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ABSTRACT 

Much literature exists for scheduling production, but there 
is little work on establishing the due dates that serve as the 
inputs to developing a production schedule.  We call this 
Order Promising.  This paper explores a simulation-based 
approach for evaluating methods for promising the deliv-
ery of orders based on dynamic buffer adjustment coupled 
with various methods to forecast the amount of buffer re-
quired.  The primary objective of the paper is to frame the 
problem and suggest methods of analysis.  Preliminary 
computational results are also presented.  

1 INTRODUCTION 

Order promising is similar to, but different from, due date 
assignment.  It is designed to consider the current status of 
the system and fold that information into an estimate of 
when an order could be promised to a customer.  A sched-
uled due date is first calculated using traditional flow-time 
estimation methods.  Then, that scheduled date is modified 
by a “buffer” amount.  The buffer is updated periodically 
to reflect current system conditions.  The overall objective 
is to have the lateness to the promised date be close to 
zero.  As we will see, we are also concerned with the varia-
tion of the lateness-to-promise estimator.  Promise dates 
with lateness expectation of zero but with large variance 
will not be acceptable to customers. 
 The basic concept is that, if we can do a good job on 
buffer adjustment, we can more effectively use the current 
behavior of the system to actually establish promise dates.  
While we will still need good scheduling and control to en-

 

sure shop performance to plan, better promising will help 
ensure that is achieved.  In theory, this should yield better 
performance to promise and more accurately reflect actual 
operations. 

2 BACKGROUND 

A vast literature exists on scheduling to meet pre-specified 
due dates.  Thus, some may infer that the problem of as-
signing due dates (promising) has been thoroughly investi-
gated.  However, very little effective research has been 
done on due date assignment itself.  Various survey papers 
on due date assignment include (Cheng 1989; Smith 1983; 
Ragatz 1984a).   
 Furthermore, this paucity of research on due date as-
signment is evident in both the production systems and 
real-time database (RTDB) systems fields.  Both fields aim 
to schedule tasks such that they complete by their dead-
lines, yet they have given very little attention to procedures 
for actually setting deadlines!  In an RTDB, transactions 
must not only maintain consistency constraints of the data-
base but also must satisfy deadlines.  The main goal of an 
RTDB is to meet the deadlines of data transactions regard-
less of system or transaction failures (Gruenwald 1997; 
Gruenwald 1999).  Research on how to schedule real-time 
transactions so that they can meet their deadlines (Chen 
1996a) assumes that a deadline is given as a property of a 
transaction at the time when it is submitted to the system.  
Among the popular scheduling techniques are earliest 
deadline and earliest slack time (Abbott 1992), which are 
analogous to simple priority rules for task sequencing. 
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 Computational limitations of the 1960’s motivated 
Conway (1965) and other researchers to consider highly 
simplified parametric approaches such as CON (Conway 
1965), TWK (Conway 1965), JIQ (Eilon 1976), and WIQ 
(Ragatz 1984b) (also (Vig 1993; Raghu 1995; Tsai 1997; 
Udo 1993)).  Several studies have confirmed the basic in-
tuition that consideration of current system congestion im-
proves the accuracy of order lead time estimation, includ-
ing (Eilon 1976; Heard 1976; Weeks 1979; Bertrand 1983; 
Ragatz 1984b; Cheng 1988; Rajasekera 1991; Wein 1992).  
Parametric policies require tuning, so a few procedures 
have been developed to automatically adjust parameters in 
a closed loop fashion (Baker 1981; Seidmann 1981; Cheng 
1986; Cheng 1987; Shanthikumar 1988), although these 
procedures all require assumptions about arrival processes 
or processing time distributions.   
 Several analytical works consider the combined prob-
lem of due date setting and job sequencing using either 
queueing theory (Shanthikumar 1988; Rajasekera 1991; 
Wein 1991; Wein 1992; Duenyas 1995a; Duenyas 1995b; 
Palaka 1998; Weng 1999) or deterministic optimization 
(Heard 1976; Seidmann 1981; Cheng 1986; Cheng 1987; 
Yano 1987; De 1992; Luss 1993; Bagchi 1994; De 1994a; 
Li 1999).  The latter sometimes employ simple parametric 
policies for due date assignment with optimal parameter 
values (Cheng 1991; De 1994b; Chen 1996b; Cheng 1996).  
Almost all of these results are for single-machine systems.   
 For multi-resource systems, researchers recently have 
begun to perform statistical estimation of the distribution of 
flow-time to set due dates for future arrivals (Lawrence 
1995; Vig 1991; Kaplan 1993).  Hopp (2000) combines fac-
tory physics, statistical estimation, and control charting to 
create a lead-time estimator that is generally applicable and 
also adaptive to changes in the system over time.  Lawrence 
(1995) assigns due dates by forecasting order flow-times 
(using one of six different estimators) and then adding some 
function of the forecast error distribution to this estimate so 
as to achieve a certain performance objective (the function is 
selected based on the particular performance criteria).   

