing, manufacturing and distribu-
tion activities within the company and between the company 
and its suppliers and customers. The second dimension is 
geographical integration of these functions across physical 
facilities located in one or several continents. The third di-
mension is integration of strategic, tactical and operational 
supply chain decisions. Supply Chains (SC) as described by 
Stevens (1989) is: “A system whose constituent parts in-
clude material suppliers, production facilities, distribution 
services and customers linked together via the feed forward 
flow of materials and the feedback flow of information”. 
With globalization of the market, optimization of supply 
chains becomes more and more important. Synchronizing 
this complex supply chain network, and making it respond to 
demand fluctuation is not trivial, but how well companies’ 
react to rapidly changing customer demands becomes a very 
important factor in their ability to dominate their markets. 
Typically, a supply chain is a multi-echelon system where 
each “node” in the supply chain may have several disparate 
suppliers. A simple supply chain in the semiconductor in-
dustry that was adapted from Godding and Kempf (2001) is 
shown in Figure 1. 
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Figure 1:  Simple Model of a Supply Chain 
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 One major obstacle in creating a seamless supply 
chain is uncertainty. In order to deal with this issue, it is 
imperative to identify and understand the cause of uncer-
tainty and determine how it affects other activities up and 
down the supply chain. The complexity described above 
causes the semiconductor industry to experience erratic 
changes in demand and this makes it difficult to decipher 
the true demand from normal fluctuations, (Shirdokar 
1999). What often appears as small random ripple varia-
tions in sales at the market place are amplified dramatically 
at each level in the chain, so that upstream companies or 
facilities experience the classical “boom-bust” effect, 
(Towill 1996). In particular the variance in orders tends to 
be larger than that of sales and this distortion tends to in-
crease upstream. (Lee et al 1997) describes this phenome-
non termed the “bullwhip” effect and attributes its cause to 
demand forecast updating, order batching, price fluctua-
tions, and rationing and shortage gaming.  
 Computer simulation, because it can be applied to op-
erational problems that are too difficult to model and solve 
analytically, is an especially effective tool to help analyze 
supply chain logistical issues. Currently, tools for under- 
standing uncertainty are limited to traditional mathematical 
formulas that do not account for variability. However, 
simulation is one of the best means for analyzing supply 
chains because of its capability to handle variability, (Tow-
ill 1996). Obviously, experimenting with an actual supply 
chain could be detrimental, as the profit at risk is prohibi-
tively high. Useful results have been obtained by adopting 
an approach in which the basic disciplines of industrial en-
gineering, control engineering, system simulation and 
Business Reengineering are integrated into one compre-
hensive system , (Forrester 1961).   

2 PROBLEM STATEMENT 

Traditionally, simulation models used in supply chains 
have either been detailed discrete event simulation (DES) 
models that track every individual lot that is processed at 
every workstation or high-level, continuous simulation 
models that do not track each lot but consider the gross 
output and cycle time performance of each factory in the 
chain.  The first approach produces results that are very ac-
curate but it generally takes a long time to build the model 
and the execution time of such a model is often extremely 
slow.  Building models of the second type is generally 
much easier and their execution time is much faster, but 
the data produced is often far from accurate.  Little work 
has been done to combine these approaches to develop a 
model that has an appropriate level of abstraction to cap-
ture the inherent complexities that exist in a supply chain 
and is yet simple, fast and produces results of high fidelity.  
The schematic diagram shown in Figure 2, illustrates the 
objective.   
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Figure 2:  Simulation Accuracy Versus Run Time 

3 THE BASIC ATOMIC MODULE 

To model the material flow in the physical system a mod-
ule was developed by Shirodkar (1999) that can be used to 
represent a factory, a transportation link, or a warehouse.  
This hybrid module is made up of three sub-modules: a ca-
pacity sub-module, a delay sub-module and a yield sub-
module as shown in the Figure 3. 
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T1! The time a lot spends in the queue 

 T2 !The processing time of the lot. 
 T3 ! Total cycle time of the lot 

Figure 3:  The Basic Atomic Module (Adapted 
from Shirodkar 1999) 

 
The production units that arrive at the capacity sub-

module sit in a queue. A sample is then drawn from a 
probability distribution, which represents the capacity of 
the module.  This occurs at a predetermined time interval 
based on the chosen sampling rate; we use once a day in 
our experimentation. The value of capacity drawn from the 
distribution is then compared to the number of lots sitting 
in the queue and the lesser of the two is picked and that 
number of lots are released from the capacity sub-module 
into the delay sub-module. The delay sub-module has an 
infinite number of servers and each lot that enters this 
module is allotted a processing time from a user specified 
probability distribution. The queue in the capacity module 
thus represents the time spent waiting in front of the capac-
ity for it to become available and the delay sub-module 
represents the time spent in processing once the capacity 
has become available. The lots that finish processing pro-
ceed to the “yield sub-module” where the good lots are 
separated from the defective ones. 
 



