
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

A FEDERATION OBJECT COORDINATOR FOR SIMULATION BASED CONTROL AND ANALYSIS

Seungyub Lee
Sreeram Ramakrishnan

Richard A. Wysk

Department of Industrial and Manufacturing Engineering
Pennsylvania State University

University Park, PA 16802, U.S.A.

ABSTRACT

This paper presents an architecture and a design for a Fed-
eration Object Coordinator (FOC) for simulation based
control and analysis. This research focuses on developing a
methodology for implementing a distributed simulation
control mechanism which can be adopted to virtual manu-
facturing or virtual enterprises. In this method, distributed
fast or real time simulation models interact with low level
controllers and among themselves to actively control a
system. The timing and coordination requirements of the
simulation models to interact with the MRP systems and
control systems as well as the interaction among the dis-
tributed simulation models are discussed in this paper.

1 INTRODUCTION

As the size and complexity of simulation systems in-
creases, “conventional” sequential simulation fails to de-
liver the necessary performance (time and model fidelity
become issues). In large interactive simulations, a distrib-
uted implementation can help decrease the simulation
model and case representation issues. Distributed simula-
tion have been used for numerous reasons: which include
the faster execution of models, ability to better represent a
system physically distributed rather than localized to a
single machine or processor and increase in model fidelity.
An architecture for distributed simulation-based control
and analysis are discussed in this paper. In this modeling
methodology, an FOC plays a critical role such as time
management and coordination among federates (or simula-
tion models).

2 SYNCHRONIZATION METHODS

2.1 Time Increment in Discrete Event Simulation

The two phases of a Discrete Event Simulation (DES)
model’s run - Entity Movement Phase (EMP) and the
Clock Update Phase (CUP) has been discussed in Schriber

and Brunner (2000). In the CUP, two principal timing
methods are used: variable ∆∆∆∆t method and fixed ∆∆∆∆t
method. These methods have been discussed in Law and
Kelton (2000). It needs to be noted that the performance of
these methods also depends upon the level of interaction
among the different models.

2.2 Synchronization Techniques

Methods to coordinate simulation models can be classified
into synchronous and asynchronous methods. In the for-
mer, the required coordination is achieved using exact
synchronous mechanism or rollback mechanism. In the
exact synchronous mechanism, models do not process
current events simultaneously; only one model is active.
The synchronization is accomplished by maintaining a
“master event calendar” with the next event for each of the
distributed components (Misra 1986, Boukerche and Trop-
per 1995). In asynchronous method, every simulation
model runs independently, giving the potential for
maximum parallelism (Ghosh and Lee 2000). It can be
achieved using conservative or optimistic approaches
(Chandy and Misra 1979, Jefferson 1985, Misra 1986, Lin
and Fishwick 1996, Fujii et al. 1999).

3 OVERVIEW OF METHODOLOGY

Figure 1 outlines the framework of the proposed system.
The overview of the system consists of an FOC which co-
ordinates different simulation models, distributed simula-
tions, controllers in units and the MRP/DB system. The
control of the federation of simulations shown in Figure 1
is accomplished by using active status for the slowest run-
ning simulation while others are in inactive status. In this
research, the FOC uses the exact synchronous variable ∆∆∆∆t
mechanism. In this case, an FOC designated as a so-called
“master event calendar” allocates inter-process events
from this calendar to all simulation models. The FOC also
resynchronizes all simulations at the end of every activity.

Lee, Ramakrishnan, and Wysk

MRP/DB

FOC

Simulation #1
Active

Inactive

Controllers

•••••

Simulation #2
Active

Inactive

Simulation #n
Active

Inactive

Simulation #3
Active

Inactive

Controllers ControllersControllers

Control Unit #1 Control Unit #2 Control Unit #3 Control Unit #n

Communication Methods

FOC Architecture

Simulation Management

MRP/DB Architecture

Calendar for the
inter-simulation next events
for time coordination

Information for the next
events in each simulation

MPS

Figure 1: Overview of the Proposed System

With this mechanism, simulation models do not proc-
ess current events at the same time; one model is active
while the other models are inactive or delayed. An active
model is a synchronized model that advances to the time of
its next future event and completes the events on its current
event list. The synchronization is accomplished by main-
taining a “master event calendar” embedded in the FOC.