3 PROMISING SYSTEM ARCHITECTURE 

The Promising System Architecture used in this research is 
shown in Figure 1. Orders arriving are submitted when 
they arrive to a Promising Service.  This service develops a 
scheduled completion date for the order and adjusts the 
scheduled due date using the buffer to calculate a promise 
date.  The buffer reflects the current performance of the 
system, regarding progress to promised dates. 
 Once a promise date has been established for an order, 
the Promising Service passes the order on to the Planning 
Service.  The Planning Service is responsible for phasing 
the order into the existing orders and releasing those orders 
to the factory floor. 
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Figure 1:  Promising System Architecture 

 
 Information is fed back to the Promising Service and 
the Planning Service from the Supply Chain regarding the 
status of orders, including notification of any late orders. 

4 SIMULATION MODEL STRUCTURE 

Figure 2 provides the structure for the simulation model.  
Independent sub-models were constructed for each of the 
components described and were based on the Promising 
System Architecture.  The flow is shown in the figure and 
is described below. 
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Figure 2:  Model Components and Structure 

4.1 Order Generation 

Order Generation is simply the creation of orders to be 
processed.  This module selects the type of part to be pro-
duced and controls the frequency of the arrivals of orders.  
The parameters of Order Generation available for modifi-
cation are:  arrival rates and distributions, part types, and 
part routings. 

4.2 Order Promising 

Order Promising calculates the promise date for each order 
using the following formula: 
 
 DATEPromise  =  DATESchedule + BUFFERt   (1) 
 
where BUFFERt is the current value of the buffer at time t.  
The buffer is recalculated periodically in the buffer ad-
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justment module and reflects the current performance of 
the system.  Several methods have been explored to update 
the buffer value and are discussed later in the paper.  The 
parameters of Order Promising include:  calculation 
method for schedule and calculation method for buffer in-
corporation. 

4.3 Order Release 

Order Release controls the release of orders to the produc-
tion system.  They are accumulated prior to release, and 
then the complete set of active released orders is resched-
uled based on the priority scheme selected.  The parame-
ters of Order Release include: time between releases, time 
to reschedule, and time to distribute to the factory floor. 

4.4 Production 

Production represents the actual production of orders.  In 
the system under study here, three machining stations are 
available for production.  The parts move through the sta-
tions in various orders, depending upon the part.  Each part 
goes through one of the three stations once, and may have 
different processing times at each station.  Various prob-
ability distributions are incorporated for the processing 
times.  The layout of the production system is shown in 
Figure 3.  The parameters of the Production module in-
clude:  processing time and distribution for each step, re-
sources available, and product routing. 
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Figure 3:  Production System Components 

4.5 Statistical Collection 

Statistical Collection performs the collection of informa-
tion regarding various system performance parameters.   
These include: 

 
! Lateness to Schedule; 
! Lateness to Promise; 
! k, the lag, in number of orders, between the arri-

val and completion of an order;  
! Lateness as a function of k; and  
! Time in the system 
4.6 Buffer Adjustment 

Buffer Adjustment is performed periodically and performs 
the recalculation of the buffer using various algorithms 
discussed below. 

4.7 Software 

The AWESIM simulation system (Pritsker 1999) was used 
to perform the experiments in conjunction with SAS and 
EXCEL. 

5 METHODOLOGY 

In this research, we have experimented with various meth-
ods of establishing promise dates using simple methods for 
establishing the scheduled date of completion and more 
complex methods for buffer adjustment.  The relationship 
was shown in equation (1).  The idea is that the value used 
for BUFFERt will characterize the variation in the system 
such that the resulting DATEPromise will be close to the ac-
tual completion date. 