Duarte, Fowler, Knutson, Gel, and Shunk 

 
4 PARAMETERIZATION OF MODULE 

Among the various sources of error that make the output 
from a simulation less valid, is the modeling the “wrong” dis-
tribution for various input quantities, for example the arrival 
times of jobs to a job shop or the service time of machines. A 
commonly encountered problem in simulation modeling is 
the specification of a suitable input distribution for the ob-
served data. The data is a specific realization of some under-
lying distribution that can be regarded as the “true” distribu-
tion, (Shankar and Kelton 1999). A prevalent practice is to 
approximate this “true” distribution with a standard family, 
for example an exponential distribution or a uniform distribu-
tion. In many situations, this approximation may not ade-
quately represent the observed data, and may introduce sig-
nificant error in the input that may adversely affect the 
validity of the output. In general there are three methods of 
specifying an input distribution, (Shankar and Kelton 1999).  
 

1. Use a “standard” parametric distribution: These 
include distributions such as uniform, exponential, 
weibull. 

2. Use an empirical distribution: Here the observed 
data itself is used in some way to come up with a 
distribution function. Empirical distributions have 
flexibility, which is much desired.  

3. Use a Flexible parametric family: Such a paramet-
ric family supplies a flexible distribution function 
that is an approximation of the true distribution 
function. This alternative can be viewed as a com-
promise between the first two approaches and is 
both generalizable and flexible. 

 
 Output measures of performance can indeed be sensi-
tive to the particular input distribution. Using standard 
two-parameter distributions for which only the first two 
moments are captured in many cases is not sufficient, 
unless the system is running at relatively high traffic inten-
sity. It may be necessary to use at least five moments for 
systems with low traffic intensity, (Gross and Juttijudatta 
1997), even though the lower order moments are the ones 
that actually dominate. 
 It is apparent that the problem of input distribution se-
lection is inherent to simulation modeling. A point in favor 
of the empirical distribution is that their performance is 
consistent.  This cannot be said about the standard distribu-
tions whose performance quality depends more critically 
upon the underlying true distribution. This robustness of an 
approximating method is an important issue in input distri-
bution specification. 
 Results from the previous research inferred that the 
model produces data that is qualitatively correct. The next 
step would therefore be to develop an approach by which 
the model could produce throughput and cycle time data 
that is (nearly) quantitatively correct and thus consistent 
with data from a real factory. The approach used to param-
eterize the atomic module is shown in Figure 4. In this ap-
proach, we use data taken from the real factory or from a 
detailed discrete event simulation (DES) of a factory to de-
velop the capacity and cycle time parameters. Determining 
the capacity distribution is relatively simple. Since the pre-
determined sampling rate at the capacity sub-module is 
chosen to be once a day, the capacity parameters are de-
termined by fitting the daily throughput of a simulation of 
a fully loaded factory to an empirical distribution or by fit-
ting the daily throughput of the real factory divided by the 
utilization of the bottleneck to an empirical distribution.  

 

 
Figure 4:  Parameterization Methodology 

 
Matching the cycle time is not as straightforward be-

cause the cycle time distribution depends on the loading of 
the factory. It is important to use the cycle times of indi-
vidual lots in ascertaining the distribution at each capacity 
loading. By using individual cycle times the reduction in 
variance caused by the averaging affect of lots coupled into 
daily or weekly time buckets is eliminated.  
 Figure 5 shows the (sanitized, for confidentiality) dis-
tribution of cycle times for lots coming out of a real Intel 
factory. Figure 6 shows a similar cycle time distribution of 
lots coming out of the detailed discrete event simulation 
(DES) model. The model used was dataset #1 from the 
MASM Lab at Arizona State University (www.eas.asu. 
edu/~masmlab). The dataset was modified to consist of 
a single product with a release rate of 12 lots/day, which 
corresponds to a factory loading of 97%, each lot contain-
ing 48 wafers. The modified model produces no scrap and 
has 83 tool groups with 265 tools.  The model also has 32 
operator groups with 90 operators.  The detailed simulation 
was run for 200 days with 10 replicates and the first 65 
days of each replicate was truncated.  The remaining lot 
cycle times were combined into one file and data from 
10,000 lots were used to plot the histogram.  
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Figure 5:  Total Cycle Time of Lots From 
a Real Factory 
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Figure 6:  Total Cycle Time of the De-
tailed DES 

 
 The cycle time distribution in Figure 5 and Figure 6 
above look fairly similar. Note that the average cycle time 
of the DES model is 34.65 days. A simulation was then run 
using our atomic module (coded in EXTENDTM). The ca-
pacity distribution for this model was obtained from the 
100% factory loading detailed DES and the cycle time dis-
tribution was obtained from the 97% factory loading de-
tailed DES by fitting the cycle time of the 10,000 lots to an 
empirical distribution. Figure 7 shows the cycle time dis-
tribution from this simulation run. 
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Figure 7:  Total Cycle Time from Our 
Model 