The two principal time increment methods for simula-
tion federations are variable and fixed ∆t for time advance.
The two mechanisms can be implemented in the system
along with an FOC; however, all distributed simulation
models update their state at the same time by variable ∆t
since time increment in a simulation depends on time of the
next event. On the contrary, if a fixed ∆t method is used in
the system, all models update their states at fixed time in-
crement, and a small ∆t results in a large number of update
points to synchronize the simulation time to the global simu-
lation time set by a simulation step size of an FOC.

Sim 1

Sim n

Sim 1

Sim n

Time Advance Scheme for a Federation

Exact Synchronous Variable ∆∆∆∆t

Exact Synchronous Fixed ∆∆∆∆t

•
•

Time

Time

Time Increment Steps for Federates based on the next event

Time Advance Scheme for a Federation by a Simulation Step Size of an FOC

Time Increment Steps for Federates based on the fixed increment value specified in a federate

Update Points by Communicating with an FOC

Update Points by Communicating with an FOC

•
•

Figure 2: Time Updates for Two Synchronization Methods
Applicable to the System
Figure 2 compares time increment steps and update
points in the systems using these two methods. If large
steps are taken, then constant step back occurs (moving
backward in time).

The main objectives for this research are:

• An architecture for an FOC and software system

to coordinate federates or simulations: Under the
distributed simulation modeling environment, it is
necessary to have an architecture of the system,
which can govern and coordinate federates within
the system. There are several alternatives to con-
struct this mechanism. This mechanism can be
categorized by its developer, platform or architec-
ture, the synchronization technique or communi-
cation protocol. Possible alternatives are as fol-
lows: HLA/RTI, Common Object Request Broker
Architecture (CORBA), Remote Method Invoca-
tion (RMI) and Distributed Manufacturing Simu-
lation (DMS) (Buss and Jackson 1998, McLean
and Riddick 2000, Allen and Garlan 1997).

• Management for distributed simulation models
within the federation: The methodology for syn-
chronization discussed here includes information
about the time of the next event and the time for
the inter-process events from a “master event cal-
endar”. It is necessary to develop a mechanism to
determine the time of the events in simulation
models and exchange the information via an FOC.
Consequently, both a time management mecha-
nism (to find out information regarding to time of
the events using simulation’s variables and func-
tions relative to its calendar) and communication
mechanism to exchange information via an FOC
are required for a variable ∆t FOC.

• An architecture and management for the DB/MRP
system: Several possible software packages such
as Microsoft Access, ERP packages (Oracle ERP
systems or SAP R/3) or commercial large data-
base systems such as DB2 RDBMs can be used to
generate input data such as master production
schedule (MPS), Bill of Material (BOM) and so
on. In this research, details for DB/MRP architec-
ture are not discussed.

4 DISTRIBUTED SIMULATIONS

In a distributed simulation-based control system, many
simulation models can be introduced to analyze and control
physical systems instead of a single simulation model.
They act as decision makers for each control unit and per-
form inter-processing communication between them via an
FOC. The interactions among the models, modeling archi-
tecture of distributed simulation models coordinated by an
FOC have been discussed. For the implementation, models

Lee, Ramakrishnan, and Wysk

in Arena 4.0™ is used to obtain MRP/DB information and
made to interact with a master control object to execute
tasks though a messaging system.

Distributed simulation models are first run in the fast
mode to detect system failures or other performance prob-
lems as an analytical tool. Even though distributed simula-
tion is applied to model relatively small manufacturing sys-
tems, the benefits to model and analyze the systems using
distributed simulation can be more prominent for large ap-
plications such as remote virtual factories or supply chain
management. First, fast-mode distributed simulations are
run to detect system problems and check fulfillment of
tasks while communicating each other via an FOC. After
debugging and modifying the overall models to satisfy all
the requirements, simulated system events can be progres-
sively replaced by plugging in actual physical equipments
to develop a fully integrated control system (Wu and Wysk
1989, Son et al. 1999).
 Each distributed simulation model obtains MRP/DB in-
formation using an SQL connection to an interactive Open
Database Connectivity (ODBC) compliant database system.
Two simulation models (for example) run while exchanging
messages using an Ethernet communication link to two mas-
ter controllers in each control unit via two routers. In this
case, two controllers perform the execution functions and
keeps track of the status of each low level controller within
each control unit. The master controllers and simulations ex-
change messages. Once the master controllers confirm
completion of tasks within a unit, then it sends a similar
message to the simulation, and the simulation knows that the
current task was completed. This procedure of com-
munication between each master controller and simulation
model for controlling a unit is performed in parallel via a
router while communication among simulation models is
done separately via an FOC. The control architecture for a
case of two distributed simulations appears in Figure 3.

