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ABSTRACT 

In semiconductor manufacturing, it requires more than one 
objective such as cycle time, machine utilization and due 
date accuracy to be kept in focus simultaneously, while de-
veloping an effective scheduling.  In this paper, a near op-
timal solution, which is not inferior to any other feasible 
solutions in terms of all objectives, is generated with a 
combination of the analytically optimal and simulation 
based scheduling approach. First, the job shop scheduling 
problem is modeled using the discrete event simulation ap-
proach and the problem is divided in to simulation clock 
based lot selection sub-problems. Then, at each decision 
instant in simulated time, a Pareto optimal lot is selected 
using the various techniques to deal with multiobjective 
optimization such as weighted aggregation approach, 
global criterion method, minimum deviation method, and 
compromise programming. An illustration shows how 
these techniques work effectively in solving the multiob-
jective scheduling problem using discrete event simulation. 

1 INTRODUCTION 

In semiconductor industry, the primary challenge is to 
maximize the throughput of the facility while responding 
rapidly to customer demands through low cycle times. This 
is also important in order to face the response of a highly 
dynamic market characterized by rapidly changing de-
mands and product mixes with sometimes very brief prod-
uct life cycles. The need for higher utilization is created by 
the capital-intensive nature of the constraint equipments 
such as testers.  Therefore the effective scheduling of the 
semiconductor back-end is one of the key aspects in 
achieving these improvements. 

There are four main stages in a typical IC manufactur-
ing process: wafer fabrication, wafer sort, assembly cycle 
and final test. The flow between these processing stages is 
illustrated in Figure 1. Among these stages, the wafer fabri-
cation and wafer sort are usually known as the front-end and 
the IC assembly and testing are known as the back-end. As 
these back-end equipment are very highly capital intensive 
in nature, their effective utilization is very crucial for the 
factory performance. Also, the efficient scheduling of these 
test operations play an important role in the on-time delivery 
of the products and thus on the customer satisfaction.  

 

 

Figure 1: IC Manufacturing Process Flow 
 
The focus of this paper is on the optimization of mul-

tiobjective scheduling of these test operations based on 
discrete event simulation. The paper is organized as fol-
lows: Section 2 describes the simulation based scheduling 
and its applications; Section 3 formulates the scheduling 
problem in semiconductor back-end, using discrete event 
simulation; Section 4 briefs about Pareto optimal solution 
in multiobjective optimization; Section 5 describes various 
approaches, with their merits and limitations, to deal with 
multiobjective optimization; Section 6 formulates the mul-
tiple objectives in semiconductor manufacturing; Section 7 
describes this application by an illustrative example of a 
typical situation; Section 8 discusses the impact of the pro-
posed techniques; and Section 9  concludes the paper with 
future work. 

2 SIMULATION BASED SCHEDULING 

In recent developments, simulation is not just a tool to 
mimic the real-world system for analyzing it, but it has be-
come a popular technique for developing production 
schedules and dispatch lists in manufacturing environments 
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(Mazziotti and Horne 1997, Morito and Lee 1997, Siva-
kumar 1999).  An important aspect of simulation-based 
scheduling is that it uses actual customer orders and WIP 
information, and not arrival/demand data estimated from 
statistical distributions. Thus, keeping update with the real 
information, simulation offers the advantage of developing 
a feasible and accurate schedule in shorter computation 
times compared to some of the other techniques (Kiran 
1998, Mazziotti and Horne 1997), even for the job shop 
scheduling problems which are considered as NP-hard 
(Pinedo, 1995). Davis (1998) and Sivakumar (2001) report 
the application of online simulation in complex manufac-
turing scheduling. In online simulation, one of the major 
advantage is that the simulator mimics the behavior of the 
actual system in an intuitive manner that enables the users 
to understand the logic of manufacturing systems (Hopp 
and Spearman, 1996). Further, the simulation based sched-
uling also serve as a tool for handling exceptions in the 
production plan, such as  machine break-down, hot lots, 
etc., by generating the “what now” scenarios. 