 
 Once again the distribution looks similar to that of the 
DES. The average cycle time however is 40.87 days, which 
is higher that that of the DES and is attributed to the addi-
tional time the lots spend at the capacity sub-module. The 
breakdown of the overall cycle time of a lot through the 
atomic module is shown in Figure 3. The value ‘T1’, which 
is the amount of time a lot spends in the queue, is deter-
mined by the capacity sub-module and will be negligible 
when the factory is lightly loaded, but will increase as the 
factory loading increases. ‘T2’ for each lot is simply a 
sample from the given cycle time distribution and does not 
depend on the factory load. ‘T3’ is the total cycle time of a 
lot and is the sum of ‘T1’ and ‘T2’. Matching the cycle 
time distribution of the detailed simulation with that from 
our module for a given loading by running a detailed simu-
lation for each loading of interest is easy.  
  A simple experiment shown in Figure 8 show the results 
obtained by using this approach. As mentioned above the 
difference in cycle times between the two simulations is 
purely due to the time a lot spends at the capacity sub-
module “T1”. As the system is more heavily loaded this 
queue time increases and so also the difference between the 
results of both simulations. Therefore, subtracting the addi-
tional queue time ‘T1’ would render results that are very ac-
curate, as we would expect since the resulting cycle time is 
simply a sample from the actual cycle time distribution.   
 

Figure 8:  Average Cycle Time versus Ca-
pacity Loading 

 
Estimating this additional queue time ‘T1’ can be ei-

ther done on an individual entity basis or by evaluating the 
average queue time at a particular capacity loading using 
analytical methods. The latter approach proves beneficial 
later in the section, as a graph of the average queue time 
versus the capacity loading is a good characteristic ap-
proximation of what the cycle time curve would look like 
qualitatively. 

4.1 Analytical Approach to  
Estimate Queue Time 

The model under consideration can be thought of as an in-
ventory system that has a deterministic supply but a ran-
dom demand. It is assumed that any demand that cannot be 
satisfied for the day is lost. 

 
Yn The demand on day n 
Xn The inventory available to satisfy the de-

mand on day n. 
a Deterministic start rate (Lots/day), of the 

lots that arrive at the beginning of the day 
and are available to satisfy the demand for 
the day. 

 
 The stochastic process {Xn, n ≥ 0} possesses the 
Markovian property which states that if the present state of 
the system is known, the future of the system is independ-
ent of its past, (Kulkarni 1995). Stated another way, the 
present state of the system contains all the relevant infor-
mation needed to predict the future in a probabilistic sense. 
Hence the stochastic process {Xn, n ≥ 0} can be modeled as 
a Discrete-Time Markov Chain (DTMC). The steady state 
distribution of the process can be found by solving for the 
following set of equations. 
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where jij

n
Plim π=

∞→
, is the long-run average fraction of 

time that the system stays at state j and P
ij
 represents the 

transitional probability of moving from state ‘i’ to state ‘j’ 
as shown in Figure 9 and each state is defined as the inven-
tory left at the end of the day.   

 

Figure 9:  Markov Chain with Transition 
Probabilities 

 
 The Transitional Probability Matrix (TPM) that repre-
sents this Markov chain is set up by evaluating the prob-
ability of a having a certain number of lots waiting in in-
ventory at the end of the day, after the capacity of the 
system has been set for that day 
 The example shown in Figure 10 is for a start rate of 5 
lots/day. P00 would therefore be the transition probability 
of having zero lots at the end of a day on which five lots 
entered the system with an initial inventory of zero. This 
would occur if the capacity for the day were greater than or 
equal to 5. The probability of achieving this based on the 
capacity distribution is 0.85. Similarly, P01 is the transition 
probability of having one lot at the end of a day on which 
five lots entered the system with an initial inventory of 
zero. This would occur if the capacity for the day were 
four. The probability of achieving this based on the capac-
ity distribution is 0.03. Similarly the rest of the probabili-
ties in the transitional probability matrix (TPM) can be 
evaluated. The TPM for the model is that of an irreducible 
Markov chain with infinite state space. The matrix is sym-
metrical with an upper and lower triangle of zeros. 

A quick way of solving this matrix is by approximat-
ing the TPM with a finite state space. We truncated the 
TPM as shown in Figure 11, and then solved it using the 
Grassmann, Taksar and Heyman (GTH) algorithm (Grass-
mann et al 1985). 

