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ABSTRACT capitalization is plotted against the log-ranks; meanwhile

for non-growth stocks such a phenomenon should not be
Continuing the previous work on growth stocks, we propose expected, primarily because of the very slow convergence
a diffusion model for growth stocks. Since growth stocks of the birth-death process to its steady state distribution due
tend to have low or even negative earnings and high volatility, to a low volatility. Therefore, the discrete model also shed
it is a great challenge to derive a meaningful mathematical light on an empirically observed puzzle that there is an
model within the traditional valuation framework. The “almost” linear relationship between the logarithm of the
diffusion model not only has economic interpretations for market capitalization of growth stocks and the logarithm of
its parameters, but also leads to some interesting economictheir associated ranks, which was first reported in the Wall
insight — the model postulates mean reversion (with a high Street Journal (Dec. 27, 1999) only for internet stocks (this
mean reverting level) for growth stocks, which could be observation was summarized later in a report by Mauboussin
useful in understanding the recent boom and burst of the and Schay, 2000). Translating into a probabilistic language,
“internet bubble”. Simulation and an empirical evaluation of this empirical puzzle means that the size distribution of the
the model based on the size distribution are also presented.growth stocks almost follows a power law, and it is not so
The simualtion and numerical results are quite encouraging. for ordinary stocks.

This article furthers the study of growth stocks, attempt-

1 INTRODUCTION ing to find a continuous diffusion model for growth stocks.

We achieve it by first consider the weak convergence of
Although the components of growth stocks may vary over the birth-death processes; then, guided by that limit, we
time (perhaps consisting of railroad and utility stocks in investigate a general class of diffusion processes to identify
the early 1900’s, and biotechnology and internet stocks the processes that can lead to the size distribution observed
in 2002), studying their general properties is essential to for growth stocks.
understand financial markets and economic growth in the The continuous diffusion model also leads to some
past, at present, and perhaps in the future too. interesting economic insight. Not only do the parameters

Motivated by ljiriand Simon (1977) on size distribution,  in the model have some economic interpretations (see, e.g.,
Kou and Kou (2001) proposed a discrete model for growth Remark 2 in Section 6), but also the model postulates mean
stocks (e.g., biotechnology and internet stocks in 2000 and reversion for growth stocks withtdgh mean reverting level.
utility and railroad stocks in the early 1900's). The model This may be useful in understanding trexent boom and
only uses a unique feature of growth stocks — their high burst of the “internet bubbles”
volatility. Neither earnings (which are not available for most
of growth stocks) nor forecasted sales numbers (whicharenot2 THE MODEL
only unreliable, as evident in the event of the recent “internet
bubble”, but also lack a clear mathematical relationship with 2.1 Review of the Discrete Model
stock prices) are used in the model.

In particular, it is shown in Kou and Kou (2001) that if  The birth-death process used in Kou and Kou (2001) is a
the market capitalization of the stocks is modeled as a birth- linear birth-death process with immigration and emigration.
death process, then, in the steady state, the model leads toMore precisely, consider at tintea stock with total market
an almost linear curve for stocks with high volatility (such capitalizationX (), taking values in non-negative integers
as biotechnology and internet stocks) when the log-market- X(t) =i, i = 0, 1, 2,.... (The unit of X(z) could be,
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for example, millions or billions of dollars.) The model
postulates that giveR (¢) being in state, the instantaneous
changes aret — i +1, withrateir+g,i > 0;i — i — 1,
with rateiu + h,i > 1. The two parameters and u rep-
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to a limiting diffusion process that satisfies the stochastic
differential equation

dX(1) = (—02X (1) + ac®dt + o /X ()dW (1), (1)

resent the instantaneous appreciation and depreciation rates

of X (r) due to the market fluctuation; the model assumes
that they influence the market capitalization proportionally
to the current value. In general, because of the difficulty of
predicting the instantaneous upward and downward price
movements, for both growth stocks and non-growth stocks
A and . must be quite closel/n ~ 1. In addition, for
growth stocks, both. and . must be large, because of the
high volatility. The requirememt < u is also postulated to

with X(0) = x > 0, whereW(¢) is a standard Brownian
motion. The following proposition makes the intuition
rigorous.
Proposition 1. Under suitable regularity conditions, the
birth-death process converges weakly to the diffusion process
X (¢) in (1).