However, the simulation based scheduling differs from 
the typical simulation studies in scope of application, ap-
proach of modeling, conduct of experimentation and analy-
sis of output as reported by Koh et al. (1996). Table 1 de-
scribes the summary of differences between the typical 
simulation studies and the simulation based scheduling of a 
shop. 

 
Table 1: Summary of Differences 

 Typical simulation 
studies 

Simulation based 
scheduling 

Scope Design and analysis. Operational planning. 

Model Stochastic model 
(random processes). 

Deterministic flexible 
model. 

Experiment Extensive multiple 
runs for statistical 
variance according to 
the design of experi-
ment. 

Fewer shorter runs, 
experimenting differ-
ent scheduling rules 
(or strategies). 

Output Statistical estimates 
of effects of various 
factors. 

Operational plan with 
system performance 
parameters. 

 
The application of simulation based scheduling at a 

semiconductor wafer fabrication of AMD Inc., using real 
time dispatch (RTD) tool from AutoSimulation Inc. has 
been reported by Rippenhagen and Krishnaswamy (1998). 
They implemented the combination of Hunger Ratio and 
Critical Ratio as dispatching rules, in prior which were 
analyzed in an off-line mode using simulation modeling. 
Rules deemed beneficial via simulation were then trans-
ferred to the Manufacturing Execution Systems (MES) for 
controlling the order of processing, in order to avoid the 
starvation of possibly reoccurring bottleneck equipment. 

Another similar type of application at Sony semicon-
ductor wafer fabrication, using AutoSched package from 
AutoSimulation Inc. is reported by Watt (1998). In this 
work, the shop floor scheduling system was integrated with 
the fab MES and a number of other data sources including 
an integrated machine standards database, preventive 
maintenance scheduling and a Kanban stage calculation 
worksheet. Also, the simulation was used to verify Sony 
production rules and determine the most effective Kanban 
strategy for the fab. 

3 PROBLEM FORMULATION 

The scheduling problem in semiconductor manufacturing 
is considered as one of the complex job shop scheduling 
problems, which are generally formulated by conventional 
approaches like Branch and Bound method, Lagrangian re-
laxation approach or other optimization methods using 
Tabu search, Simulated annealing, Genetic algorithm etc 
(Kiran 1998, Pinedo 1995). But, these conventional search 
and optimization methods are generally intensive in com-
putation time as even the simple manufacturing scheduling 
problems are NP-hard. The complexity of scheduling prob-
lem increases more in semiconductor manufacturing be-
cause of 1) the presence of different types of work-centers, 
2) very large and changing varieties of the products, 3) se-
quence dependent set-up times, 4) re-entrant process flow, 
5) dynamic nature of the problem, and 6) contradicting 
multiple objective functions, etc. 

In modeling the scheduling problem of semiconductor 
manufacturing, the use of discrete event simulation method 
helps in overcoming many of the limitations of the conven-
tional approaches (Sivakumar 2001).  The most distin-
guished advantage of this method is that it avoids even 
formulating an NP-hard optimization problem and thus 
provides the optimum solution at that instant within a lim-
ited time.  The operations are simulated on jobs using de-
fined resources in discrete time. Figure 2 illustrates this 
concept (Sivakumar 2001). 

 

Figure 2: Simulation Based Scheduling 
 
For example, in simulation, each machine selects its 

activity and operation in future time and as a result, all jobs 
available at that instance can be considered and all activi-
ties such as PM and sequence dependant setups can be 
scheduled.  In this formulation, machine m at simulated 

20:00 21:00 23:0022:00 00:00

Running
lots
@ 8:00  PM

Job 15, operation step 3

Job  18 Op step 4

Machine 1

Machine 3

Machine m Preventive maintenance

Job 169 step
2 Setup bc

Time
now Simulated  Time

Unload

Unload Setup Load

Selection  of  optimal
job  at  this simulated
instance k :  Problem
is decomposed   that  it
is no   longer   NP hard