The GTH Algorithm is a state reduction algorithm. 
Recursively, a Markov chain with one state less is con-
structed from the previous one. The algorithm begins with 
the n

th
 row and column and performs a series of iteration 

and computation, working its way up the matrix. In the 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0.85 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0.82 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.79 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.74 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0

4 0.70 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0

5 0.67 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0

6 0.62 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0

7 0.58 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0

8 0.53 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0

9 0.48 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0

10 0.43 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0

11 0.37 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0

12 0.32 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0

13 0.27 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 -

14 0.22 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 - -

15 0.18 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 - - -

16 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 - - - -

17 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 - - - -

18 0 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 - - - -

19 0 0 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 - - - - ∝
20 0 0 0 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 - - - -

- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - -

- - - - - - - - - - - - - -
- - - - - - - - - - - -

- - - - - - - - - - - -
- - - - - - - - - - -

∝  
Figure 10:  Transitional Probability Matrix 
(TPM) with infinite state space 
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0 0.85 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0.82 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.79 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0.74 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0 0

4 0.70 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0 0

5 0.67 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0 0

6 0.62 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0 0

7 0.58 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0 0

8 0.53 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0 0

9 0.48 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0 0

10 0.43 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0 0

11 0.37 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0 0

12 0.32 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0 0

13 0.27 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0 0

14 0.22 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06 0

15 0.18 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.06
16 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.08
17 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.10
18 0 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.12

19 0 0 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.15
20 0 0 0 0 0.06 0.12 0.04 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.18

 
Figure 11:  Transitional Probability Matrix 
(TPM) with Finite State Space 

 
process it calculates the steady state probability vector 

[ ]...210 ππππ =′  with low relative error. The GTH algo-

rithm was coded in Matlab. The expected queue length (not 
including jobs in processing) ‘Lq’ can then be calculated as 
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From Little’s  Law we have: 

 
 W*L qλ=  

 
Where λ denotes the start rate and Wq denotes the waiting 
time in the queue. Therefore for a given start rate ‘λ‘, the 
waiting time in queue Wq can easily be calculated. 
 One question that arises is how big should the trun-
cated transitional probability matrix be? Naturally we ex-
pect that the bigger the matrix, the more accurate the result 
will be. Figure 12 show the trade-off between the size of 
the matrix and the average queue time obtained. The ex-
periment was carried out using the matrix corresponding to 
a 97% loading. 
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Figure 12:  Trade-Off between the 
Size of the Matrix and the Average 
Queue Time for a 97% Capacity 
Loading 

 
Results obtained by using the analytical method of es-

timating queue time were also compared to that of the 
simulation to check the validity of the method. The com-
parison is shown in Table 1.  
 Therefore, if we can estimate the additional queue 
time analytically, it is relatively easy to match the cycle 
time distribution of the detailed simulation with that from 
our module for given start rates by running a detailed simu-
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Table 1:  Comparison of the Queue Time Achieved 
from the Analytical Approach to that of the Simula-
tion Run 

S t a r t  R a t e  
L o t s / d a y

C a p a c i t y  
L o a d i n g

A v g  
Q u e u e  

T i m e

H a l f  w i d t h  
C o n f i d e n c e  

L e v e l ( 9 5 . 0 % )
R e p l i c a t e s

I n v e n t o r y  
L e v e l

A v g  
Q u e u e  

T i m e
∆

5 4 0 . 5 0 % 0 . 1 4 0 . 0 1 6 0 . 7 3 0 . 1 4 0 . 0 0

7 5 6 . 7 0 % 0 . 2 2 0 . 0 1 6 1 . 5 5 0 . 2 2 0 . 0 0

8 6 4 . 8 0 % 0 . 2 9 0 . 0 1 6 2 . 3 4 0 . 3 0 - 0 . 0 1

9 7 2 . 9 0 % 0 . 4 3 0 . 0 7 6 5 . 8 3 0 . 4 1 0 . 0 2

1 0 8 1 . 0 0 % 0 . 6 0 0 . 0 7 6 9 . 9 8 0 . 6 3 - 0 . 0 3

1 1 8 9 . 1 0 % 1 . 2 5 0 . 2 4 6 2 1 . 0 4 1 . 2 2 0 . 0 3

1 2 9 7 . 3 0 % 6 . 3 0 2 . 0 6 6 6 3 . 6 0 6 . 2 1 0 . 0 9

S I M U L A T I O N A N A L Y T I C A L  A P P R O A C H

 
 

lation for each loading of interest, using empirical distribu-
tions for the capacity and delay and subtracting the addi-
tional queue. However, our goal is to specify a small num-
ber of capacity and cycle time parameters that will give 
reasonable estimates of cycle time distributions over a 
range of factory loadings.    
 As indicated earlier, using a single cycle time distribu-
tion to statistically match data at different capacities would 
be ideal. In order to see how well a single cycle time dis-
tribution would work, the module was run using the em-
pirical cycle time distribution that was built using data that 
corresponded to a 40% capacity load of the detailed DES.  
It was assumed that the effect of queuing is insignificant at 
this loading. The capacity distribution supplied to the 
module was the throughput distribution from a detailed 
DES at 100% capacity load. The module was then run at 
different start rates (40%, 81%, 90%, 97%) to check if the 
output matched that of the detailed DES. The results of this 
experiment are shown in Figure 13. Notice that the average 
cycle time from our module significantly underestimated 
the average cycle time from the detailed DES for all load-
ings. The same experiment was repeated using the 80% cy-
cle time distribution of the detailed DES as the delay dis-
tribution in our module. As shown in Figure 13, using this 
distribution led to a significant overestimate of average cy-
cle time for a lightly loaded factory and a significant un-
derestimate for a heavily loaded factory.  