See Kou and Kou (2002) for a list of the regularity
conditions, the precise meaning of “converges weakly”, as

ensure that the birth-death process has a steady state distriwell as the proof of the proposition.

bution. The parameter models the rate of increase ¥\r)

due to non-market factors, such as the effect of additional
shares being issued through public offerings, or the effect
of warranties on the stock being exercised (resulting in new
shares being issued). The paramétenodels the rate of
decrease inX(r) due to non-market factors, such as the
dividend payment; for most of growth stocks~ 0, as no
dividends are paid.

2.2 Weak Convergence

In this paper we want to derive continuous diffusion models
for growth stocks. An intuitive approach is to consider the
limit of the discrete model, with the jump size being 1 and
the infinitesimal incremerd X, satisfying

1,  with prob. (AX (z) + g)dt + o(dr)
dX(t) =4 -1, with prob. (uX () + h)dt + o(dt)
o, otherwise.

Now if we let the jump size bas, then we have a birth-death
process with

As, with prob. (A X (¢) + g)dt + o(dt)
dX () = —As, with prob. (uX(t) + h)dt + o(dt)
0, otherwise.

The mean ofl X (¢) iS[(A— ) X () + (g —h)]As -dt +o(dt);
the variance of X (¢) is [(A4u) X; +(g+h)]As?-dt+o(dt).

If we let As — 0 in such a way thaix — u)As —
—e02 <0, (g —h)As — ac? > 0, (A + pu)As? — o2,
and (g + h)AsZ — 0, then the limiting stochastic process
satisfies

EWdX ()| F) = (—e0?X (1) + ac)dt,

vardX ()| F;) = 02X (t)dt.

With the above parameterization, it is intuitively reason-

The Model. Proposition 1 motivates us to consider a
general model

dX (1) = (—e02X () + acddt + o XY )dW (1), (2)
with X (0) = x > 0, wherey > 0. Note thatwhey = 1/2,
we have the limiting diffusion process in Proposition 1.

Of course, without the previous model based on the
birth-death process, it would be very hard to imagine a
model like (2). Therefore, the discrete birth-death process
provides a nice intuition for the continuous diffusion models.
However, the diffusion model has its own merits: (1) Gen-
erally speaking, diffusion models can lead to many closed
form solutions, whence have better analytical tractability
than birth-death processes; (2) it is possible to do riskless
hedging for diffusion models, while it is impossible to do
so for many discrete models.

2.3 High Mean Reverting Level

Before we analyze the model, we must answer a question
first: whether the model (2) makes any economic sense.
The most interesting feature of the model (2) is that it
has mean reversion which is somewhat unusual for models
of stock prices. However, if we assume that 0, then the
mean reverting leveal /¢ is high. The high mean reverting
level effectively yields that, although ultimately the process
is mean reverting (in both transient and steady states), within
a reasonable time period it may bery difficultto observe
the mean reverting phenomenon (even in the steady state).
Once we accept this model with a high mean reverting
level, then it is easy to see that the high mean reverting also
provides some interesting insight abdahe recent boom
and burst of the “internet bubble”in other words “what
goes up must comes down eventually”, but it may take a
while to do so (even if the process is already in the steady
state). Note the difference between mean reversion and
convergence from the transient states to the steady state.
The bottom line is that growth stocks and non-growth

able to expect that the birth-death process would converge stocks may be two different animals, and one may have
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mean reverting and the other may not. Therefore, we shall
take this assumption as a key feature of the model:
Assumption: ¢ ~ 0.

Note that, due to the problem of measurement units, it
makes more sense to talk about the relative magnitude of
¢. In other wordsg ~ 0 means that is small relative to
other parameters such asando?.

From a finance viewpoint, this assumption also makes
the current model different from the CEV model in Cox and
Ross (1976) and CIR model (or the Feller process) in Cox,
Ingersoll, and Ross (1985). To be more precise, (1) our
model has mean reversion while the CEV model does not.
(2) Wheny = 1/2, the same process is called CIR model
for interest rates, but there are some major differences —
for example, the mean reverting levels are quite different.
More importantly, here we point out that the same process
with a small negative driftg is a very small number) and
a high mean reverting level can be used to model growth
stocks, giving an explanation to the size distribution puzzle
(see Section 5) as well as modeling the boom and burst of
the growth stocks.

