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ABSTRACT 

The complexity of technical systems that need to be de-
signed and researched is gradually increasing. In order to 
be competitive and to satisfy the demands of the market, 
thorough analyses and early risk assessment of the systems 
are required. System investigation might involve some 
changes that might entail the redesigning or even redevel-
oping of some parts of the system. Modifications are usu-
ally expensive, time consuming and risky. Consequently, 
there is a need for methods that examine the possible ef-
fects of the modifications before investing in the alteration 
of the system. There are four methods that are used to 
study the behavior of a system: simulation, emulation, real-
time control and prototyping. In this paper we discuss an 
approach for a distributed architecture that supports these 
four testing methods and the interaction between them. 

 
1 INTRODUCTION 

One of the aims of a simulation study (Zeigler et al 2000) 
is to provide performance indicators about real systems be-
fore investing in their development or adaptation. In this 
paper, we look at simulation studies for technical systems 
with complex control components. Both during simulation 
and in reality, the execution process must be controlled and 
monitored in order to prevent and solve problems that 
might occur. Therefore, next to the equipment (resources) 
that provides the services, additional control systems are 
needed that control the equipment. In order to fulfill their 
role, the equipment and the control systems should col-
laborate and communicate in a well-defined and well-
designed manner.  

The development of a complex real system which is 
controlled by a separate control system may include one or 
more of the following phases, which aim to test the system 
during different design stages (Auinger et al. 1999). These 
four design stages are also illustrated in figure 1: 

 
1. Full simulation: includes the simulation of both 

the equipment and the control systems; 
2. Real-time control: uses real equipment and simu-

lates the control systems (Verbraeck et al. 2000); 
3. Emulation: simulates the equipment and uses real 

control systems (Mueller 2001); 
4. Prototyping: involves tests with real equipment 

and real control systems. 
 
Full prototyping seems the most realistic testing possi-

bility, although it is quite expensive to build and experi-
ment with the whole prototype system, especially because 
it involves the risk of failures if the possibilities of its de-
sign are not tested thoroughly beforehand. Full simulation, 
on the other hand, does not involve so high costs, however, 
it may disregard some phenomena that are present in the 
real system or contain additional factors that might influ-
ence the outcomes. Emulation and real-time control have 
the advantage that they can be carried out in a cheaper way 
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Figure 1: The Four Possible Ways of Testing Systems 

 

than full prototyping, and stay closer to reality and are 
therefore less time-consuming than full simulation. It is 
important to note that both the development of the real sys-
tem and the development of the software control system 
are very expensive. Most organizations are reluctant to in-
vest when the system is still in its design stage. 

The testing stage (or experimentation in full simula-
tion studies), where the interaction between the control 
system and the equipment is studied, is meant to measure 
the performance indicators of the system in order to be able 
to make changes in the equipment part or the control part 
of the system. Testing systems must reflect real situations 
as much as possible. For this reason different requirements, 
regarding the components of the system and the communi-
cation between them, must be satisfied. First of all the 
equipment and the control systems should behave in the 
same way as in reality – although it is difficult to indicate 
on beforehand on which aspects the similarity should be 
maximal. Next, the communication between various soft-
ware and real components must achieve the same perform-
ance independently of the complexity of the system. The 
scalability of the system and the bandwidth of the commu-
nication should influence the performance of the whole 
system in a similar way as in reality. In addition, interrupt-
ing the execution of the process might entail some difficul-
ties. A well-defined recovery mechanism should be offered 
in order to prevent from loosing the information, just like 
in reality. Furthermore, the robustness of the system must 
enable the continuation of the execution (after interruption) 
without any problem and with minimal user interference. 
All these requirements must be satisfied in order to achieve 
an effective communication, and to have a valid represen-
tation of a ‘real’ technical system. 

The main problem we have to deal with when linking 
different simulation and real components is to find an ap-
propriate method for connecting these elements together. 
The protocols, speed, and recovery mechanisms used in re-
ality might differ from those that are provided by simula-
tion languages, leading to different results in each of the 
testing situations of figure 1. In this paper we introduce a 
taxonomy of connecting components to the system through 
a backbone architecture, and we analyze different possibil-
ities for attaching models and real components. We also 
discuss how (new) communication protocols could be used 
to solve the communication between various components 
developed in different environments. 