5.1 Buffer Adjustment 

The buffer adjustment process consists primarily of charac-
terizing the current system performance and feeding back 
that information in the form of a forecast of the lateness to 
scheduled completion to be used in the calculation of a 
promise date.  First, we calculate an estimate of the sched-
uled completion time for parts.  In this study, we have sim-
ply used the sum of each task’s expected processing times.  
More complex methods could also be used. 
 We then observe the system for a period of time, and 
collect information concerning the lateness to schedule.  
We then use that data to estimate the future lateness to 
schedule for orders and include this estimate in establish-
ing the promise date to provide to customers. 
 The process is complicated as follows.  In Figure 4, 
we illustrate two processes, the arrivals of orders and the 
completion of orders.  Orders arrive according to some 
probability distribution.  The ith arrival arrives at time t. 
 In the completion process, the jth completion happens 
at some time before t, and the (j+1)st completion happens 
after time t.  The ith arrival becomes the (j+k)th completion, 
where k is a random variable.  We would, of course, like to 
estimate the time of the (j+k)th completion as accurately as 
possible in order to establish a promise date to provide to 
customers.   
 We can define k as the number of orders completing 
between the arrival of an order and its completion, includ-
ing that order. 
 Forecasting tools like exponential smoothing would 
use the lateness of the jth completion and use it to forecast 
the lateness of the (j+1)st completion.  However, in this ap-
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plication we must forecast the lateness of the (j+k)th com-
pletion where k is a random variable.  We can estimate the 
distribution of k, as well as the lateness using simulation, 
as discussed below. 
 The lateness forecast is assigned to the variable 
BUFFER in equation (1), using one of the methods de-
scribed below.   
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Figure 4:  Lateness to Promise 

5.2 Methods of Forecasting Lateness  
to Scheduled Completion 

The following forecasting methods were explored in the 
estimation of the buffer: 
 Accumulated average lateness to schedule:  Figure 5 
shows the average lateness to schedule as time progresses.  
The cumulative average approaches a constant value.  This 
lateness to schedule is the value used for the buffer value. 
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Figure 5:  Average Lateness to Schedule  

 
 Exponential Smoothing:  The exponential smoothing 
for lateness to schedule is based on periodically calculating 
the smoothing coefficients and then applying them to the 
forecast of the lateness to schedule, or the buffer. 
 ARIMA Time Series:  The ARIMA models are updated 
in much the same way.  Periodically, a subset of the data is 
fit to an ARIMA time series model and this model is used 
to forecast the future value of the buffer. 
 Regression:  In using regression, several system pa-
rameters that might be correlated with lateness to schedule 
are observed.  Periodically, a regression model is fit to 
these parameters, and the resulting model is used to fore-
cast the lateness to schedule. 
Time-shift due to k: 
 In most forecasting techniques, we are attempting to 
forecast the next observation of some variable.  In this 
case, as was discussed above, we are trying to forecast k 
product completion events in the future, where k is a ran-
dom variable that can be estimated by observation, but not 
(thus far) solved analytically.  The incorporation of the 
time shift k into the methodology is still being examined 
and is discussed below. 

6 OBSERVATIONS 

6.1 Effects of the Variance of  
the Production Process 

Extremely complex behavior can be exhibited by even 
relatively simple systems.  In the system studied, we exam-
ined three machining systems, with unlimited queues.  
Three part types flow through all three machines only 
once, but in any order, and with different service times for 
each step.  We examined constant, exponentially distrib-
uted, and normally distributed machining times.  We also 
examined several levels of system congestion, from utiliza-
tions around 25% up to utilizations approaching 100%. 
 Figure 6 shows a plot of the lateness to promise for 
60,000 minutes of production.  As can be seen from this 
plot, the lateness to schedule is moderately variable through-
out the process even thought the average is near zero.  The 
system was configured to have approximately 25% utiliza-
tion, and the process times were assumed to be constant. 
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Figure 6:  Lateness to Schedule - Constant Processing 
Times  
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 In this case, the time units are in minutes.  The vari-
ability in lateness to schedule is quite acceptable, even 
without buffer adjustment.  However, when the system 
congestion increases, this is no longer the case. 
 We can quickly see the effects of increased process 
time variation.  By simply replacing the constant times in 
the process with exponentially distributed variables, there 
is a dramatic increase in the variation of the lateness. 
 Figure 7 illustrates this effect where the only change in 
the model is in the processing time distributions. 
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Figure 7:  Lateness to Schedule - Exponential Process-
ing Times 