Simulation 1

High Level
Contoller1

(TOQ)
Read

IPCQueue

(TIQ)
Write

IPCQueue

RO UTER 1

DB

Low Level Controllers

Simulation 2

High Level
Controller2

RO UTER 2

DB

Low Level Controllers

FO C

(TOQ)
Read

IPCQueue

(TIQ)
Write

IPCQueue

Figure 3: Control Architecture for Two Distributed
Simulations

As soon as a simulation model starts, it firstly tries to
make connections to a router to communicate with a mas-
ter controller, an FOC to send and receive synchronization
information and MRP/DB through ODBC. When an entity
is created in the model, the entity invoke DB/MRP to ob-
tain necessary information. Every entity created has attrib-
utes to store the information needed to process transactions
and to store the information about time of the next event,
time of the review event (physical halt for synchronization
among distributed simulation models). The names and
numbers for the attributes in the simulation are listed in
Table 1. Arena simulation supports either Visual Basic
Application (VBA) or DLL user-defined code for applica-
tion integration. User-written code for database interaction
for process plans and master production schedule, auto-
matic control, communication with controllers, coordina-
tion with an and FOC can be linked using VBA or DLL
files. Here, a DLL file generated using Microsoft Visual
C++ files and header files provided by Systems Modeling
Corporation is used. C++ file structure and functions of the
DLL file are shown in Figure 4.

Table 1: Attributes Used in the Simulation Models
Attributes Attribute name Function
100 – 199 Transaction

Parameters
Executing transactions

in controller
200 Next Time The time of next event

in the current simulation
201 Review Time The time of review event sent

back from an FOC for
synchronization purpose

Simulation1 Simulation2RT.dll RT.dll

Database Get DB Info. CPP file
Generation Task CPP file
Next_task CPP file
Read_address CPP file
Read_attribute CPP file
Update DB Info. CPP file
ConfigDlg CPP file
StatusDlg Cpp file
UserC CPP file
HistoryEdit CPP file

Database

Generating tasks
Identifying time of the next event

Communicating with controllers and FOC
Database interactions

Connecting to FOC when the simulation starts

Visual C++ Project

Figure 4: Architecture of the DLL File

5 A FEDERATION OBJECT COORDINATOR

5.1 Architecture of an FOC

The FOC discussed in this paper has been implemented in
the form of a TCP/IP socket program. The primary purpose
of the FOC is to facilitate the communication among the
simulation models. While a router is used to exchange
messages related to physical tasks between a simulation

Lee, Ramakrishnan, and Wysk

and a system controller, the FOC exchanges a message re-
lated to time of the next event from each simulation model.
In addition, the FOC executes and sorts the messages from
simulation models in order to construct a master event cal-
endar. A schematic representation is depicted in Figure 5.

SIM1 SIM2

ROUTER

Time of the next events

Smallest time will be sent
to both models

High and Low Level Controllers
Figure 5: Communication between Simulation Models and
an FOC and a Router for Two Simulations

In most methods, synchronization of the simulations is
usually achieved by messaging (Lin and Fishwick 1996).
In this architecture, seven key functions have been defined
for the FOC. The SocketListen() function is used to
monitor any incoming signals which requires establishing a
connection to a specific port. The connection of the simula-
tion model to the FOC using the OnConnect() function.
The AcceptSimulation() function in an FOC applica-
tion verifies if an acceptable connection has been made
with the relevant simulation models. The ReceiveMessage(
) function waits for messages from simulation models
connected to the FOC. Upon receiving messages (next
event times) from all the connected models, the FOC sorts
the event times to create a “master event calendar” (in in-
creasing order of time of the next event after consolidating
events from all simulations). This sorted result are stored in
a buffer. A SendMessage() function is invoked to send
information regarding the next scheduled event (top ranked
value in a buffer or master event calendar) to each simula-
tion model. Finally, the GetTnext() function handles
message strings from each simulation model and deciphers
them to help the FOC in selecting the next event.