The cycle time characteristic curve of a system, with 
no batching policies, can be represented by a monotoni-
cally increasing curve (Fowler and Park 2001). For these 
systems, the cycle time curve can be broken up into three 
principal segments, two asymptotes and a knee. The first 
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Figure 13:  Cycle Time Versus Capacity 
Loading Using a Single Delay Distribution 
asymptote corresponds to a lightly loaded factory where 
the cycle time is almost equal to the raw processing time. 
The second asymptote represents a heavily loaded factory 
where the traffic intensity approaches the capacity of the 
system. The cycle time for such loadings approaches infin-
ity due to the ever-increasing queue.  

As a next step, to achieve the cycle time at various 
loadings, we linearly interpolated the average cycle times 
or each segment of the curve based on the load percent.  
Developing linear equations to represent each segment re-
quires two reference points for each equation. The question 
is how do we pick the reference points?  A graph of the av-
erage queue time versus the capacity loading is a good 
characteristic approximation of what the cycle time curve 
would look like qualitatively. Since obtaining the average 
queue time using analytical methods is efficient, we use the 
queue time versus capacity loading graph to choose which 
capacity loadings to run the DES to best represent each cy-
cle time segment. The mean and standard deviation of the 
cycle time at each reference point is noted and linear equa-
tions for both parameters are set. 

Figure 14: Choosing the Three Segments 
 
Based on the assumption of Rose (1999), the cycle time 

distributions at higher capacity loadings can be assumed to 
be normally distributed. Using the equations for the mean 
and the standard deviation we can set the parameters of the 
normal distribution. Intuitively the average cycle time using 
our module will still be overestimated due to the fact that a 
non-linear curve has been replaced by a linear one for the 
purpose of estimation and due to the additional queue time 
‘T1’ in the model. We propose to use the analytical method 
to estimate ‘T1’ and subtract this estimate from the cycle 
time of each lot so as to eliminate the later problem.  

To verify this approach, the simulation model was run 
for a period of 3400 days at different start rates. An initial 
bias of 5000 lots were considered and eliminated from the 
statistics. Eight replicates were performed at each capacity 
loading. The results obtained are shown in Figure 15 and in 
Table 2. 
 Figure 16 is a plot of the average daily cycle time ver-
sus the elapsed time for the system run at 89% capacity 
loading which corresponds to a start rate of 11 lots/day. 
Data from day 400 through day 3400 has been plotted. The 
average cycle time for the DES is 25.20 days with a stan-
dard deviation of 1.78 days while our model has a mean 
cycle time of 25.58 days with a standard deviation of 1.51
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Figure 15:  Cycle Time Versus Capacity 
Loading  

 
Table 2: Statistical Comparison of DES with 
Our Model 
Capacity Loading 40.50% 56.70% 64.80% 72.90% 81% 89% 97.30%
Start Rate 5 7 8 9 10 11 12
Meat CT (DES) 18.80 19.38 19.94 20.86 22.58 25.57 34.65
Mean CT (Our Model) 18.80 19.83 19.95 20.86 23.24 25.54 34.73
Standard Error 0.00 0.01 0.01 0.01 0.03 0.11 0.73
Median 18.80 19.83 19.95 20.86 23.24 25.46 35.16
Standard Deviation 0.01 0.02 0.02 0.02 0.07 0.31 2.07
Sample Variance 0.00 0.00 0.00 0.00 0.01 0.10 4.28
Range 0.05 0.06 0.07 0.07 0.20 1.02 5.64
Minimum 18.77 19.79 19.91 20.82 23.15 25.17 31.58
Maximum 18.81 19.85 19.98 20.89 23.35 26.19 37.22
Sum 150.39 158.65 159.58 166.87 185.95 204.35 277.87
Count 8.00 8.00 8.00 8.00 8.00 8.00 8.00
Confidence Level (95.0%) 0.01 0.01 0.02 0.02 0.06 0.26 1.73  

 

Figure 16:  Cycle Time/Throughput Versus Elapsed 
Time at 89.1% Capacity Loading 

 
days.  Similar experiments were run to validate the model 
at different capacity loadings. 