The current model has several attractive features. (1)
It leads to an explanation of the size distribution puzzle,
as will be outlined in Section 4. (2) Because the current
diffusion model has a simple form, it leads to an analytical
expression of the steady state distribution which in turn
yields a simple way to price growth stocks relative to their

peers; see Sections 3 and 5.2. (3) Recent events related to

the boom and burst of the “internet bubble” further indicate
the usefulness of introducing the concept of high-level mean
reverting to the analysis of growth stocks.

3 PROPERTIES OF THE DIFFUSION MODEL

In general, unlesg = 1/2 (called Feller process) or = 1
(called Wong process) it is impossible to write down the
transition density ofX (z) in (2) explicitly. However, we
can compute the steady state distributionXofr) as the
following.

Theorem 1. As r — oo, the distribution of the solution
X (r) of (2) converges to a steady state distribution.

(&) Wheny > 1, f(x), the density of the steady state
distribution, is given by

fx) = Cox™2%
&
X
2y — 2

2-2y 4
2y —1

- exp(2( 1727},

The tail probability has an asymptotic expression
F(z) := P(X(c0) > 2) = CzV%, asz — oo,
where C2 and C are two normalizing constants.
Here and hereafter = b means that lina/b = 1.
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Wheny = 1, f(x) = Cox 2A+e)e=2a/x \ith
the tail probability F(z) = Cz~"%, for some
constantC, and C.
When 2 <y < 1,

(b)

(©)

x2—2y)

fx)

Cox™2 exp(—lL

with the tail
cz 1t exp(yL_lzzfz”).
Wheny = 1/2, f(x)
tail probability F(z)
constantC, and C.
When 0< y < 1/2,

probability  F(z)

= Coe~2%x2a=1 \wjith the
= Ce %7;20-1 for some

(d)

()

x2—2y)

fx)

CZX_ZV eXp(— lL

2a 12
exp(— — 7y,
& 2 —1° )

and

~

F(2) cz 1t eXp(—Lzz’z")
1-y

Z172y)7

. eXF(—

2y —1
for some constant€, andC.

Here we only show Case (d), which is the easiest one to
prove. The proofs for the other cases are more complicated;
see Kou and Kou (2002). Far = 3, X (1) is the well-
known square-root process (see Karlin and Taylor, 1981,
p. 334), whose steady-state distribution is well known to
be gamma with density (x) = Ce=%*x%~1 |t follows

easily that the tail probability (z) = Ce~26272¢-1,

4 GENERAL PROPERTIES OF
SIZE DISTRIBUTION

ConsiderM (hereM is an unknown quantity) growth stocks
governed by the same diffusion process (2), among which
the K largest stocks (in terms of their market capitalization)
are included in a group to be studied. Suppose we rank the
market capitalization from 1 t& and denote the resulting
ranked values aX (1), X(2), ..., X(k), With X(1) being the
largest, andX ) the second largest etc. Then the empirical
tail distribution F (x) (the empirical version of’) evaluated

at X is simply F(X¢) = i/M, i = 1,..,K. Now
assume

(A1) The diffusion process has reached the steady state.
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(A2) For each stock included in the group, the market
capitalization is large; in other words, evéiix)
is large.

Then we can apply the result of Theorem 1 to study the
size distribution of growth stocks. It is worth pointing out
that assumption (A2) implies that the model is only valid
for large-cap growth stocks. According to Theorem 1, there
are five different cases for the size distribution. Table 1
below summarizes the size distribution under the five cases.

Table 1: Size Distribution in Five Cases.

Cases Slope in the size distribution:
1
y=1 T
% <y<1l -1
1 __1
=2 T—2a
0<y <3 Nonlinear pattern

The detailed derivation of the above result is given
in Kou and Kou (2002). Here we only give a deriva-
tion of Case (d),y = 1/2, as it is the simplest one. By
Theorem 1, in the steady state, for largelogF(z) ~
—2¢z — (1 —2a)logz + C, for some constan€. There-
fore, empirically with X;) = z, we shall expect that
log F (X)) =log(i/M) ~ —2e Xy —(1—2a)log X ;y+C.
Rearranging the terms above yields

2¢e

0gi — ——
SR

log Xy ~ Cu — 7~

Xiy (3
for some constant, that depends oM. Hence, the slope
in the size distribution is- .