The paper is structured as follows. In section 2 we in-
troduce the basic concepts and the requirements of the 
FAMAS Simulation Backbone project. Section 3 describes 
the logical and technical structure of the backbone 
architecture. In section 4 we introduce an approach for 
backbone for connecting real-time control and emulation 
systems. Conclusions can be found in section 5. 

2 THE FAMAS PROJECT 

The FAMAS (First All Modes All Sizes) project provides 
tools for designing the container terminals for the future 
Port of Rotterdam (FAMAS 2001). Several simulation 
groups develop different functional areas of the new part of 
the port that will host the container terminals. Various new 
parts will be designed and developed in different simula-
tion environments based on the experience of the modeling 
teams. The aim of the FAMAS Simulation Backbone is to 
provide a flexible architecture for the interoperability 
among various distributed simulation models (Boer et al. 
2002). The success of the performance of container han-
dling in the container terminals depends very much on the 
performance and functionality of the control strategies and 
algorithms. Therefore we have to carry out tests of a com-
plex system, that is composed of a variety of interacting 
real and control subsystems, in a comprehensive way. 

2.1 The Basic Concepts 

This section aims to introduce some indispensable con-
cepts of the harbor processes related to container handling. 
We distinguish three important basic processes that use the 
container: Storage, Transport and Transfer. 

All the processes are defined as functions, which con-
vert the actual state of the system into a new one. The 
Storage function (∆S, ∆t) executes a change that leads the 
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physical container into a new state S during a storage time 
∆t. The Transport function (∆P, ∆S, ∆t), next to the modi-
fication of the container state and time moment, involves 
the change of an additional state, namely the position P of 
the container. Finally, the Transfer function (∆M, ∆P, ∆S, 
∆t) is an extension of Transport function that entails the 
transformation of the involved modalities M (ships, trucks, 
trains, AGV’s, cranes, etc.) as well.  

The basic processes can be carried out by several re-
sources (R). Resources refer to personnel, equipment or 
space. For example, a quay crane performs a transfer func-
tion, an AGV a transport function and a carrier a sequence 
of transfer / transport / transfer functions. At the individual 
level (one resource) a resource control might be needed.  

More instances of the same resource form a so-called 
resource system (RS). When more resources are connected, a 
resource control is needed that regulates the collaboration of 
similar resources. Different resource systems can be com-
bined into multiple resource systems (MRS), with a coordi-
nating and/or hierarchical control function. A special type of 
a multiple resource system is the terminal (T), where the sys-
tem is a geographically bound, autonomous organizational 
unit with connections to external transport functions. 

When we combine a set of terminals to a co-operating 
complex of organizational units, we have a terminal com-
plex (TC). In contrast to single terminals TCs require the 
presence of some inter-terminal transport functions (ITT) 
and usually an overall terminal complex management func-
tion. The ITT system combines at least two terminals, 
therefore it is located on the same hierarchical level as the 
terminals. Figure 2 sketches the hierarchy of system com-
ponents for the port project. 
 Resources can be exchanged at any hierarchical level, 
either between resource systems or between terminals. One 
resource belongs to one and only one resource system at a 
time. When the resource – e.g. an AGV or a quay crane – 
moves from one system into another it performs a transfer 
from one resource system into the other. 
Information that arrives and that is sent by a compo-
nent is defined as a flow. We distinguish two different 
types of flows that are handled by the system: control flow 
and physical flow. Control flows are commands that regu-
late the functioning of the system and are processed by 
control algorithms. Physical flows refer to – information 
on – real objects being transferred between two subsystems 
(Figure 3). In reality these transfers of real objects or state 
changes of components will trigger sensors, which lead to 
information being sent to the control algorithms. 

2.2 Requirements of the FAMAS Project 

The FAMAS Backbone Architecture is designed in a way 
as to satisfy the following requirements (Boer et al. 2002): 

 
• Distributed execution: this can be achieved by a 

well-defined interoperability between different 
simulation components. The interoperability in 
the FAMAS Simulation Backbone is provided by 
a low-level message passing mechanism. 

• Optimal communication: effort is required to at-
tain an effective communication speed. 