Simulated
Time   k

Scheduling
process

New job
arrivals

Process engineering development (PE)Machine 2

Job 34567 Op. step 1



Gupta and Sivakumar 
time k has access to all the work in process (WIP) expected 
to be in the queue at time k, including those that would 
have arrived after the start of the simulation.  Thus, the 
overall NP-hard scheduling problem gets reduced to the 
selection of a suitable lot on machine m at simulation in-
stant k, which no longer remains a NP-hard problem. In 
other words, the issue of NP-hardness gets resolved when 
the overall scheduling problem is decomposed in to the 
sub-problems of lot selection for each local work center at 
each decision instance, using the deterministic discrete 
event simulation method. At every decision instant in 
simulated time, the resources, jobs (lots), and supporting 
information are considered by taking a snap shot of the 
shop floor and support systems prior to each scheduling 
run (Sivakumar 2001). The near term scheduling is 
achieved by considering the system progress in a determi-
nistic manner up to the next stochastic event or the elapse 
of a predetermined time. In this paper, our focus is on the 
selection of a suitable lot on machine m at decision instant 
k in simulation clock, keeping the interest on the demand 
of multiple contradicting objectives. 

4 PARETO OPTIMAL SOLUTION 

The subject of multiobjective optimization is widely re-
searched and published (Goicoechea et al. 1982, Sawaragi 
et al. 1985, Steuer 1986, Tabucanon 1988, Yu 1985, Ze-
leny 1982). A multiobjective optimization problem can be 
denoted as: 
 

,for   )),(),....,(),(()( 21 XxxfxfxfxfMin P ∈∆  

 
where each f j(x), j =1…P,  is a scalar objective function. 
An optimal solution in the classic sense is one which at-
tains the minimum value of all the objectives simultane-
ously. The solution x* is optimal to the problem defined if 
and only if Sx ∈* and  
 

Sxxfxf jj ∈≤  allfor  and j allfor  )(*)( , 

 
where S is the feasible region. In general, there may not be 
an particular optimal solution to a multiobjective problem, 
as one objective function gains only at the deterioration of 
the other objectives, due to their conflicting nature. In 
other words, optimality is an illusion when the objectives 
are conflicting. Therefore, one must be satisfied with ob-
taining the Pareto optimal solutions. A Pareto optimal solu-
tion is one in which no decrease can be obtained in any of 
the objectives without causing a simultaneous increase in 
at least one of the other objectives. A Pareto optimal solu-
tion is also called as efficient, non-dominated, or non-
inferior solution (Tabucanon 1988).  The solution x* is ef-
ficient to the problem defined if and only if there does not 
exist any Sx ∈ such that *)()( xfxf jj ≤ for all j and 
*)()( xfxf jj <  for at least one j. 

Suppose that there are two objective functions, ƒ¹(x), 
and ƒ²(x), where Xx ∈ .  A single objective problem can 
be formulated as ))(),(( 21 xfxfZ∆ . We can calculate Z¹, 

where ,ƒ²(x¹)) (ƒ¹(x¹), ∆Z¹  for a point Xx ∈1 , and the 

value of Z¹ can be plotted on the Cartesian coordinates as 
shown in Figure 3. Suppose our goal is to minimize both  
ƒ¹ and ƒ².  Point Z¹ resulting from x¹ is certainly not the 
choice as point Z² is better than point Z¹ in terms of both ƒ¹ 
and ƒ². 
 

Figure 3: Pareto Optimization 
 
Pareto Optimal or efficient solutions are defined as the 

boundary line of solutions that are better solutions than the 
others in the operating region.  An operating solution 

Xx ∈0  is a Pareto optimal or efficient solution if no other 
operating point Xx ∈ exists such that )()( 0xfxf ≤ and 

this implies that we will not find another operating solution 
xª such that )()( 011 xfxf a ≤ and )()( 022 xfxf a ≤ . In this ex-

ample, point Zº can be considered as a Pareto optimal point 
since there are no solution in the shaded area.  In general, 
real life problems have more than two objective functions, 
usually with tradeoff between these.  The primary objec-
tive of our research is therefore to identify solutions that 
are always on the Pareto optimal boundary and use various 
approaches on conflicting objectives to locate the desired 
solutions at every job selection event in simulated horizon. 