Equation (3) provides a link between the market cap-
italization of the stocks and their relative ranks within the
group. However, since it involves a nuisance paraméigr
a better equation can be obtained by eliminatifyg first,
as is typical in many standard statistical procedures. This
can be done by taking the difference of &gy —log X (1):
forl<i <K,

2e
—, X0 —Xa). @)

1I0'
agl 2

1-2 1

Thanks to the assumptioft ~ 0, the last term in (4) is
generally negligible.

5 SIZE DISTRIBUTION FOR BIOTECHNOLOGY
AND INTERNET STOCKS

5.1 Explaining the Size Distribution Puzzle

For biotechnology and internet stocks, the empirical ev-
idences suggest that the slope of the size distribution is
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always less thar-1. Therefore, in view of the result of the
previous section, for biotech and internet stogkeust be
1/2 in the model (2). In other words,

dX (1) = (—e0?X(t) + ac®dt + o/X(t)dW (), (5)
with X (0) = x > 0,which corresponds to the Feller process
also used in finance as the CIR model for the spot interest
rate (but here we have a high mean reverting level).

Remark 1. This, however, does not imply that for
other growth stocks, such as railroad and utility stocks back
in the 1900's, or for any new groups of growth stocks in
the future,y must be ¥2. It only says that currently for
biotechnology and internet stocksappears to be /2.

Now recall for large growth stocks (thus satisfying
assumption A2) we have derived in the previous section
the steady state size distribution (4), which explains why a
plot of log-market-capitalization versus log-rank displays a
linear pattern. However, it is important to note that the size
distribution in steady state is only relevant if the convergence
from the transient states to the steady state is fast enough,
i.e. if the convergence can be observed in a timely fashion.
A good measure of the convergence speed is the decay
parameter defined by

§:=sufa = 0: p(t,x,y) = p(y) = O(e™™), Vx > O},

wherep(t, x, y) = P(X(¢) € dy|X(0) = x) is the transition
density ofX (r) andp(y) is the steady-state density function.
Immediately from an expansion in Karlin and Taylor (1981,
p. 334), we geb = g0

Two comments are needed. First, it is well known
that, due to the problem of measurement units, it is better
to compare the relative magnitude of differe¥s, rather
than focusing on the absolute magnitudespfvhich may
not provide much information. More precisely, comparing
decay parameters may give us some idea of different conver-
gence speeds among various stochastic processes. Second,
the decay parametér affects the convergende an expo-
nential way in other words, a small difference i can
have a remarkable effect on the speed of convergence.

This helps to explain why the almost linear relationship
between the logarithm of the market capitalization and the
logarithm of the ranks does not appear for non-growth stocks.
There are at least two reasons. First, the mean reverting
diffusion model may not be valid for non-growth stocks.
Second, even if the model is valid for non-growth stocks, in
order to empirically observe such a linear phenomenon as
implied by (4), the convergence from the transient states to
the steady state must be fast enough. This in turn depends
on the magnitude of the decay parameter

Itis well known the volatility for growth stocks is much
larger than that of the non-growth stocks. For example,
Kerins, Smith, and Smith (2001) show empirically that the
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volatility of internet stocks may be at least five times that
of traditional stocks. In the model (5), & of growth
stocks is five times larger, them? is 25 times larger!
This leads to in a much larger decay ratéwhich affects

the convergence in an exponential way). Therefore, for
non-growth stocks, although in the steady state plotting the
logarithm of the market capitalization against the logarithm
of the relative ranks might display a linear relationship, the
linear relationship may not emerge at all within a reasonable
amount of time, due to the slow convergence from the
transient states to the steady state.

1000 1500 2000
L L L

market capitalization (in millions)

500
L

T T T T T T
0 2 4 6 8 10

time (in years)

5.2 Relative Pricing of Growth Stocks Figure 1: A Simulated Sample Path of the Model

Equation (4) provides a way to price a growth stock relative
to its peers within the group (the contribution of the peer
group is to provide an estimate afande, and the relative
ranks) by running a nonlinear regression subject to the
constraintsa > 0 ande > 0. Once these parameters are
obtained, the theoretical market capitalization of the stock
can be calculated according to equation (4), with the input
being its rank.