• Stand-alone and distributed testing: refers to the 
possibility to test distributed simulation models 
developed by different parties as in standalone as 
in distributed environment. 

• Package independence: this requirement focuses 
on combining simulation models implemented in 
different simulation packages (e.g. Arena, eM-
Plant, Enterprise Dynamics) and programming 
languages (C++, Java, Delphi, etc.). The charac-
teristics mentioned so far reflect the grade of 
flexibility of the architecture and reusability of the 
simulation models. 

• Structure transparency: aims to give some in-
sights into the architecture for the groups who in-
tend to develop models or support subsystems for  
 

 

 
Figure 2: Hierarchical Concepts of the Port Processes 
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Figure 3: The Control and Physical Flows 
 
it, in order to provide interoperability. The trans-
parency helps the modeler to couple the simula-
tion models effortlessly. 

• Hierarchical structure allows for modeling, de-
sign, and development in a hierarchical manner. 
This feature is essential in the FAMAS project as 
the models might be developed at different levels 
of detail. 

3 CONNECTING COMPONENTS  
TO THE FAMAS BACKBONE 

This section introduces a taxonomy of connecting different 
components to the system. This classification helps to dis-
tinguish between different methods that can be used to at-
tach real systems and simulation components to the back-
bone. 

3.1 Connection at Logical Level 

During simulation several pieces of equipment and control-
lers are attached to the system. Equipment (resources) and 
controllers can be joined separately to the backbone. A re-
source can be linked together with its controller or, at a 
higher level equipment and controllers can form a federa-
tion and can be attached to the backbone as a single, com-
pound component. Based on these possibilities we distin-
guish between three methods that can be used to attach 
simulation models to the FAMAS Backbone architecture:  

 
• control-based connection; 
• function-based connection; 
• system-based connection. 
 

 In the control based connection (Figure 4), every sin-
gle control function (system controller) and execution 
function (resources or equipment) is separately connected 
to the backbone. Consequently, the backbone supports the 
communication between a resource (system) and its con-
trol. The grade of reusability of the resources is maximal in 
this case as each individual execution and control compo-
nent can be reached separately via the backbone. This 
method has however the disadvantage that it overloads the 
backbone. Moreover, high demands are put on the devel-
 

 
Figure 4: The Control Based Connection Structure 
 

oper, as he/she is required to take care of the connection of 
every single component to the backbone. Furthermore, this 
joining process might cause difficulties or even impede the 
hierarchical structuring (Figure 2), as all components must 
be developed as completely separated simulation models, 
which is usually not what the modelers want. A quay 
model, for instance, includes the quay cranes, while in this 
case, each quay crane and each control of a quay crane 
would be a separate model or system connected to the 
backbone.  

The function based connection (Figure 5) supports the 
attachment of complete systems (resources together with 
their controllers) to the backbone at any level of aggrega-
tion. Control and execution functions (the control system 
and the controlled system) are considered as a single sub-
system (federation) that needs to be attached to the back-
bone. The details regarding the connection and communi-
cation protocol between the equipment and controller are 
left to the modeler’s decision. Controlled and control ele-
ments might function on the same computer or in a distrib-
uted way. The communication between them is solved in a 
direct way, without making use of the backbone channels, 
consequently, the extraneous use of the backbone is han-
dled by this approach. The hierarchical structure, however 
is still not realizable. 

 

 
Figure 5: The Function Based Connection Structure 

 
 System based connection (Figure 6) supports the com-
bination of subsystem in a hierarchical way. It is in fact a 
restricted version of the function based connection, which 
allows for the attachment of systems at the terminal or ter-
minal complex level. During system based connection sets 
(federations) of resources and controllers are attached to 
the system as one single element. The modeler focusing on 
the backbone therefore does not have to bother with the de-
tails regarding the (hierarchical) realization of the subsys-
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Figure 6: The System Based Connection Structure 
 

tems that are attached to the backbone. In this way stan-
dard, reusable components can be defined and reused in a 
simple manner. The disadvantage of this method is that re-
sources (e.g. AGV’s) or controllers that communicate with 
a lot of other elements, might have to be included in more 
then one subsystem or model, because otherwise the struc-
ture of the subsystem might became too intricate.  