5.2 Synchronization Scheme for an FOC

Exact synchronous variable ∆∆∆∆t mechanism is used for this
implementation since this approach is expected to faster than
other approaches and is typically limited only by the com-
puting or communication resources. Figure 6 describes basic
procedures of the synchronization mechanism. As shown in
Figure 6, time increment and update in each simulation de-
pends on time of the next event. Therefore, it is necessary to
develop a method to obtain information about time of the
next event in each simulation for the proposed synchroniza-
tion mechanism. When it is time to execute the next event,
the top record is removed from the calendar and the informa-
tion in this record is used to execute the appropriate logic. In
addition, the current value of time in the simulation is simply
held in a variable called the simulation clock and it is stored
in Arena system variable “TNOW”. During initialization of
the simulation, and then after executing each event, the event
calendar’s top record is taken off the calendar. The simula-
tion clock advances to the time of the next event, and the in-
formation in the removed event record is used to execute the
event at that instant of simulated time (Kelton et al. 1998,
Pegden et al. 1995).

Figure 6: Synchronous Distributed Simulation

A simulation model should start in process mode envi-

ronment and control of the entity is passed to “cevent
()” user-coded C function when an entity arrives at the
EVENT block. If a function to generate time of the next
event should be developed in user coded C++ file, those
EVENT blocks in process mode can be used to connect the
process model to event scheduling mode. Figure 7 shows
Arena block diagrams for sending time information to a
FOC and delaying for a “dummy event”.
 Once the FOC gets the messages about the time of the
next event, it returns the smallest value (of time of next
events) to each simulation model. When a simulation gets
the response from an FOC in a same delay block, it reads

Simulation Model 1

Global Event Calendar

Simulation Model 2

Time
10

20

25

35

Time
10

15

30

35

Event
Event 1
Compare time of
the next event
Waiting

Event 4
Compare time of
the next event
Event 5
Compare time of
the next event
Waiting

Waiting

Event
Waiting

Event 2
Compare time of
the next event
Event 3
Compare time of
the next event
Waiting

Event 6
Compare time of
the next event
Event 7
Compare time of
the next event

Lee, Ramakrishnan, and Wysk

and processes this message. After receiving messages from
the FOC, the simulation restores the returned value into
another attribute, creates a review event and updates the
attribute again. The entity will proceed to the next delay
block and it is delayed for “the smallest time among the
next events – TNOW”.
 Event execution logic in event scheduling and process
mode associated with time of the next event is depicted in
Figure 8. Finally, a synchronization mechanism along with
messages and creation of dummy events is proposed as an
exact synchronous variable ∆∆∆∆t mechanism with message
packets.

return
Time

Delay

TASKID(delay_time, send_to_federation_done,,)

Delay

RTime==NextTime.AND.IDENT==NextEntIf
Else

Branch

5

Event

3

Event

RTime-TNOW

Delay

Figure 7: Arena Process Block Diagram

Figure 8: Event Execution Logic in Event Scheduling and
Process Mode

Figure 9 describes a basic procedure of the proposed
synchronization mechanism between an FOC and simula-
tion models. Since synchronization mechanism will use in-
ter-process communication for message parsing, message
structure and executing messages can be critical issues for
its performance.

While (Simulation is not over)

Wait until message queue (master event calendar) contains
messages (= the number of simulation models) which include
time of next event in each simulation

Remove and send smallest time (Ts) stamped message M
from its calendar back to each simulation model.

In each simulation model
If

its simulation clock (TNOW) = Time stamp of M
Successfully process M and proceed to the next event

Else
Generate a review (Dummy) event and delay simulation
time for Ts.

