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ABSTRACT

This panel has been put together to promote the use of
simulation as a teaching tool to expedite the learning and,
more importantly, the understanding of probability theory.
“In a nutshell,” the thesis upon which this panel is based is
that the simulation approach is more effective than a
mathematical approach on a stand-alone basis. It also
dominates any statistical approach as a pedagogical tool.

1 INTRODUCTION
(MATTHEW ROSENSHINE)

Elementary probability theory is usually taught as a one-
semester course. With the rise in importance of probability
in scientific, technical, and business areas, it is likely to
remain at this level for the foreseeable future. As the im-
portance of probability rose, the variation in the rigor of
mathematical preparation of the students taking this type of
course has increased while the average level of rigor has
decreased.

The response to the decrease in mathematical rigor has
been basically non-existent but fortunately the increase in
variation along with the necessity to be more inclusive led to
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a recognition that axiomatic probability needed some help.
Unfortunately, some of the help did not help. The use of sta-
tistics to provide an introduction to the study of probability
was well-intentioned but confusing. Even worse, many of
the confused students did not know that they were confused.

The replacement of many derivations and proofs with
discussions and less rigorous proofs was helpful. The
elimination of some proofs entirely was also helpful. A
proof of the central limit theorem is of little use to a stu-
dent who does not understand what the sum of random
variables means. Unless the proof provides understanding,
which for almost all students it does not, it is of little use
except as a mathematical exercise—albeit elegant.

So here we are with what appears to be a good idea—
use simulation to teach probability. Why is it a good idea?
Let me offer a few reasons, each somewhat convincing in
its own right. Collectively, their appeal soars!

1. It occurred to me during a ten-plus year period
during which I have been trying to teach middle
school and high school teachers to teach probabil-
ity. After it dawned on me, I used it to teach
eighth and ninth graders.
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It has occurred to others independently, I assume,
since I have never met or spoken to some of the
people who have written in recent years about us-
ing simulation as a teaching aid for probability.
Simulation has only recently become a feasible
teaching tool for probability with the advent of
high-speed desk top computers.

No one to whom I have spoken about it has ex-
pressed a negative opinion about the idea. Many
have said that they are, in fact, doing this to some
extent in the courses they teach.

Probably the most convincing argument for using
simulation as a pedagogical tool lies in the re-
sponse I received long ago when I questioned why
simulation was being proposed to obtain a result
that could be obtained analytically—"Any idiot
can understand simulation.”

With the preceding comments as background, this
panel of educators will attempt through the spoken word
(Session 1) to provide contexts in which simulation can be
a valuable asset in teaching probability, and deeds (Session
2) to provide demonstrations of simulations that provide
concrete back-up for the words. Panel-member statements
are provided in the following sections to facilitate the panel
discussion and audience interaction with the panelists.

2 RUSSELL R. BARTON

My remarks focus on the use of simulation to understand
and compute conditional probabilities. Many real-world
situations are described by conditional probabilities. For
example, conditional probabilities determine the fraction of
defective products reaching consumers, given the fraction
defective that are produced and the type I and type II error
probabilities of quality tests performed before shipping the
product. Conditional probability calculations can be diffi-
cult to teach students to perform correctly, in part because
they can violate intuition. During the late 1980s the “Let’s
Make a Deal” door-choice problem led to conflicting opin-
ions about the correct calculation of conditional probabili-
ties. After the contestant chose an unseen prize behind
Door 1, 2, or 3, the announcer would reveal one of the re-
maining doors (never the Grand Prize door), and allow the
contestant to switch to the remaining unopened door. For
this scenario, the contestant’s chances of winning the
Grand Prize would be improved by switching, regardless
of what was revealed.

This counterintuitive result was debated in profes-
sional periodicals for a number of months; the correct solu-
tion was not obvious, even to some folks with significant
exposure to probability calculations! A convincing case
was provided by simulating the ‘always switch’ and ‘never
switch’ options, which showed in a concrete fashion the
superiority of the switching strategy.
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This experience motivated me to teach my students to
use simulation to compute conditional probability. I begin
by describing calculations for parallel and serial systems
assuming independence of failure probabilities for the
components. Then I describe the concept of conditional
probability, give a graphical representation of the ratio of
measures, and then define independence as the equality of
conditional and unconditional probabilities. After calculat-
ing conditional probabilities in several simple examples, I
describe the result for the “Let’s Make a Deal” decision.
Then I ask the students to compute probabilities for a reli-
ability problem from Kolarik (1995).