5 APPROACHES FOR MULTIOBJECTIVE 
OPTIMIZATION 

The multiobjective optimization problems are generally 
solved by combining the multiple objectives into one scalar 
objective, whose solution is a Pareto optimal point for the 
original MOP (Multiobjective Optimization Problem). 
Most of these combinations are either in a linear fashion or 
in form of the distance derivatives (Goicoechea et al. 1982, 
Gupta and Sivakumar 2002, Tabucanon 1988, Yu 1985, 
Zeleny 1982). Some of the prominent techniques in this 
relation are Weighted Aggregation, Global Criteria, Mini-
mum Deviation, and Compromise Programming, which are 
described in the following sections.  

•   Zº

Z¹ .ƒ¹

ƒ²

Z² .
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5.1 Weighted Aggregation Method 

A standard technique in multiobjective optimization is to 
minimize a positively weighted convex sum of the objec-
tives. It is easy to prove that the minimizer of this com-
bined function is Pareto optimal (Steuer 1986). But, the 
problem is up to the user to choose appropriate weights. 
Until recently, considerations of computational expense 
forced users to restrict themselves to performing only one 
such minimization, considering just one set of weights 
chosen with care. Newer, more ambitious approaches aim 
to minimize convex sums of the objectives for various set-
tings of the convex weights, therefore generating various 
points in the Pareto set. Though computationally more ex-
pensive, this approach gives an idea of the shape of the 
Pareto surface and provides the user with more information 
about the trade-off among the various objectives. In this, 
weighted aggregation approach, different objectives are 
weighted and summed up to one single objective. The 
problem then becomes as: 
 

∑
=

=
P

j

j
j xfwFMin

1

),(.  

 
where wj are non-negative weights with ∑wj= 1. By vary-
ing these weights, the whole Pareto surface can be found 
out as each Pareto optimal solution point on a convex sur-
face correspond to a set of wj. 

This method is the simplest possible approach to solve 
the multi objective problem, but from application point of 
view, the user may be having only an intuition of the im-
portance of one objective over the other, without having 
any knowledge of an exact set of weights for their various 
objectives, as it is very tough to establish a relationship be-
tween these weights and the real outcome in terms of ob-
jective functions values. To deal with this complexity, the 
researchers came up with the idea of finding a Pareto 
boundary by assigning varying weights to the objectives. 
Here, the difficulty is that the user has the full set of Pareto 
optimal points, defining a Pareto boundary, but out of this 
whole set which one to choose for application. Another 
problem is that of dimensional inconsistency among vari-
ous objectives. So, often it is observed that due to the dif-
ferent units of the objectives, one objective functional 
value seem to be becoming dominant in the overall 
weighted aggregation of objective functions, even in vari-
ous combinations of the weights. As a result, this approach 
becomes misleading, always deciding in favor of a particu-
lar objective, unless normalization is performed. One of the 
simple normalization technique to overcome this problem 
is to divide the each objective function by its maximum 
value and using the weighted ratio sum.  

However, this method suffers from two more serious 
drawbacks (Das and Dennis 1997). First, the relationship 
between the vector of weights and the Pareto curve is such 
that a uniform spread of weight parameters rarely produces 
a uniform spread of points on the Pareto set. Often, all the 
points found are clustered in certain parts of the Pareto set 
with no solution in the interesting “middle part” of the set, 
thereby providing little insight into the shape of the trade-
off curve. The second drawback is that non-convex parts of 
the Pareto set cannot be obtained by minimizing convex 
combinations of the objectives, though the existence of a 
non-convex part in a Pareto boundary is a very rarely oc-
curring phenomenon. 

5.2 Global Criterion Method 

In this method, a global objective function is formed as the 
sum of derivations of the values of the individual objective 
functions from their respective singular objective optimum 
values as a ratio to that of the singular optima. Thus, from 
the original P objective functions, a single function is for-
mulated and the problem becomes tantamount to solving a 
single objective optimization (Tabucanon 1988).  The 
modified problem is: 
 

,
*)(

)(*)(
.