Send another time stamped message to master event calendar

Figure 9: Exact Synchronous Variable ∆t Mechanism with
Message Packets

6 COMMUNICATION ARCHITECTURE

6.1 Communicaion Scheme

Based on schemes for inter-process communication, the
test-bed system can be implemented by TCP/IP socket
program embedded in each object member. There are three
elements in the inter-process communication in the system.
Figure 10 represents communication architecture of the
system, message flows and physical communication chan-
nels. From the above figure, simulation models, controller
via a router and the FOC have similar communication
processes to interact each other (Figure 11).

6.2 Messaging Scheme for Objects in the System

In the view of a simulation model as a task generator, it
needs to send all necessary communication to a master
controller. On the other hand, in the view of a simulation
model as a federate which will coordinate with other feder-
ates via the FOC, all of messages to send out information
of time from a federate to other federates is handled by the
FOC. Since synchronization mechanism uses inter- process
communication for message parsing, message structure and
methods used for executing messages is critical point for
system performance. The messages generated by a simula-
tion model are defined in “Message” or “Task” elements in
Arena 4.0 (Table 2).

Lee, Ramakrishnan, and Wysk

Figure 10: Communication Architecture

Figure 11: Communication Procedure

Table 2: Message Schema in Simulation Models
Messages Description Parameters

Send_from_si
mulation_to_

controller

Process the tasks or
transactions in a speci-
fied class of objects in

the system

IDENT(Current
active entity),
Object name,
Task Action

Send_to_federa
tion

Determine the smallest
time of the next event

among simulation mod-
els then send it back to

models

IDENT,
NextTime,

TNOW

Communication Process in Simulations, FOC and Controllers

1. The Communication Socket is created (Initialization)

2. Listen and wait for a connection with the simulation models

3. Read the incoming messages from simulations
 in the socket’s Input buffer

4. Parse the message into a format in order to be executed

 in the program

 (String find store a section of string found

 Execute functions using those intermediate strings)

5. Parse the application’s response into a response message

6. Write the response message to the output buffer

7 FUNCTIONAL ARCHITECTURE
FOR THE PROPOSED SYSTEM

7.1 Information Flow among Object

Members in the System

Information and message flow can be modeled in a se-
quence diagram, one of interaction diagram in Unified
Modeling Language (UML) (Booch et al. 1999). Figure 12
represents a sequence diagram which contains for the pro-
posed system. A related paper discusses the use of fast-
mode models and real time models to control a system
such a manufacturing shop floor or supply chain interac-
tions. (Ramakrishnan and Wysk 2002). In addition, since
fast-mode and real time mode simulation models share the
same attributes and operations (Figure 13), they can be
generalized into one simulation class. The five different
classes in this architecture - simulation, an FOC, a control-
ler, DB/MRP system, and a router is shown in Figure 13.

Figure 12: A “Sequence Diagram” for the Proposed System

8 IMPLEMENTATION ISSUES

The Arena 4.0™ simulation software used in the implemen-
tation is designed for building computer models that accu-
rately represent real world applications. In order to exchange

Lee, Ramakrishnan, and Wysk

Figure 13: A “Class Diagram” for the Proposed System

messages among objects (simulation models, controllers via
a router and an FOC in this case) in the system, it is required
to have a real-time package which is capable of sending
messages to third-party controller software.

In this research, Arena RT (real-time) package is used
to analyze and control the entire system which is divided
into two control units along with two high-level controllers
as shown in Figure 3. Basically, the simulation model reads
the order entries and a corresponding master production
schedule from the IBM’s DB2 database and sends the re-
quired messages to each high-level controller. After sending
the message, the simulation model waits for the verification
message from Big-E informing that the command has been
executed properly and the system is ready for the next mes-
sage. Consequently, Arena simulation sends a sequence of
messages throughout the processing of a shop order which
direct the part inside the physical system. Upon the comple-
tion of an order, the simulation model updates the order en-

Lee, Ramakrishnan, and Wysk

try table in the database verifying that the order has been
completed and ready for shipment. However, Arena does not
support a command to halt the simulation. If such a com-
mand existed, it would be possible to implement synchroni-
zation of simulation time easily by simply halting one
model. Moreover, two models cannot run simultaneously on
a single computer. Therefore, in order to implement the sys-
tem including several distributed simulation models, it is
necessary to run distributed simulation models on physically
distributed computers.