As far as throughput goes, the first 400 days of data 
has been truncated and data for the next 600 days has been 
plotted. Notice that while the average throughput of our 
model is consistent with that of the DES, it does not have 
as much variability. The average throughput for the DES is 
11.03 units/day while that for our model is 11.02 units/day.  
The standard deviation for the DES is 6.27 units/day while 
that for our model, however, is 3.36 units/day.  This is at-
tributed to the interaction between the capacity distribution 
and the delay distribution. 

The schematic diagrams in Figure 17 illustrate the ef-
fect of the interaction between the capacity and delay dis-
tribution. The system is analogous to a conveyor on which 
the delay distribution sprays lots. When the delay distribu-
tion is deterministic, the lots that enter the delay sub-
module fall into the same time bucket and the variability in 
throughput is preserved. For this example the processing 
time is 4 days. With the advance of the time clock the lots 
move one day closer to completion as a result the through-
put at the end of days four, five, six, seven and eight would 
be five, two, zero, five, and six.  
 However, variability in the delay distribution causes 
lots to jump into different time buckets and in the process 
reduces the variability in the throughput. Figure 18 illus-
son, Gel, and Shunk 

 

Figure 17: Effect of a Deterministic/Stochastic Cy-
cle Time Distribution 
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Figure 18: Effect the Delay Distribution 
has on the Throughput 

 
trates the extent to which this “cross-jumping” of lots ef-
fect the variance in throughput.  When the delay distribu-
tion is deterministic, the standard deviation of the through-
put for our model matches that of the DES, however, as the 
width of the cycle time distribution increases, the standard 
deviation of the throughput decreases till it eventually 
reaches a steady state. 

5 EXECUTION TIMES 

As far as accuracy goes, sufficient evidence has been put 
forth to illustrate the credibility of our model, speed on the 
other hand is a critical issue. Figure 19 is a plot of the 
simulation run time for the DES compared to our model.  
The model was run at different capacity loadings and the 
simulation run time was recorded. The experiments were 
run on a Pentium II, 333 MHz machine. The results show 
that our model is much faster than the DES. 
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Figure 19:  Simulation Run Time 

 
When modeling complex, supply networks, which 

consists of several manufacturing, assembly and distribu-
tion facilities, the speed of our model would be even more 
apparent.  With its low run time and accuracy the model 
should be a useful tool.  
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6 CONCLUSIONS 

In manufacturing, common performance measures used to 
evaluate a system are Cycle Time (CT), Throughput (TH) 
and Work in Process (WIP). Changes to operating policies 
can be evaluated by examining the impact on these three 
performance metrics. Due to the complexities of manufac-
turing systems in the semiconductor industry, a simulation-
based approach becomes a viable choice. 
 As stated earlier, detailed discrete event simulators 
(DES) track each individual lot that is processed at every 
workstation. As a result such models produce results that are 
very accurate but they generally take a long time to execute. 
Our model on the other hand aims at having the right level 
of abstraction to capture the inherent complexities that exist 
in a supply chain and yet is simple, fast and produces results 
of high fidelity. By means of a simple model, we intend to 
foster a basic understanding of the behavior of manufactur-
ing units. If the simple modeling approach mimics the full 
factory accurately, then these models can be used to model 
complex supply networks. As far as accuracy goes, suffi-
cient evidence has been put forth to prove its credibility. 
Speed on the other hand is a critical issue.  Run-time ex-
periments carried out on a Pentium II 333 MHz machine 
show that our model is much faster than the detailed discrete 
event simulator (DES) when modeling a single manufactur-
ing unit.  It is believed that the speed of the model would be 
even more impressive when modeling a complex supply 
network consisting of multiple factories, assembly facilities, 
transportation centers and component warehouses. 
 Currently the model is set up to accommodate one 
generalized product family, however an important next 
step would be to accommodate multiple product groups.  
This would lead to a more intuitive understanding of fac-
tory dynamics based on product prioritization coupled with 
various dispatching policies. Future research in this area 
would be aimed at attaining output parameters, namely cy-
cle time and throughput that are statically indistinguishable 
from data obtained from a real factory. The present model 
produces results that are very encouraging, however, inter-
action between the capacity and delay distribution tends to 
squeeze the variability in the throughput. 
 Each module can further be embellished to make it 
look more like a factory, a transportation link or a compo-
nent warehouse. Yield loss can be incorporated into the 
model to give it a more realistic flavor.  
 As the capacity loading of the system increases the ef-
fect of auto-correlation in cycle time becomes more appar-
ent.  Future work in this area could entail comparing sev-
eral correlation scenarios with respect to their ability to 
mimic real factory data.  

ACKNOWLEDGMENTS    

This research has been partially supported by a grant from 
Intel Corporation. 
REFERENCES 

Forrester, J.W.,1961 Industrial Dynamics. MIT Press, 
Cambridge, MA. 

