
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

ADVANCED EVENT SCHEDULING METHODOLOGY

Lee W. Schruben

Theresa M. Roeder
Wai Kin Chan

Department of Industrial Engineering and Operations Research

University of California, Berkeley
4135 Etcheverry Hall

Berkeley, CA 94720, U.S.A.

Paul Hyden

Department of Mathematical Sciences
O-309 Martin Hall

Clemson University
Clemson, SC 29634-0975, U.S.A.

 Mike Freimer

Department of Management Science and
Information Systems

509N Business Administration Bldg.
The Pennsylvania State University
University Park, PA 16802, U.S.A.

ABSTRACT

Simulation Event Graphs (SEGs) are a graphical represen-
tation one of the three major simulation world views, event
scheduling. This paper describes four advanced modeling
techniques that allow the simulation practitioner to gather a
great deal of information at relatively little development
and/or processing effort beyond that of developing the
simulation model.

1 INTRODUCTION

One of the three main approaches to discrete event simula-
tion modeling is the event scheduling world view, see
(Derrick, et al. 2000). One key advantage to this world
view is its speed in executing models of congested systems
(Schruben and Roeder 2003). In addition, Simulation
Event Graphs (SEGs), a type of event scheduling simula-
tion, are able to compactly represent large models, and can
be analyzed using optimization and graph theory.

This paper describes advanced modeling techniques that
are available in the event scheduling world view. Section 2
formally defines SEGs to aid the development of future sec-
tions. Section 3 introduces the ideas of simultaneous repli-
cations and time dilation for simulation optimization; Sec-
tion 4 illustrates infinitesimal perturbation analysis (IPA) of
SEGs; Section 5 reports recent results in using math pro-
gramming together with SEGs; and Section 6 describes on-
going work in estimating rare event behavior.

2 SIMULATION GRAPHS

This section will give a formal definition of SEGs. The
definition will be illustrated in a simple example.

2.1 Definition

Simulation Event Graphs model the dynamics of discrete
event systems. We will use notation from (Yücesan and
Schruben 1992). Accordingly, for a graph G, define:

V(G) set of event vertices in G
Es(G) set of scheduling edges in G
Ec(G) set of canceling edges in G
ΨG incidence function on G, associating an

ordered pair of vertices with each edge in G
The pairs of vertices in ΨG need not be distinct. A simula-
tion graph is defined as the ordered quadruple
G = (V(G), Es(G), Ec(G), ΨG). The vertices V(G) represent
the events that occur, causing a change in the system state.
The (directed) edges Es(G) and Ec(G) indicate relationships
between the events, as specified by ΨG.

Let R+ be the set of non-negative real numbers, and let

STATES denote the set of possible states for the underlying
model. Then we additionally define the following data in-
dexed by sets in G:

• set of state transition functions associated with
vertex v: F = {fv: STATES → STATES | v ∈
V(G)}

Schruben, Roeder, Chan, Hyden, and Freimer

set of edge conditions associated with edge e:
C = {ce: STATES → {0,1} | e ∈ Es(G) ∪ Ec(G)}

•

•

•

•

•

set of edge delay times associated with edge e:
T = {te: STATES → R+ | e ∈ Es(G) ∪ Ec(G)}
set of event execution priorities associated with
edge e: Γ = {γe: STATES → R+ | e ∈ Es(G)}
set of event parameters associated with vertex v:
P = {pv: STATES → R+ | v ∈ V(G)}
set of edge attributes associated with edge e:
A = {ae: STATES → R+ | e ∈ Es(G) ∪ Ec(G)}

A simulation graph model is the ordered seven-tuple
S = (F, C, T, Γ, P, A, G). The first six sets identify entities
in the model, while G creates a meaningful model by
specifying the relationships among indices for elements in
F, C, T, Γ, P, and A.

2.2 Example

Consider a simple G/G/s queueing system. The state
of this system is the number of jobs waiting to be served,
Q, and the number of available servers, R. The set of all
possible STATES for this model is {(Q,R): Q = 0, 1, 2,…,
R = 0, 1,…,s}. Additional state variables are W[i], the
time the ith customer spends in the system; ID, the cus-
tomer identification number; IN, the customer ID of the
customer currently in service (the last to have started or
completed service); NEXT, the customer ID of the next
customer to begin service; and CLK, the simulation clock
time. The (random) customer interarrival times are ta, and
service times are ts.

The set of event vertices V(G) consists of the events
ENTER, START, and LEAVE. Ec(G) = ∅; the scheduling
edges Es(G) are shown in Table 1.

Table 1: Edges for the SEG of G/G/s Queue

Edge Vertex pair
1 ENTER – ENTER
2 ENTER – START
3 START– LEAVE
4 LEAVE – START

The state changes F and event parameters P for each

event are given in Table 2.
The edge conditions C, time delays T, event priorities

Γ (associated with the edge that schedules/cancels the
event), and edge attributes A are given in Table 3.

Initially, R = s, Q = 0, CLK = 0, and the ENTER event
starts the simulation run.