2.1 The Car-Trip Example

The students are asked the following question. D. Event
owns two cars, one old, the other older. Each day, he uses
a car to get to school and back. Car 1 is old and has prob-
ability 0.79 of starting on any day, while Car 2, even older,
starts with probability 0.71. For either car, once it is
started, the chance that it completes a trip to or from
school is 0.95. Compute the probability that D. Event will
make it to school and back on any particular day.

Most students assume that the reliability system consists
of two cars in parallel, and they perform calculations based
on the parallel system shown in Figure 1. The computed sys-
tem reliability is 1 — [(1 — 0.56325025)(1 — 0.45495025)],
approximately 0.762. This value is greater than the correct
probability by more than 0.10. After the students present this
solution, I ask them whether D. Event can start both cars at
the same time, and, assuming both start, drive both to school
simultaneously. At this point the students realize the error in
applying a parallel system reliability model, but they are un-
certain about a solution. When I ask them which car Event
will try first, they do not realize that i) a vehicle-selection
rule must be decided before the probability can be calcu-
lated, and ii) the vehicle-selection rule (try Car 1 first, try
Car 2 first, or randomly select a car to try) affects the value.
Event has a better chance of making the round trip by trying
Car 1 first every day.

0.79 0.95 0.79 0.95

0.71 0.95 0.71 0.95

Figure 1: Typical Incorrect System Reliabil-
ity Formulation for the Car-Trip Example

To compute the probability, I build a simulation model
together with the students. Figure 2 shows the car-trip ex-
ample modeled in Arena. The model takes only a few min-
utes to construct, and follows from a description of D.
Event’s actions. Deciding which car to start first occurs
naturally in this process, and the students are not tempted



Rosenshine, Barton, Goldsman, Leemis, and Nelson

Beqin the Dav) Tryto start car 1

Schoolwear1 | —

Start 1 for return

I

251 E
— || Car1reluns }
1 Successiul trip

g §3928

Schoolw car 2

10198

Start 2 for return Car 2 return trip

|
——| | CarZretums

0

4021 419

nsuccessul trip
Eé_ 4072

Figure 2: Arena Model and Run Results for the Car-Trip Example

to ‘split’ the driver in two in order to try both cars at the
same time. Run time for 100,000 repetitions (days) takes
less that a minute (in Fast Forward mode) on my 1GHz
Pentium III laptop. The conditional probabilities and un-
conditional probabilities can be constructed using the event
counts that are provided at each block automatically by the
software. One such run provided the numbers in Figure 2,
which were used to construct the results shown in Table 1.

Table 1. Simulation-Based and Conditional Probability

Calculations for the Example

Number in | Estimated | Exact Prob-
100,000 | Probability ability

56251 0.56251 | 0.56325025

Quantity

Car 1 makes

round trip

Car 2 makes 9677 0.09677 |0.0955395525
round trip

Succestsrfi‘; round| 5953 0.65928 [0.6587898025

For comparison, the conditional probability calcula-
tions (assuming that the starting probabilities of the two
cars are independent) are

P(Successful round trip)
= P(Car 1 makes round trip | Car 1 starts)P(Car 1
starts)
+ P(Car 2 makes round trip | Car 1 fails and Car 2
starts)
x P(Car 1 fails and Car 2 starts)
=(0.95)(0.79)(0.95)(0.79) +
(0.95)(0.71)(0.95)(0.21)(0.71)
=0.56325025 + 0.0955395525
=0.6587898025.

The results of direct conditional probability calcula-
tions are shown in the last column of Table 1. The students
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see that the probabilities estimated by simulation provide
results that are close to the actual probabilities.

2.2 Experience

My students found it easy to understand the conditional-
probability calculations for the car-trip example when they
were described by a flow diagram. Today’s simulation
packages make it easy to convert a flow diagram into a dis-
crete-event simulation model, and run times are short for
approximations accurate to two decimal places. Further,
the built-in animation capability of many simulation
packages makes it more likely that the student will model
the situation correctly. The car-trip exercise convinces stu-
dents of the value of discrete-event simulation for the cal-
culation of complex probabilities, and piques their interest
in discrete-event simulation software. I have more confi-
dence that students will calculate conditional probabilities
correctly when they build and view animated simulation
models that represent real situations.