 
 One of the challenges in this methodology is con-
cerned with the underlying variance of the production 
process.  If the underlying variance is large, this tends to be 
reflected in the buffer and thus, in the promise date estima-
tion.  While it is not too difficult to adjust the buffer such 
that the average lateness to promise is close to zero, this is 
not sufficient.  If the resulting time series of lateness to 
promise observations are highly variable, customers will 
not be happy.   

6.2 Distribution of k 

As was discussed above, k is the lag between the current 
completion and the completion of the current arrival.  It is 
a random variable and can be estimated by experimenta-
tion.   
 For example, simulating our test system with low utili-
zation (25%) and exponential service times, Figure 8 
shows the distribution of k.  The average is 1.8, meaning 
that a current arrival completes approximately 2 orders 
later than the most recent completion before the current ar-
rival, with the range from 1 to 6. 
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Figure 8:  Distribution of k 

 
 We were also able to collect observations regarding 
the lateness to promise for various values of k.  For in-
stance, when k was 1, meaning that the order arriving was 
the next to complete, the lateness was observed to be -
14.290, which means that the promise date was over-
optimistic for this example.  These are shown in Table 1. 
 The fact that these values exhibit the behavior that 
they do is no surprise.  More orders completing between 
the arrival of an order and its completion provides more 
time for interference and delay.  But it is interesting to be 
able to characterize it and perhaps use it in the develop-
ment of a better characterization of the buffer. 
 

Table 1:  Lateness to Promise as a function of k 

7 CONCLUSIONS 

Several conclusions can be made based on the work to 
date. 
 There are various, perhaps conflicting, performance 
measures that one would be interested in concerning this 
methodology.  Those include: 

 
• Average lateness to promise.  We would like this 

to be zero. 
• Variance of the lateness to promise.  We would 

like this to be small, or within defined limits. 
• Probability that the lateness to promise is less than 

or equal to some specified value.  We would like 
to be able to specify this performance in terms 

k Average Lateness to Promise 

1 -14.3 
2 -1.8 
3 15.7 
4 24.1 
5 46.2 
6 56.8 
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such as “95% of the orders completed with late-
ness to promise less than one day.” 

 
 The variance of the lateness to schedule and lateness 
to promise dates is a critical performance measure in the 
effective application of this methodology.  For it to be use-
ful, the variance of the estimates must be reduced or better 
characterized. 
 On another note, the system studied was not only ex-
tremely sensitive to the distribution of the process times 
but also the congestion of the system.  It also exhibited cy-
clic renewal behavior at extremely long time intervals, on 
the order of 16,000 minutes.  This long interval would not 
normally be investigated in analysis studies but would be 
significant in actual practice. 

8 FUTURE WORK 

We have identified several activities to pursue next in this 
project. 
 First, the incorporation of k lags in product completion 
into the model is necessary to better represent the lag be-
tween the forecast of the completion that will occur k com-
pletions in the future.  Forecasting techniques will be used 
which will consider this lag. 
 Further, more information is available for buffer calcu-
lation than is currently being used.  While the regression 
models explored included quantities such as queue size and 
waiting time, this should be expanded as a part of the 
buffer adjustment methodology. 
 Next, the variation of the production process is ex-
tremely significant regarding the use of this technique.  We 
will investigate reducing the variability in calculating the 
buffer and the related promised date lateness. 
 Additionally, a complete set of analysis studies should 
be completed which characterize the performance of the 
various methods of buffer calculation and adjustment.  We 
have completed preliminary studies that are promising, 
concerning the performance of the techniques posed.  Ba-
sically, if we are able to fit a model to the time series data 
on the lateness to schedule, then we can use that model in 
buffer estimation and promise date calculation.  Current 
studies have attained promising R-squared values on the 
order of 80%. 
 Finally, we will also investigate the incorporation of 
other methods of forecasting which are not as sensitive to 
the variance of the process.  These would include support 
vector machines and neural networks. 
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