Table 2: State Changes and Parameters for Events in
the SEG of the G/G/s Queue

Event State changes Event parameters
ENTER Q=Q+1,

ID=ID+1,
W[ID]=CLK

START Q=Q-1, R=R-1,
NEXT=NEXT+1

IN

LEAVE R=R+1,
W[IN]=W[IN]-
CLK

IN

Table 3: Data Associated with Edges for the SEG of the
G/G/s Queue
Edge Condition Time delay Priority Attributes

1 ta 2
2 R > 0 1 ID
3 ts 2 IN
4 Q > 0 1 NEXT

Throughout this paper, the term “model” will be used

to refer to one complete specification from a design region
or search space. Thus, a system where s = 3 is a different
model than one where s = 4.

3 SIMULTANEOUS REPLICATIONS
AND TIME DILATION

The ideas of simultaneous replications and time dilation
were formally proposed in (Schruben 1997). Simultaneous
replications allow multiple (parameterized) runs to be done
during the same simulation execution. This is likely to
cause the future events list (FEL) to become extremely
large; however, it is actually possible to take advantage of
the large list using time dilation.

Fundamentally, time dilation increases the “time scale”
for scenarios that are performing poorly relative to the oth-
ers. This is done by penalizing less promising scenarios.
While the simulation does not completely stop collecting
data for these scenarios, it does not spend as much time on
them but tries to improve estimates for more promising con-
figurations. Experimental results have shown the simultane-
ous replications and time dilation can quickly find correct
solutions (for problems where the answer is known) with
relatively little expended computational effort.

In (Schruben 1997), time dilation does just that, it
changes the time scale. Several M/M/1 queues are simul-
taneously simulated with different release rates to deter-
mine the 4X capacity/release rate. That is, the job arrival
(release) rate that results in the average cycle time is four
times the raw job processing time. If iW is the average job
delay for release rate i and P is an exponential scaling fac-
tor, the time scale for the system with release rate i was

Schruben, Roeder, Chan, Hyden, and Freimer

multiplied by ()4

P

iW − . (For example, P=2 if iW <4 and

P=4 otherwise.) The releases for less promising rates are
scheduled for later points in time, and, in effect, less simu-
lation time is spent on them. The results show impres-
sively that the vast majority of the events executed during
the run are associated with the “correct” release rate.

The ideas proposed in (Schruben 1997) are developed
and refined in (Hyden and Schruben 1999, 2000; Hyden
2003). An important difference is a reinterpretation of the
concept of time. Rather than changing the time scale of the
concurrent models, units of time are seen as number of
events executed. Scenarios with more promising results are
given more attention than those with less promising results.
The scenario to devote the next segment of CPU time can be
determined probabilistically, where each situation is as-
signed a probability based on its relative performance.

The example illustrated in (Hyden and Schruben 2000)
is that of a job shop with five server types. One additional
server is available, and can be added to any of the five
groups. The five possible scenarios (the additional server
being assigned to each of the groups) are run simultane-
ously. The ultimate objective is to find the setup with the
smallest expected job time in system. Since it cannot be
guaranteed that every run will find the optimal setup, the
“working” objective is to maximize the probability of se-
lecting the correct system.

In this example, the quality of a setup is based on a
distance measure Di between model i and its best competi-
tor. Additionally, the sample variance Vi of the expected
performance measure is calculated. Each model i is as-
signed a score of V , and is selected for execution with
probability V over the sum of all of the scores. This
favors models with smaller distance measures D

2/i D
2
iD

i

/i

i and also
those with greater variance (to try to reduce the variance).

The simulation engine executes one event from the se-
lected model, and then reevaluates which model it should
choose next. Probabilities pi are recalculated every 100
events.

The simultaneous replications were run with and with-
out common random numbers (CRN), and it is shown that
the CRNs improve the probability of selecting the correct
solution substantially.

There are many opportunities for changes and enrich-
ments to the basic structure introduced here. Certainly esti-
mates of Vi can be improved upon by taking into account se-
rial dependency. Scores could be modified to weight recent
data more heavily than past data. Rather than executing one
event and reselecting models, the engine could execute a
certain number of events from the model (perhaps the num-
ber could be score-dependent) before reevaluating.
4 INFINITESIMAL PERTURBATION
ANALYSIS

Infinitesimal perturbation analysis (IPA) is a technique that
has been studied for many years. It allows the simulation
practitioner to estimate response gradients (with respect to
several parameters) for the system modeled with a single
run. In contrast, finite differencing requires two runs to
find the response derivative for a single parameter. While
most IPA results have been developed for Generalized
Semi-Markov Processes (GSMPs), see for example
(Glasserman 1991), in this paper, we will focus on a pro-
cedure developed in (Freimer 2001) to easily perform IPA
estimation using SEGs.