1

r
P

j
j

jj

xf

xfxf
FMin ∑

=







 −=  

 
where ƒ j(x*) is optimum value of singular objective func-
tion j at its optima point x*, ƒ j(x) is the function value it-
self, and r is an integer valued exponent that serves to re-
flect the importance of the objectives. Since, the individual 
terms in the global objective function are expressed in ra-
tios that are necessarily dimensionless, there is no need to 
worry regarding the problem of dimensional consistency 
among various objective functions. In addition, explicit in-
formation on the relative importance of the objectives is 
also not necessary to know. 

However, the value of exponent r has to be defined by 
the user, which is generally set as greater than or equal to 
two in order to give more and more weight to the largest of 
deviations from the theoretical ideal solution (Tabucanon 
1988). One positive thing about it is that as the value of r 
increases beyond a particular value, the solution set be-
comes consistent with further increase in the value of r. 
Therefore, the selection of r does not remain a complex 
problem in this case. One difficulty with this method arises 
when the individual optimum of an objective is very small 
or close to zero. In such case, this objective becomes 
dominant over all other objective functions as in the over-
all minimizing function, the deviation from this particular 
objective function is divided by a quantity approaching to 
zero, making the corresponding term extremely large. 
Then, the overall minimizing function would try to make 
this term as minimum as possible by making the deviation 
very small and thus resulting in the favor of this single par-
ticular objective function. 
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5.3 Minimum Deviation Method 

This method is also applicable when the Pareto optimal 
values of the objectives are known but their relative impor-
tance is not known. It aims at finding the best compromise 
solution, which minimizes the sum of individual objec-
tive’s fractional deviation. The fractional deviation of an 
objective refers to a ratio between the deviation of a value 
of that objective from its individual solution and its maxi-
mum deviation. The maximum deviation of an objective is 
obtained from the difference between its individual optimal 
solution and its least desirable solution, which corresponds 
to the individual optimal solution of one of the other objec-
tives (Tabucanon 1988, Steuer 1986). 

5.3.1 Developing A Payoff Table 

For each objective function, its optimal value is first de-
termined and values of other objective functions are calcu-
lated corresponding to this individual optimum. After 
computing it for all the objectives, a payoff table is formed 
as shown in Table 2.  Column j correspond to the solution 

vector xj*, which optimizes the jth objective, )(xf j . ijf is 

the corresponding value taken by the objective )(xf j  when 

)(xf j reaches its individual optimum value *)(xf j . The in-

dividual optimum value of each objective function is on 
the diagonal elements of the payoff table (i.e., when i=j). 
 

Table 2: Payoff Table 
 X1* X2* … X j* … XP* 

Z1 f1(x*) f12 … f1j … f1P 

Z2 f21 f2(x*) … f2j … f2P 

: : : : : : : 

Zi fi1 fi2 … fij … fiP 

: : : : : : : 

ZP fP1 fP2 … fPj … fP(x*) 

 
Let x* denote the ideal solution, which gives the vec-

tor of the optimum value of each objective function. Thus 
F*(x*) = [ƒ1(x*), ƒ2(x*),…., ƒP(x*)] is the ideal objective 
vector. This vector can not be obtained unless all objec-
tives are non-conflicting i.e., this ideal objective vector is 
only a hypothetical solution, which never exists in the 
practical real-life problems. 

5.3.2 Computational Procedure 

The best compromise solution is defined as the solution 
that will give the minimum of the sum of the fractional de-
viation of all objectives (Tabucanon 1988). The fractional 
deviation of each of the objectives is expressed as a frac-
tion of its maximum deviation. Let ƒ j(xo) be the least de-
sirable value of ƒ j(x). The minimum deviation problem is 
therefore formulated as: 
 

∑
=









−
−=

P

j
ojj

jj

xfxf

xfxf
FMin

1 )(*)(

)(*)(
.  

 
This formulation is justified by giving various reasons. 