Fowler, W. J., Park, S., 2001, Efficient Cycle Time-
Throughput Curve Generation Using Fixed Sample 
Size Procedure.  International Journal of Production 
Research, Vol. 39, No.12, 2595-2613. 

Godding, G., Kempf, K., August 11-14, 2001,  A Modular, 
Scalable Approach To Modeling And Analysis Of 
Semiconductor Manufacturing Supply Chains. Proceed-
ings of IV SIMPOI/POMS 2001, Guarujá/SP-Brazila. 

Grassmann, W. K., Taksar, M. I., Heyman, D. P.,1985, 
Regenerative Analysis and Steady State distributions 
for Markov Chains. Operations Research, Vol. 33, 
No. 5, 1107-1116. 

Gross, D.,Juttijudatta, M., Dec.1997, Sensitivity Of Output 
Performance Measures To Input Distributions In 
Queuing Simulation Models. Winter Simulation 
Conference, pp 296-302. 

Hopp, W. J., Spearman, M. L, 2001, Factory Physics. Sec-
ond Edition. 

Ingalls, R., Kasales, C., Dec.1999, CSCAT: The Compaq 
Supply Chain Analysis Tool. Winter Simulation 
Conference, Vol. 1, pp 1201-1206. 

Jain, S., Lim, C.C., Gan, B.P., Low, Y.K., Dec 1999, Criti-
cality Of Detailed Modeling In Semiconductor Supply 
Chain Simulation. Winter Simulation Conference, 
Vol.1, pp 888-896. 

Kempf , K., Knutson, K., Fowler J. W., Armbruster, B., 
Duarte, B. M., Babu, P., April 24-25, 2001, Fast And 
Accurate Simulations Of Physical Flow In Demand 
Networks. Proceeding of International Conference on 
Semiconductor Manufacturing Operational Modelling 
an Simulation, Seattle, WA, pp 111-116. 

Kitagawa, T., Maruta, T., Ikkai, Y., Komoda, N., Aug 24-
26, 2000,  A Description Language Based On Multi-
functional Modeling And A Supply Chain Simulation 
Tool. 4th  IEEE International Workshop, pp 71–78. 

Kulkarni, G. V.,1995, Modelling And Analysis Of Stochas-
tic Systems. 1995 Edition. 

Law, A. M., Kelton, D. W.,1991, Simulation Modelling 
And Analysis. Second Edition. 

Lee, H. L., Padmanabhan, V., and Whang, S., April 1997, 
Information Distortion In A Supply Chain: The Bull-
whip Effect.  Management Science, Vol. 43, No. 4, pp 
546-558.  

Leemis, L., Dec 2000, Input Modeling.  Winter Simulation 
Conference, Vol. 1, pp 17-25. 

Maltz, A. B., Grenoble, W. I., Rogers, D. S., Baseman, R. 
S., Grey, W. and Katircioglu, K .K., Lessons From The 
Semiconductor Industry. Retrieved March 10, 2001 
from the World Wide Web: http://www.man 
ufacturing.net/scl/lessons/james.html 

http://www.man ufacturing.net/scl/lessons/james.html
http://www.man ufacturing.net/scl/lessons/james.html


Duarte, Fowler, Knutson, Gel, and Shunk 

 
Maruta, T., Ikkai, Y., Komoda, N., May 1999, Simulation 

Tool Of Supply Chain Model With Various Structure 
And Decision Making Processes. 7th IEEE Conference, 
Vol. 2, pp 1443-1449. 

Maskell, B., 2001, The Age Of Agile Manufacturing. Sup-
ply Chain Management: An International Journal, 
Vol. 6, ISSN 1359-8546. 

Ramberg, J. S., Dudewicz, E. J., Tadikamalla, P. R., 
Mykytka, E. F., May1978,       A Probability Distribu-
tion And Its Uses In Fitting Data. ASQC Chemical Di-
vision Technical Conference. 

Rose, O., Jan 1999, Estimation Of The Cycle Time Distri-
bution Of A Wafer Fab By A Simple Simulation 
Model.  In Proceedings of the SMOMS '99 (1999 
WMC), pp. 133-138. 

Schunk, D., Dec 2000, Using Simulation To Analysis Sup-
ply Chains.  Winter Simulation Conference, Vol. 2, pp 
1095-1100. 

Shankar, A., Kelton, W., Dec.1999, Emperical Input Dis-
tributions: An Alternative To Standard Input Distribu-
tions In Simulation Modeling. Winter Simulation Con-
ference, pp 978-985. 

Shirodkar, S., Dec.1999, A Modular Approach For Model-
ing And Simulating Semiconductor Supply Chains. 
Masters thesis at Arizona State University.  

Stevens, J., 1989, Integrating The Supply Chain. Interna-
tional Journal of Physical Distribution & Material 
Management, Vol. 19, pp 3-8. 