3 DAVID GOLDSMAN

Simulation certainly helps to motivate concepts and to an-
swer interesting questions in the probability-classroom en-
vironment. In this section, we will discuss relevant several
examples that one can incorporate into probability lectures.

3.1 The Birthday Problem

For instance, we can easily use simulation to supplement
the discussion of the following classic combinatorial prob-
lem. Suppose we have n people in a room. What is the
probability that at least two will have the same birthday?
To keep things reasonable, we shall assume that all 365
birthdays have equal probability (sorry, February 29). As is
well known, the surprisingly low value of n = 23 yields a
(slightly greater than) 50-50 chance that there will be a
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match. Figure 3 illustrates a realization of the birthday
problem in which we sequentially sample simulated people
in a room until a match has been achieved. In the current
realization, we see that a sample of 24 was required before
a match finally occurred. Students can use this example to
run multiple realizations, and can quickly get a feel for the
variation of the results between runs.

Birthday Paradox
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Figure 3: Simulating the Birthday Problem
3.2 Estimating =

The next example shows that we can use simulation to en-
hance the discussion of an elementary probability calcula-
tion. We will now estimate 7 using Monte Carlo simulation
in conjunction with a basic geometric relation. Referring to
Figure 4, consider a unit square with an inscribed circle,
both centered at (1/2, 1/2). If one were to throw darts ran-
domly at the square, the probability that a particular dart
will land in the circle is 7/4, the ratio of the circle’s area to
that of the square. How can we use this simple fact to esti-
mate 7?7 We shall use Monte Carlo simulation to throw
many darts at the square. Specifically, generate independ-
ent pairs of independent uniform (0,1) random variables,
(Uy1, Up), (Usy, Up), ..., so that these pairs will fall ran-
domly on the square. If, for pair i, it happens that

(U = 12> + (Up - 112)* < V4

then that pair will also fall within the circle. Suppose we
run the experiment for n pairs (darts). Let X; = 1 if pair i
satisfies the above inequality, i.e., if the i dart falls in the
circle; otherwise, let X; = 0. Now count up the number of
darts X = X, + - + X, falling in the circle. Clearly, X has
the binomial distribution with parameters n and p = #n/4.
Then the proportion p” = X/n is the maximum-likelihood
estimate for p = n/4; and so the maximum-likelihood esti-
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mator for 7 is just #” = 4p’. If, for instance, we conducted n
= 500 trials and observed X = 397 darts in the circle, as in
Figure 4, our estimate would be 7" = 3.176. We usually run
this example in class with at least 10,000 darts; it most of-
ten happens that the estimator is even closer to the true
value of .

Monte Carlo Simulation
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Figure 4: Throwing Darts to Estimate &
3.3 Monte Carlo Integration

Here, we show the students how one can use probability in
a particularly novel way, viz., to conduct an integration ex-
ercise. To this end, consider the integral

I= J.b f(x)dx= (- a)J: fla+(b—a)u)du.

As described in Figure 5, we shall estimate the value of
this integral by summing up n rectangles, each of width
1/n, centered randomly at point U; on [0, 1], and of height
fla + (b—-a)U,). Then an estimate for [ is

b—

n

1=""23" fla+®b-a,)-

In fact, it turns out that I’ is an unbiased estimator for 7, i.e.,
E[I'l =1 for all n. This makes I’ an intuitive and attractive
estimator—one that probability students will find easy to
understand. Figure 5 shows how one could use simulation to
carry out the integration of sin(zx) with n = 64 uniform sam-
ples. Although the estimate (0.5886) differs from the actual
integral value (0.6366), a larger sample size will invariably
do better, a fact that the students can easily discover.

3.4 A Single-Server Queue
As a final motivational example, we simulate the behavior

of a single-server queueing system—to show how one can
combine basic probability and simulation techniques to
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study a “real-life” system. Suppose that customers arrive at
a bank one-at-a-time, and queue up in front of a single
teller to be processed sequentially in a first-come-first-
served manner. Figure 6 traces the evolution of the system
as time progresses. The associated table keeps track of the
times at which customers arrive, begin service, and leave.
The graphs keep track of the status of the system as a func-
tion of time; in particular, we find plots of the queue length
and server utilization. We have found that students under-
stand this example with little trouble.
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Figure 6: Simulating a Single-Server Queue
4 LAWRENCE M. LEEMIS
4.1 Axiomatic vs. Simulation Approaches

Monte Carlo and discrete-event simulation are reasonable
approaches to introducing students to probability. Monte
Carlo can be used to cover the topics in a traditional cal-
culus-based probability class, and discrete-event simula-
tion can be used to cover the topics in a traditional sto-
chastic processes class. I will refer to the standard
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calculus-based approach to teaching probability as the
“axiomatic approach.”