Firstly, the objectives may be different in units of meas-
urement. The fractional conversion will help in eliminating 
the effect of the dimension differences in computation. 
Secondly, in the event of any significant difference in 
magnitude of the objective function, the total deviation in 
absolute terms will be dominated by the objective which 
has a greater magnitude. The fractional term will help by 
normalizing the magnitude of each objective. Lastly, it 
helps to avoid the difficulty when the individual optimum 
of an objective is very small or close to zero. 

5.4 Compromise Programming 

The concept of compromise programming is similar to 
other distance based techniques (Goicoechea et al. 1982, 
Tabucanon 1988, Zeleny 1982). The method of compro-
mise programming identifies solutions which are closest to 
the ideal solution (described in section 5.3.1) as determined 
by some measure of distance. The solutions identified as 
being closest to the ideal solution are called compromise 
solutions and constitute the compromise set. 

In compromise programming , the point of interest is 
the comparison of distances of different efficient points 

),...,2,1 ),(( Pjxf j =  from the ideal solution which is the 

point of reference. Since the objectives may be of different 
dimensions, so the distance measure needs to be corrected 
to make the individual objectives mutually commensura-
ble. It is therefore necessary to use relative rather than ab-
solute deviations. The individual relative deviations can be 
raised to any power (r=1,2,…,∞) before these are summed, 
and also the weights wj (0<wj<1 and ∑j(wj)=1) can be at-
tached to the different  relative deviations (Tabucanon 
1988). For a multiobjective problem, with ideal point 
F*(x*) = [ƒ1(x*), ƒ2(x*),…., ƒP(x*)], the overall multiob-
jective minimizing objective function can be expressed as 
follows: 

 

 

rr
P

j
j

jj

jr xf

xfxf
wdMin

1

1 *)(

)(*)(
  








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

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
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 −⋅= ∑
=

  

 
Operationally, three points of the compromise set are 

usually calculated, that is, those corresponding to r=1, 2, 
and ∞ (Goicoechea et al. 1982). It should be noted that 
when r=1 and equal weights wj, the compromise pro-
gramming technique is equivalent to the global criterion 
discussed in section 5.2. When r=2, the equation becomes 
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simply the distance between two points in P dimension 
space, where each relative deviation is weighted in propor-
tion to its magnitude. As r becomes larger and larger, the 
largest deviation receives more and more weight. For r ap-
proaching ∞, the distance measure reduces to the following 
expression: 

 

 









 −
⋅=∞→

*)(

)(*)(

xf

xfxf
wd

j

jj

j
j

r Max  

 
This is because the relative contribution of the largest 

relative deviation when raised to a large exponent would 
be extremely larger than all the rest combined, and thus 
will dominate the distance determination. Therefore, the 
choice of r reflects the user’s concern with respect to the 
maximal deviation. 

Introduction of wj allows the expression of the user’s 
intuition concerning the relative importance of the various 
objectives. Thus a double-weighting scheme exists. The 
parameter r reflects the importance of the maximal devia-
tion and the parameter wj reflects the relative importance of 
the jth objective.  From application point of view, both 
these parameters have to be decided by the user. 

6 APPLICATION 

In semiconductor manufacturing, more than one objective 
such as cycle time, machine utilization and due date accu-
racy are considered as the performance criteria. The objec-
tive is to provide feasible approaches for the selection of a 
suitable lot at each decision instant in simulation clock, to 
optimize amongst the contradicting needs of delivery accu-
racy, machine utilization and cycle time (Sivakumar et al. 
2001). High machine utilization can be considered equiva-
lent to low machine idle time, especially the setup change 
time. 

6.1 Due Date Priority Dik 

Due date priority is computed based on the slack time of 
each job at the lot scheduling instance k with Dik as posi-
tive or negative value as described in Figure 4 and there-
fore defined as:  
 

 ,ikiik RPkdD −−=  
 
where RPik is the remaining total pure process time of lot i 
at time instance k and di is the due date and time of lot i at 
the start of simulation (Sivakumar et al. 2001). 