As mentioned earlier, the same number of high-level
controllers as the number of distributed simulation models is
required to control the system and execute tasks generated
by each simulation model. In each distributed control unit,
low-level controllers for physical equipments communicate
with their supervisor. Consequently, the same number of
routers with the number of high-level controllers is required
in each computer to connect all objects such as a simulation,
high-level controller and low-level controllers.

The speed and traffic of a network and performance of
computers considerably affect overall system’s perform-
ance since the proposed system depends on communication
process and message parsing for synchronization among
simulation models. Those factors should be also considered
prior to implementation. Finally, it can be stated that the
purpose of implementation using the proposed methodol-
ogy is to show the effectiveness of the proposed system
and its ability to make the overall system work.

9 CONCLUSIONS

In this paper, a methodology to synchronize distributed
simulations has been presented. An architecture for imple-
menting the methodology using Arena 4.0 as the example
DES has also been discussed. The basic idea was to present
the design and implementation of an FOC and a messaging
scheme that synchronizes distributed simulations. This
architecture can be flexibly applied to various systems such
as shop floor control systems and supply chain management.
The functional architecture depicted by object dependencies
for the system and information flow among objects in the
system using UML diagrams can aid the implementation in
any DES software. The proposed architecture was also im-
plemented in some test-bed systems. From the results, it was
experienced that simulations with an FOC performed more
efficiently and flexibly than fixed ∆t method and implemen-
tation was done more easily than HLA/RTI or other
architectures. The tests will be discussed in a later paper.

REFERENCES

Allen, R., and D. Garlan. 1997. Formal Modeling and

Analysis of the HLA RTI. In Proceedings of the 1997
Winter Simulation Conference Interoperability Work-
shop, 1-9.
Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The Uni-
fied Modeling Language User Guide. New York: Ad-
dison-Wesley.

Boukerche, A., and C. Tropper. 1995. SGTNE: Semi-
Global Time of the Next Event Algorithm. In
Proceedings of the IEEE, 68-77.

Buss, A., and L. Jackson. 1998. Distributed Simulation
Modeling: A Comparison of HLA, CORBA, and RMI.
In Proceedings of the 1998 Winter Simulation Confer-
ence, 819-825.

Chandy, K. M., and J. Misra. 1979. Distributed Simulation:
A Case Study in Design and Verification of Distrib-
uted Programs. IEEE Transactions on Software Engi-
neering 5 (5): 440-452.

Fujii, S., A. Ogita, Y. Kidani, and T. Kaihara. 1999. Syn-
chronization Mechanisms for Integration of Distrib-
uted Manufacturing Simulation Systems. Simulation
72 (3): 187-197.

Ghosh, S., and T. S. Lee. 2000. Modeling and Asynchro-
nous Distributed Simulation: Analyzing Complex Sys-
tems. New York: IEEE Press.

Jefferson, D. 1985. Virtual Time. ACM Transactions on
Programming Languages 7 (3): 403-425.

Kelton, D. W., R. P. Sadowski, and D. A. Sadowski. 1998.
Simulation with ARENA. Boston, Massachusetts:
McGraw Hill.

Law, A. M., and W. D. Kelton. 2000. Simulation Modeling
and Analysis. 3d ed. New York, NY: McGraw-Hill.

Lin, Y., and P. A. Fishwick. 1996. Asynchronous Parallel
Discrete Event Simulation. IEEE Transcations on Sys-
tems, Man and Cybernetics-Part A: Systems and Hu-
mans 26 (4): 397-412.

McLean, C., and F. Riddick. 2000. The IMS Mission Ar-
chitecture for Distributed Manufacturing Simulation.
In proceedings of the 2000 Winter Simulation Confer-
ence, 1539-1548.

Misra, J. 1986. Distributed Discrete-Event Simulation.
Computing Surveys 18 (1): 39-65.

Pegden, D. C., R. E. Shannon, and R. P. Sadowski. 1995.
Introduction to Simulation using SIMAN, 2d ed. New
York, NY: McGraw Hill.