Here are five advantages to the simulation approach to
teaching probability:

1. The relative-frequency approach to determining
probabilities is very intuitive to beginning stu-
dents. All of us have used the experimental ap-
proach to determining the likelihood of events
from a very early age, so simulating events on the
computer comes as a logical next step.

2. Random variables are easily introduced after the
relative-frequency approach is well understood.
Once the binary aspect of an event’s occurring or
not occurring has been established using coins or
dice using the simulation approach, it is then rea-
sonable to consider the number of spots that ap-
pear on the up face when a die is cast, which leads
to the introduction of discrete random variables.
Continuous random variables and other quantities
(e.g., expected values) come along next.

3. There is almost no limit to the complexity of the
problems that can be addressed. This is certainly
not the case in the axiomatic approach. One seem-
ingly minor twist to the assumptions in a particu-
lar problem can sink the axiomatic approach.

4. A simulation-based approach to teaching
probability prepares students for statistics in sev-
eral ways that are not possible using the axiomatic
approach. Here are three examples:

a. Students completing a simulation-based prob-
ability class will have an intuitive notion of
sampling variability since they have seen it
occur in every simulation that they have run.
The notion of observed data also having sam-
pling variability follows.

b. Point and interval estimation will also be fa-
miliar after a simulation-based class since
these two concepts must be included in any
serious Monte Carlo analysis of a problem.

c. Simulation allows the assimilation of the
bootstrapping approach (Efron and Tibshirani
1993) when a student moves from probability
to statistics. This transition is much more
awkward when the student comes from the
axiomatic approach.

5. The simulation approach forces students to pro-
gram. This means that a discussion of a random-
number generator is appropriate, along with a
discussion of random-variate generation. The lat-
ter is a bit tricky without a formal definition of a
random variable, which is part of the axiomatic
approach.
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The last point concerning programming points to an
important side-issue: what platform should be used? One
extreme is to use a standard algorithmic language such as
C or FORTRAN. Two advantages of this choice are the
programming flexibility and the ability to move seamlessly
to discrete-event simulation. The disadvantage of this
choice is that the class may begin to look more like a pro-
gramming course than a probability course. The other ex-
treme is to use a statistical language (such as Splus) or a
computer algebra system (such as Maple). In both cases,
the programming time is cut considerably, but at the cost
of flexibility. Consider the simple problem of generating a
p-value associated with the Kolmogorov-Smirnov good-
ness-of-fit test for six U(0,1) random variates. This can be
done with the rather cryptic Splus command:

ks.gof (runif (6), distribution “uniform”,

min 0, max = 1)Sp.value

or coded in C. The former approach keeps the discussion at
a high level, while the latter forces a student to dive into
the details.

There are three disadvantages to the simulation ap-
proach to teaching probability that also must be considered:

1. There are times when the axiomatic approach is
faster and more appropriate. I would certainly not
want a student to begin programming when asked
for the probability of exactly two heads appearing
in three coin flips. There must be a mix of the
axiomatic and simulation approaches. In a com-
prehensive first probability course, a student
would know the mathematical/axiomatic approach
to the sample problem stated above, as well as
knowing that the Splus statement

dbinom(2, 3, 0.5)

gives the analytic solution and that the statement

sum(rbinom (1000, 3, 0.5) == 2) / 1000

gives the Monte Carlo point estimate of the prob-
ability using 1000 replications of the experiment.

2. To my knowledge, there is no textbook available
that integrates these two approaches.
3. Simulation requires a 100-fold increase in the

number of replications in order to get another
digit of accuracy. There are going to be applica-
tions where getting exact results is appropriate,
and only the axiomatic approach can deliver.

I close with mentioning that there is still another way
of teaching probability that minimizes the reliance on the
axiomatic approach. Rose and Smith (2002) and Glen, Ev-
ans, and Leemis (2001) have developed languages (Math-
Statica, which is Mathematica-based, and APPL, which is
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Maple-based) that are capable of determining exact prob-
ability results by manipulating random variables.