 

Figure 4: Due Date Priority (Dik) 

k 

t=0 

RPik 

t=k 
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t=di 
6.2 Relative Cost Factor of a Setup SCimk 

Relative cost factor of a setup, SCimk is defined as:  
 

 ,0   with , ximk
imk

imk
imk RRR

SSC ≤<=  

 
where Rimk is the potential run time of available work in 
process that can make use of the new setup on machine m 
after processing the operation step on lot i. Rx , is the run 
time of remaining customer demand. Simk is the sequence 
dependent setup time on machine m from its previous 
setup to process current lot i at an instance k.  If a job can 
be processed without any setup i.e., if setup time = 0 then 
the relative setup cost factor is also zero. 

Value of a setup also depends upon the number of 
other machines in the machine family that has identical 
setup as lot i at the particular instance k.  We define the in-
teger variable δimk to denote the quantity of equipment 
available (but busy at instance k) of the identical setup as 
required by lot i at the instance k.  Let the integer variable 
δimk ∈[0,1] equal to one if machine m is identical setup to 
lot i and zero otherwise.  Therefore the number of ma-
chines, Qk that have identical setup to that of the setup of 
lot i at the instance k can be expressed for each instance of  
k as ,

1
k

M

m
imk Q=∑

=

δ where δimk ≥1, as at least the machine at 

decision point satisfies the criteria. Potential run time, Rimk, 
is computed by ,∑= kimkimk QPR  where ∑ imkP is the cumu-

lative process time of all jobs available at instance k to sat-
isfy customer demand that are capable of being processed 
on machine m using the new setup of lot i. 

6.3 Cycle time priority kiyn
T '  

Cycle time priority is computed based on a modified cycle 
time, which is the sum of actual cycle time at simulated in-
stance k and remaining process time so that we get a rela-
tive measure of cycle time at completion. We define the 
remaining process time of lot i at simulated instance k as 

iykP  and actual cycle time i.e., the duration from arrival 

time of lot i at operation y to time k as iykT . If the arrival 

time of lot i at operation y is represented by biy, then the 
actual cycle time will be defined as: .iyiyk bkT −=  

Therefore, the modified cycle time is 
iykiyk TP + and the 

cycle time priority, iykT ' , is defined as (Sivakumar 2001): 

 

 
( ) ,

1
'

2

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The square value of the modified cycle time provides a 
polynomial increase in priority for cycle time as it gets 
aged. Lower the value of 

iykT '  denotes a higher priority. 

6.4 Pareto Optimization 

Each of the above factors with a lower value denotes a 
higher priority. The objective functions therefore are:  
 

Minimize Dik ,  
Minimize SCimk , and  
Minimize T'iyk. 

 
A programming formulation can therefore be established to 
represent the scheduling problem using the weighted ag-
gregation method, global criterion approach, minimum de-
viation technique and compromise programming. Thus, it 
has been formulated that the scheduling problem in the 
semiconductor manufacturing can be solved by the pro-
posed approaches, with out even formulating the problem 
as NP-hard. 

7 AN ILLUSTRATION 

The example in Table 3 shows the snap shot detail of the 
lots, in a typical lot selection scenario on a particular ma-
chine. There are 10 lots, belonging to two different fami-
lies F1 and F2, in the queue during this selection instance. 
The due-date priority, cycle time priority and relative set-
up cost factors are generated using fictitious data in the 
proper range based on the factory data of previous work 
(Sivakumar 2001). The testing of this methodology is done 
manually in the excel-sheet environment. The simulation 
clock is advanced manually on ten consecutive decision 
instances. In this example, the sequence dependent setup 
time, Simk, consists of two things: one, the normal setup of 
lots, which is taken as 30, 60, 90, or 120 min. respectively 
and second, an additional setup time of 60 min, if family 
change from F1 to F2, and of 120 min if family changes 
from F2 to F1. The potential run time, Rimk, is the sum of 
the processing times of all those lots which can be loaded 
with same setup. The remaining processing time, Piyk, is 
taken between 40 to 240 min., arrival time of lot i at opera-
tion y, biy , as less than 500 min., due date and time, di , be-
tween 4 to 7 days, remaining total pure process time RPik 
as between 1 to 3 days, etc. The initial instant is considered 
at k=500 min with already existing setup of family F1.  