Ramakrishnan, S., and R. A. Wysk. 2002. A Real Time
Simulation-based Control Architecture for Supply
chain Interactions, Industrial Engineering Research
Conference (on CD-ROM) Available at
<http://fie.engrng.pitt.edu/iie2002/
proceedings/ierc/papers/2030.pdf> [ac-
cessed July 18, 2002]

Schriber, T. J., and D. T. Brunner. 2000. Inside Discrete-
Event Simulation Software: How It Works and Why It
Matters. In Proceedings of the 2000 Winter Simulation
Conference, 90-100.

Son, Y. 2000. A Simulation-based Shop Floor Control.
Ph.D. Dissertation. Department of Industrial and Manu-
facturing Engineering, Pennsylvania State University.

http://fie.engrng.pitt.edu/iie2002/proceedings/ierc/papers/2030.pdf
http://fie.engrng.pitt.edu/iie2002/proceedings/ierc/papers/2030.pdf

Lee, Ramakrishnan, and Wysk

Son, Y., H. Rodriguez-Rivera, and R. A. Wysk. 1999. A

Multi-pass Simulation-based, Real-time Scheduling
and Shop Floor Control System. Transactions, The
quarterly Journal of the Society for Computer Simula-
tion International 16 (4): 159-172.

Wu, S. D., and R. A. Wysk. 1989. An application of dis-
crete-event simulation to on-line control and schedul-
ing in flexible manufacturing. International Journal of
Production Research 27 (9): 1603-1623.

AUTHOR BIOGRAPHIES

SEUNGYUB LEE is a doctoral candidate in the Depart-
ment of Industrial and Manufacturing Engineering at Penn-
sylvania State University, University Park. He received his
B.S. degree in Industrial Systems Engineering from Yonsei
University, Seoul, Korea and his M.S. in Industrial and
Manufacturing Engineering from Pennsylvania State Uni-
versity. His research interests are distributed simulation,
simulation-based control, web-based technology in virtual
environments and computer integrated manufacturing. His
email address is <sxl287@psu.edu>.

SREERAM RAMAKRISHNAN is a doctoral candidate
in the Department of Industrial and Manufacturing Engi-
neering at Pennsylvania State University, University Park.
He received his B.Tech (Mechanical) from College of En-
gineering, Trivandrum, India and his M.S. (Industrial En-
gineering) from S.U.N.Y., Binghamton where he won the
department Award for Academic Excellence. Upon
graduation, he will be an Assistant Professor in the Engi-
neering Management department at University of Missouri
– Rolla. His research interests are simulation-based control
and supply chain management. His email address is
<sxr270@psu.edu>.

RICHARD A. WYSK is the Leonhard Chair in Engineer-
ing and a Professor of Industrial Engineering at Pennsyl-
vania State University, University Park. Dr. Wysk has coau-
thored six books including Computer-Aided Manufacturing,
with T.C. Chang and H.P. Wang -- the 1991 IIE Book of the
Year and the 1991 SME Eugene Merchant Book of the
Year. He has also published more than a hundred and fifty
technical papers in the open-literature in journals including
the Transactions of ASME, the Transactions of IEEE and the
IIE Transactions. He is an Associate Editor and/or a mem-
ber of the Editorial Board for five technical journals. Dr.
Wysk is an IIE Fellow, an SME Fellow, a member of Sigma
Xi, and a member of Alpha Pi Mu and Tau Beta Pi. He is
the recipient of the IIE Region III Award for Excellence, the
SME Outstanding Young Manufacturing Engineer Award
and the IIE David F. Baker Distinguished Research Award.
He has held engineering positions with General Electric and
Caterpillar Tractor Company. He received his Ph.D. from
Purdue University in 1977. He has also served on the facul-
ties of Virginia Polytechnic Institute and State University
and Texas A&M University where he held the Royce
Wisenbaker Chair in Innovation. His email and web ad-
dresses are rwysk@psu.edu and <http://www.
engr.psu.edu/cim/wysk.html>

mailto:rwysk@psu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1986
	02: 1987
	03: 1988
	04: 1989
	05: 1990
	06: 1991
	07: 1992
	08: 1993
	09: 1994