The high variety of the questions that needs to be an-
swered by the FAMAS port project requires a very flexible 
and transparent architecture. As individual projects might 
use models at any level (resource or terminal), the FAMAS 
Backbone should support the combination of all three con-
nection structures mentioned above. Although the control 
based connection structure provides maximal reusability, 
the drawback of this structure design lies in the overload of 
communication through the backbone architecture with 
real-time testing. Therefore, for the real equipment that 
need very frequent communications with other compo-
nents,  the function based connection is more advisable. 

3.2 The Technical Structure  
of the FAMAS Backbone 

The FAMAS Simulation Backbone Architecture is repre-
sented by technical and functional components. Whereas 
the functional components represent the simulation models 
themselves, the technical components provide common 
tasks used by the functional components.  

In Figure 7 we give a clear picture of the separately 
defined functional and technical components. There are 
five well-defined subsystems, namely the Run Control 
Subsystem, the Backbone Time Manager Subsystem, the 
Logging Subsystem and the Visualization Subsystem (Boer 
et al. 2002). The overall system consisting of both techni-
cal and functional subsystem is sometimes called a federa-
tion, where the subsystems that connect to the backbone 
are the federates. 
 
Figure 7: The Structure of the FAMAS Simulation Back-
bone Architecture 

 
The technical subsystems provide the following func-

tionality 
 
• Run Control controls the experiments: it starts, 

stops and periodically monitors the simulation 
process; 

• Backbone Time Manager (BBTM) synchronizes 
the simulation time among different simulation 
subsystems’ (Fujimoto 2000); 

• Logging aims to collect logging information from 
the distributed functional and technical compo-
nents into a central database; 

• Visualization provides separate or common visu-
alization views for the different subsystems or the 
entire simulation. 

4 THE EXTENDED FAMAS  
BACKBONE ARCHITECTURE 

So far the FAMAS backbone architecture was focused to 
connect simulation components. This section aims to ex-
tend the backbone as to accept the attachment of real time-
control and emulation systems as well.  

4.1 Connecting Simulation and Real  
Components in a Distributed Way 

In a complex system, such as a container port, there are 
thousands of pieces of equipment and controllers. Testing 
of complex systems like a port system might entail several 
difficulties, which, beside the general communication 
problems discussed in the first section, concern the variety 
of simulation environments, variety in the real equipment 
and differences between communication protocols. 

The simulation models or simulation components are 
usually developed by different modelers, using different 
concepts and different simulation environments. Thus, the 
communication between various environments should be 
enabled in order to provide collaboration. Equipment and 
simulation models support different communication proto-
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cols, therefore, different models can communicate only if a 
common protocol is worked out or several interfaces are de-
veloped, that allows for communication between any two of 
them. Due to the complexity of the system the elaboration of 
several interfaces might cause an explosion of the number of 
model-model or model-equipment protocols. 

Although the primary aim of the FAMAS Simulation 
Backbone is to provide a flexible architecture for the inter-
operability between various distributed simulation models, 
an extended version of this architecture should support the 
interaction with real components as well. The functional 
components of the advanced system consist of real control 
systems (e.g. PLC’s), and real equipment (e.g. Automated 
Guided Vehicle (AGV)), next to the simulation models and 
control programs. 

Figure 8 depicts the new architecture of the FAMAS 
Backbone System, which enables all the testing possibili-
ties illustrated in Figure 1, namely: simulation, emulation, 
real-time control and prototyping. The logical structure of 
the architecture should also support all the three structure 
designs (control based connection, function based connec-
tion and system based connection) as described in section 
3.1, in order to couple simulation and real systems at any 
abstraction level. 

 

 
Figure 8: Extended FAMAS Backbone Structure Contain-
ing Real Equipment and Controls 

4.2 Defining a Final Protocol for  
Effective Communication 

Communication between several different types of compo-
nents can be solved in two different ways. As a first ap-
proach one single, common protocol could be developed, 
that supports the communication between all the compo-
nents, indifferent of their original communication protocol. 
Another solution is to elaborate new protocols between any 
two types of components.  