Then, the due date priority, Dik, the relative set-up cost 
actor, SCimk , and the cycle time priority, 

iykT ' , are calcu-

lated from the data, shown in Table 3. Further, all the four 
methods are applied to select a lot for loading, with equal 
weights and power three wherever necessary. Table 4 
shows the lots, their due-date priority Dik, cycle time prior-
ity, 

iykT ' , relative set-up cost factor, SCimk, and their joint 
multiobjective function value in various approaches, dis-
cussed in section 5, at this initial lot selection instant. 
 

Table 3: Snap Shot Detail of the Lots.  

 
 

Table 4: Individual Function Priorities and 
Multiobjective Values in Different Approaches. 

 
 
From the values of these objective functions, it is very 

clear that the weighted average method will mislead unless 
normalization of values is performed, due to dimensional 
inconsistency. So, while computing, the simple normaliza-
tion is performed by taking the ratio of each function value 
and its maximum available value in the given lots.  From 
theses values, all four methods result in the choice of same 
lot J3,F1 at this particular instant. After selecting a lot at 
each decision instant, the simulation clock is forwarded by 
the added time of setup and processing. For next instant 
consideration, the potential run time, Rimk , is reduced by 
the processing time of last selected lot and new setup times 
are computed based on the change in the family of lots. 
Thus, the manual simulation experiments are done for all 
the four approaches to find out the sequence of the lots. 
Table 5 shows the sequence of these lots for processing on 
the particular machine with all these four methods and with 
common heuristics used as thumb rules such as FCFS 
(First-Cum-First-Serve), SPT (Shortest Processing Time) 
and EDD (Earliest Due Date).  

8 DISCUSSION 

Based on the sequence of lots under different methods as 
shown in Table 5, various performance parameters such as 
completion time of last lot, make-span time, average cycle 
time of all the lots and their standard deviation, average  
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Table 5: Sequence of Lots under Different Methods 

 
 

Table 6: Comparison of Various Performance Parameters 

 

waiting time in the queue and their standard deviation, and 
machine utilization are computed for each method and are 
shown in Table 6.  From these results, it is very clear that 
these four methods which take in to consideration the mul-
tiple objectives are much better than heuristics which con-
sider only one objective at a time, in relation to almost all 
the performance parameters for this particular example. 
There is quite significant improvement in the performance 
of the primary objectives (machine utilization, cycle time 
and delivery within due time). Especially, in this particular 
case, the equal weighted aggregation method gives the best 
results in all the performance parameters, among all the 
shown methods. To test this methodology on the real fac-
tory data in a complex job shop environment, with the help 
of a simulation engine is in the consideration of the future 
work of this ongoing research. 

9 CONCLUSION AND FUTURE WORK 

This paper presented the concepts, development and appli-
cation methodology of simulation based multiobjective 
schedule optimization in semiconductor manufacturing. 
The methodology reported can be applied easily to the 
complex job shop scheduling problems such as in semi-
conductor manufacturing and significant benefits can be 
achieved in terms of cycle time distribution, on-time deliv-
ery and utilization of the shop.  Pareto optimal solutions 
can be consistently achieved in dynamic manufacturing 
environment, using the proposed approaches.  The process 
of testing these approaches on a simulation engine consti-
tutes the currently going on research in further direction. 

Future work includes experimenting the proposed 
methodology on real factory data using an on-line simula-
tion engine, comparing it with the common heuristic meth-
 
ods such as First-Come-First-Serve, Shortest Processing 
Time, Earliest Due Date etc, which are generally used in 
the industry as thumb rules. However, the confirmation of 
the point, that selection of a Pareto optimal lot at each de-
cision instant in simulation clock will provide an overall 
Pareto optimal solution of the scheduling problem, needs 
further research. Further research issues also include the 
development of the methodology for operating the shop in 
a user controlled trade off between the objectives i.e., the 
selection of a lot in such a way that it will give the overall 
schedule according to the defined emphasis on the particu-
lar objectives.  
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