Towill, D., 1996, Industrial Dynamics Modeling Of Supply 
Chains. International Journal Of Physical Distribution 
And Logistics Management, Vol. 26, No.2, pp 23-42.  

Towill, D. R., 1995, Time Compression And Supply Chain 
Dynamics. Logistics International, Sterling publica-
tions, London,  pp 43-7. 

Turner, S., Gan, P., 2000, Adapting A Supply Chain Simu-
lation For HLA. 4th IEEE International Workshop, pp 
71-78, Aug. 24-26. 

AUTHOR BIOGRAPHIES 

BRETT MARC DUARTE received his Master’s degree 
in Industrial Engineering from Arizona State University in 
May 2002. He has a  specialization in manufacture of 
semiconductors, and his interests lie in simulation and 
modeling, with an emphasis on supply chain management 
and integration. His email address is <Brett. 
Duarte@asu.edu> 

JOHN W. FOWLER is an Associate Professor in the In-
dustrial Engineering Department at Arizona State Univer-
sity. Prior to his current position, he was a Senior Member 
of Technical Staff in the Modeling, CAD, and Statistical 
Methods Division of SEMATECH. He received his Ph.D. 
in Industrial Engineering from Texas A&M University and 
spent the last 1.5 years of his doctoral studies as an intern 
at Advanced Micro Devices. His research interests include 
modeling, analysis, and control of semiconductor manufac-
turing systems. Dr. Fowler is the co-director of the Model-
ing and Analysis of Semiconductor Manufacturing Labora-
tory at ASU. The lab has had research contracts with NSF, 
SRC, SEMATECH, Infineon Technologies, Intel, Mo-
torola, ST Microelectronics, and Tefen, Ltd. He is a mem-
ber of ASEE, IIE, IEEE, INFORMS, POMS, and SCS. His 
email address is <john.fowler@asu.edu> 

KRAIG KNUTSON is an assistant professor in the Del E. 
Webb School of Construction at Arizona State University. 
He holds a bachelor’s and master’s degree in construction 
and a Ph.D. in industrial engineering from Arizona State 
University. His research interests are related to the design, 
simulation and optimization of manufacturing systems and 
construction processes. He is a member of IIE, INFORMS, 
AACE, AIC and ASCE. 

ESMA GEL is currently Assistant Professor of Industrial 
Engineering at Arizona State University. Her research in-
terests are stochastic modeling and control of manufactur-
ing systems and her current work is on agile workforce 
policies in various production environments. She is a 
member of INFORMS, IIE and ASEE. She completed her 
Ph.D. studies in 1999, at the Department of Industrial En-
gineering and Management Sciences of Northwestern Uni-
versity where she also received her M.S. degree in 1996. 
She earned her B.S. degree in Industrial Engineering from 
Orta Dogu Technical University, Ankara, Turkey and was 
awarded the Walter P. Murphy Fellowship by Northwest-
ern University for graduate study in 1994. 

DAN SHUNK is a Full Professor of Industrial Engineering 
at Arizona State University and former Director of the 
CIM Systems Research Center. He is currently pursuing 
research into global new product development, model-
based enterprises and global supply chain. His latest book 
is Integrated Process Design and Development, an Irwin 
publication. Dr. Shunk studied at Purdue where he received 
his Ph.D. in Industrial Engineering in 1976. He is co-
founder of the USAF Integrated Computer Aided Manu-
facturing (ICAM) Program where he launched such indus-
try standards as IDEF and IGES, former manager of Indus-
trial Engineering at Rockwell, former manager of 
manufacturing systems at International Harvester, and 
former VP-GM of the multi-million dollar Integrated Sys-
tems Division of GCA Corporation. Dr. Shunk has served 
on the Board of Advisors of CASA of the Society of 
Manufacturing Engineers, and chaired CASA in 1993. He 
helped Motorola conceive Motorola University and has 
served on their faculty since 1984. He is on the Editorial 
Board of the Agility and Global Competition Journal and 
the International Journal of Flexible Automation and Inte-
grated Manufacturing. He is an active member of the Inter-

mailto:Brett. Duarte@asu.edu
mailto:Brett. Duarte@asu.edu
mailto:john.fowler@asu.edu


Duarte, Fowler, Knutson, Gel, and Shunk 

 
national Federation of Information Processors (IFIP) Com-
mittee 5.3 on CIM.  He is a senior member of SME and 
IIE. He won the 1996 SME International Award for 
Education, the 1999 and 1991 Industrial Engineering Fac-
ulty of the Year award, the 1989 SME Region VII Educa-
tor of the Year award, chaired AutoFact in 1985, and won 
the 1982 SME Outstanding Young Engineer award. For the 
year 2000 he has been nominated as the US Alternate to 
the Intelligent Manufacturing Systems project. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1327
	02: 1328
	03: 1329
	04: 1330
	05: 1331
	06: 1332
	07: 1333
	08: 1334
	09: 1335
	10: 1336