To use the model to relatively price large-cap growth
stocks, it is important to keep in mind that the stocks within
the peer group should have similar parameteeande (for
example, it may not be sensible to group biotechnology
stocks with internet stocks as their parameters may be quite
different). However, in principle, the relative pricing does
not requirec? to be the same; the only requirement is
that 02 must be very large, as2 only controls the speed
of convergence from transient to steady state and does not
enter the equation (4).

that it shows a clear linear trend, a pattern also predicted
by the diffusion model. In contrast, for other non-growth
stocks with low volatility, such as Dow transportation and
saving and loan stocks, the plot suggests that the pattern
of the size distribution is far from linear, which is again
expected from the model here.

Table 2 reports the estimatédandé from (4), as well
as theR? for six trading days, which represent days from
January 2, 1998, and every 100 trading days onward. Note
that, comparing tai, the estimated’s are all very small,
confirming our earlier assumption~ 0. The R? being
at least 97% directly supports the prediction of the model.
The regression results of internet stocks are quite similar to
those of biotechnology stocks, and are omitted here. Table
3 reports the estimated parameters andibeas of August
22, 2001 (after the burst of the “internet bubble”). Again
the R? is at least 96%. The fitting is good even under this
severe market downturn.

6 SIMULATION AND NUMERICAL Table 2: Estimated ande for Biotechnology Stocks

ILLUSTRATION a 2 R?

_ , o Jan 2,98  0.0400 .805x 10°1° 97.8%
To this whether the model (1), fits our intuition of growth Aug 7,98 0.0825 @60x 10710 9829
stocks, Figure 1 provides an illustration of the model by Mar 15, 99 0.1475 285x 1010 983%
simulating a sample pat of (1) for about 10 years. The Oct 15. 99 0.1360 B60x 10-10 992%
parameters used here aréf(0) = 500, e62 = 0.001, May 19, 00 0.0985 ©20x 10°1° 986%

2 p— — H . o .

ao® =05, ando = 100%. Dec 21,00 0.1325 .826x 1079  97.5%

The sample path suggests two things: (1) The sample
pathis quite vqlatile. (2)AIthough'Fhe sample path may have Table 3: TheR? and Estimated Parameters for the
amean reversion, one may not notice the meanreversioneven  pocent Market (August 22, 2001)
within 10 years, which confirms the theoretical property of - - >
the model that mean version may be difficult to be observed. . a i - R 5
Note the difference between mean reversion (in both transient Biotech Stocks  0.096 .815x 10 6 96.4 0/0
and steady state) and convergence to the steady state. Internet Stocks 0181 .715x 107 985%

To illustrate the results of the size distribution, for
biotechnology stocks we plot the logarithm of their market Remark 2. As we mentioned before, the parameter
capitalization relative to the largest biotechnology stock a attempts to measure the magnitude of money inflow to
versus the logarithm of their ranks, i.e. 04;)/X1)) the stock due to non-market factors, such as exercising of
versus log. The list of 139 biotech stocks is given in  employee stock options and public offering of new/additional
Appendix C in Kou and Kou (2001). The result indicates shares, etc. Itis interesting to see that in the above numerical
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examplesa tends to be bigger between March 1999 and Stocks”, appeared iRISK magazine 2001, December
October 1999 (when the activities of public offerings were 14, S34-S37.

quite frequent), and again around December 2000 (when Kou, S.C. and S.G. Kou. 2002. A diffusion model for
many employees began to exercise their stock options at growth stocks. Preprint. Harvard University and

the beginning of the current bear market). Columbia University. Available fromcwww.ieor.
columbia.edu/"kou>

7 DISCUSSION Mauboussin, M.J. and A. Schay. 2000. Still powerful: the
internet’s hidden order. Equity research report. Credit

Under the model (2), it is ready to derive option pricing Suisse First Boston Corporation, July 7, 2000.

formulae. This is because under the risk neutral measure

P, the dynamics becomes the CEV process; thus, one canAUTHOR BIOGRAPHIES
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