4.2 Experience

We teach a C-based discrete-event simulation course at
William & Mary, CSCI 426, annually to about 30 students,
mainly computer-science majors. Since the computer-
science curriculum is very crowded, most of the students
entering this class have had minimal exposure to probabil-
ity. Although discrete-event simulation is the emphasis,
two or three lectures are spent on random-number genera-
tion (emphasizing Lehmer generators), and two or three
lectures are spent on Monte Carlo simulation.

In addition, I have taught the introductory calculus-
based probability class, Math 401, to primarily mathemat-
ics majors. I often use the Monte Carlo simulation ap-
proach to verify analytic solutions, then show how a small
change in the assumptions to the problems makes that
axiomatic approach intractable, yet the Monte Carlo ap-
proach remains viable. Approaching simulation as a way to
check analytic results and estimate the solution to a diffi-
cult problem gives the students a healthy view of simula-
tion—it should be relied on when appropriate.

5 BARRY L. NELSON

I do not teach introductory probability, but for many years
I have taught the course that follows it in most Industrial
Engineering programs: stochastic processes. I am a firm
believer in integrating simulation into such a course, and I
wrote a textbook supporting that approach. Here are my
top five reasons why:

5.1 Visualization

I had already completed my Ph.D. before I developed any
intuition about how a Markovian queueing process would
actually look. To gain that sense I coded up an animated
M/IM/1 queue on a Commodore Vic 20 computer in Basic.
I distinctly remember being surprised at how bursty the
process was, and finally understanding what “bursty”
meant. This sort of intuition is critical for engineering stu-
dents because they need to be able to recognize when par-
ticular models are appropriate, and no amount of talking
about stochastic processes will develop this sense.

5.2 Algorithmic Representation of Probability

Here are some essential concepts in probability that many
students fail to grasp, and how I think simulation can help
them:

a. A random variable is a function from the sample
space to the real numbers: Simulations map ran-
dom numbers into sample paths.
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The random variable X has probability distribu-
tion F: We can simulate observations of X from X
=F I(U), where U is a Uniform(0,1) variate.

The random variables are dependent: The random
variables are functions of some of the same ran-
dom numbers.

The random variables are identically distributed:
The random variables are the same function of
different random numbers.

5.3 Sensitivity or Insensitivity of
Results to Assumptions

How much does it matter if we assume a Poisson arrival
process? Or Markovian state changes? Is a model useless if
the assumptions behind it are not rigorously satisfied? Do
models really give better estimates of relative differences in
performance than they do of actual performance? The best
way for students to obtain some idea of the answers to these
questions is to let them use simulation to test and discover.

5.4 Connecting Probability to Statistics

Because simulation generates data from a probability
model, an understanding of simulation makes it easier to
understand the reverse process of using data to infer some-
thing about an underlying model.

5.5 Integrating Probability and Simulation
Supports a Unified Treatment of Stochastic
Modeling and Analysis

Last year I wrote a panel piece that included the following
argument against having computer simulation courses for
undergraduate engineering students (Altiok et al. 2001):

“l am a proponent of generic courses in sto-
chastic modeling and analysis, in which mathe-
matical, numerical and simulation solution tech-
niques all appear. I have been teaching a two-
quarter (20-week) sequence in this way for over
six years, and I am convinced that there are at
least two features that are critical to making it
work:

For every stochastic modeling problem, start
by thinking about how to simulate it. Simulation
(inputs, events, states, etc.) provides the formula-
tion language, much like the decision-variable,
objective-function and constraint concepts do for
optimization. Simulation is also intuitive. We then
teach students to recognize those situations in
which a mathematical or numerical solution is
possible or appropriate.

When a large-scale simulation is required,
force students to do a rough-cut model prior to
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simulating. (I am pretty sure I stole this idea from
Lee Schruben.) Sometimes the rough-cut model is
just plugging in mean values for all the stochastic
stuff, or deriving best-case and worst-case
bounds. More often it involves using some sort of
simplified model, such as an M/M-type queue.
This allows students to understand that both ap-
proaches apply to the same types of problems.
They also see that the numbers that come out of
the simulation typically do not match the rough-
cut model—demonstrating that there is a reason
for simulation—but they also see that the best so-
lution, as determined by the rough-cut model, is
often identical to the one indicated by the far more
detailed simulation.”
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