Let us take the set of the protocols supported by the 
simulation packages (PSIM), real equipment (PREA) and real 
control system (PCONT).  
We distinguish four situations, regarding the commu-
nication protocols, as illustrated in figure 9: 

 
1. ∃ p∈ PSIM, PREA, PCONT then take p as a common 

protocol, 
2. ∃ p∈ PSIM, PREA  ∧ p∉ PCONT  then  

• Wrap PCONT in order to support protocol p 
• Wrap PSIM and PREA in order to talk a protocol 

p’∈ PCONT 
3. ∃ p∈ PSIM, PCONT  ∧ p∉ PREA  then  

• Wrap PREA in order to support protocol p 
• Wrap PSIM and PCONT in order to talk a proto-

col p’∈ PREA 
4. ∃ p∈ PREA, PCONT  ∧ p∉ PSIM  then  

• Wrap PSIM in order to support protocol p 
• Wrap PREA and PCONT in order to talk a proto-

col p’∈ PSIM 
 

 
Figure 9: The Set of 
Simulation, Emulation 
and Real-Time Proto-
cols 

 
The first situation with the current existing simulation 

environment will never occur. Our experience shows that 
no standardized communication protocol exists that can be 
easily used by any simulation language without wrapping. 

In other words we can state that: ∩
n

i
ip

1=

= ∅, where pi rep-

resents the supported protocol set of the ith simulation 
package (figure 10). 

 

 
Figure 10: Using One Protocol p 
Without Wrapping 
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Usually we are faced with the last three cases when we 
need to wrap either the simulation or the real components. 
There are a lot of situations when the real control systems 
and the real equipment can communicate with each other 
but the COTS simulation packages can not communicate 
with them using the same protocol (Figure 11). In this case 
we prefer to choose the first solution of the fourth case, be-
cause we need to wrap only the simulation models. We 
strive to design and develop a neutral protocol that is sup-
ported by all the participants (both simulated and real) by 
minimizing the wrapping procedures. 

 

 
Figure 11: The Simulation Models do not Support 
the Protocol of Real Components 

 
In the FAMAS project we distinguish between two 

kinds of protocols, a technical and a functional protocol. 
The technical protocol refers to the lower OSI layers, 
where the communication between components is realized. 
For this purpose the FAMAS project uses low level Win-
sock messages, as most of the simulation packages support 
the communication at this level.  

The functional protocol is on a higher level than the 
technical protocol but it is based on the low level protocol. 
The functional protocol refers to information sharing be-
tween simulation models, such as variable exchange, ob-
ject sharing, etc. Currently the commercially available 
simulation packages does not support at all the communi-
cation and collaboration at this level. In FAMAS we intro-
duced a message protocol that tries to support high-level 
information exchange among simulation components.  

In an advanced version of the FAMAS Backbone 
structure we aim to reanalyze the protocols that can be 
supported by the simulation and real components. Based 
on the results the wrappers can be designed and developed. 
The technical layer does not need modification, as it is de-
signed at a low level and is supported by most of the simu-
lation and real components. The functional layer is used by 
the simulation models and it needs to be extended for the 
real controls and equipment. 

5 CONCLUSION 

In order to improve the performance of a complex techni-
cal system, which consist of a set of subsystems and con-
trol systems, comprehensive experiments and tests are 
needed. Currently we can distinguish four types of analyz-
ing and testing methods, namely simulation, emulation, 
real-time control and full prototyping. The FAMAS Back-
bone architecture is an approach that enables for the analy-
ses and testing of distributed simulation models. Perform-
ance testing might be more advantageous in some cases, to 
test the effects of real control systems and control strate-
gies or to test the effects of control strategies on real com-
ponents. To enable the interaction between simulation 
models and real components we described the extension of 
the FAMAS backbone architecture in order to support this 
combination. We combine therefore all four testing meth-
ods: simulation, emulation, real-time control and proto-
typing, using a logically and technically distributed archi-
tecture. This paper discusses the logical structure of such 
an architecture and the problem of communication between 
several COTS simulation models and real components. We 
introduced a taxonomy that helps to distinguish between 
different connection possibilities of the new components to 
the backbone. It is also discussed how the communication 
problem between different types of components can be 
handled. By combining the control based, function based, 
and system based connection structures, a very flexible and 
multi-protocol interface can be built, in which the simula-
tion models communicate using a neutral protocol, and the 
real components can communicate as much as possible us-
ing their ‘normal’ protocols. 
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