)

The following discussion will use notation from
(Freimer and Schruben 2001a, 2001b). Consider an
M/M/1 queue with mean service time θ. Let be

a realization of job i’s service time, using random seed ω.
If θ were increased by ∆θ, this service time would be in-

creased by

(,iS ω θ

() (),iS
o

ω θ
θ θ

θ
∂

∂
∆ + . Figure 1 shows a sam-

ple path for the number of jobs in the system (waiting and
in service) for the M/M/1 queue. The number increases
when a job arrives and decreases when a job finishes ser-
vice. The area under the solid line is the total delay ex-
perienced by the jobs in the unperturbed system. The area
under the dashed lines is the additional delay experienced
by jobs because of the increase in θ. It is important to note
that the additional delays are cumulative in a busy period:
The third job in a busy period will have to wait for the ad-
ditional service times jobs 1 and 2 experienced, and will
also be delayed by its own increase in service time.

∆

)

1Sθ
θ

∂∆
∂ 2Sθ

θ
∂∆
∂ 3Sθ

θ
∂∆
∂

 # jobs in
system

Figure 1: Sample Busy Period for M/M/1 Queue

If the purpose of the study is to find the derivative of
the average waiting time W (which is the average
delay minus the average service time), it can be expressed
as the sum of the derivatives of the S

(,ω θ

i. Let N be the total
number of jobs served, M the number of busy periods, and

Schruben, Roeder, Chan, Hyden, and Freimer

km the index of the first job in busy period m. Then the
sample path derivative of the waiting time W is (,ω θ)

 () () ()1 1

1
1

,, 1 1
m

m

kM
j

m
m j k

SdW
k j

d N
ω θω θ

θ
+ −

+
= =

∂
= − −

∂∑ ∑ θ

)

 (1)

This expression does not depend on ∆θ, so we need

only track the service time derivatives. In the case of ex-
ponential service times, a service time S is gener-
ated using a uniform random number U :

. Its derivative is

(,ω θ

)
()ω

() ()() ()(1, , ln 1SS F U Uω θ ω θ θ ω−= = − −

() ()() (), 1ln 1 ,
S

U S
ω θ

ω ω
θ θ

∂
= − − =

∂
θ

)
.

The derivative of W is a sample path deriva-
tive. Conditions for unbiasedness of the derivative of the
expected waiting time are outlined in (Freimer and
Schruben 2001b).

(,ω θ

While the equation in (1) is correct, it requires know-
ing the length of the busy period, information that is not
known during a simulation run (until the busy period is
over). Nonetheless, gathering sample path service deriva-
tives during a run is fairly straightforward with SEGs.

The average time in system of a job can be calculated
as the integral over time of the number of jobs in the sys-
tem (divided by N), which is equivalent to the area under
the curve in Figure 1. However, we can also note that this
is the sum of the product of the number of jobs in the sys-
tem and the length of time this state remains unchanged. If
we let f(si) be the number of jobs in the system after the ith
state change has occurred, τi be the time of this ith state
change, and N(tf) be the number of system changes that
have occurred by the simulation finish time tf, the average
time in system can be expressed as

() ()
()

(
1

1
0

1,
fN t

i i i
i

W f s
N

ω θ τ τ
−

+
=

=

(),ω θ

()

)− . Further defining ∆fsi as

f(si-1)-f(si) if i < N(tf) and f(si-1) if i < N(tf), we can express
the derivative of W (after some algebra) as

()

1

, 1
f

i

N t
i

s
i

dW d
f

d N d
ω θ τ
θ θ=

= ∆ . The change in τi can be ex-

pressed as the changes in the edge delay times during the
busy period that led up to τi, as seen in Figure 1.

To finally implement the estimator in the SEG, we de-
fine the following two variables: A is the accumulator,
which stores the total changes in waiting time accrued thus
far. G is used to pass the delay time derivatives. Both A
and G are initialized to zero at the beginning of the run.
Each edge e with delay te will have the additional attribute
of G+dte/dθ. Each event s will have two additional state
changes: f=∆fs (as appropriate), and A=A+fG.

For our M/M/1 queue, ∆fsi is -1 if si is an ENTER
event, 1 if it is a START event, and 0 otherwise. (Note that
here, we are calculating the average waiting time directly,
since it is the average time in system minus the average
service time. The service time can be subtracted from the
calculation immediately, giving us the average waiting
time.) Since we are only varying the service rate parame-
ter, the derivative of the other edge delay (interarrival time)
with respect to this is zero.

We need now only add the following state changes
and edge attributes to the model defined in Section 2.2:
The START event sets f=1 and A=A+G; and the edge from
START to FINISH sends G+ts/θ. All other edges simply
pass the current value of G.

5 MATH PROGRAMMING OF
SYSTEM TRAJECTORIES

An advantage of simulation event graph models is that any
information about the system being studied is available. A
disadvantage is that the computational effort to obtain the
information may be prohibitive, and great care must be
taken to get accurate performance estimates.

This section describes ongoing research that links
simulation and math programming models. It builds on
work presented in (Schruben 2000). A big advantage of
math programming models, specifically linear programs
(LPs), is that there are large bodies of research on efficient
solution procedures, and on sensitivity analysis. (Schruben
2000) shows that simulation models of simple queueing
systems (G/G/1 and G/G/2 queues, and multiserver tandem
queues) can be formulated as linear programs. The duals
of the linear programs are network graphs; these graphs
can be solved very quickly. Their solutions are the trajec-
tories of the corresponding SEG. In addition, they give in-
sights into the sensitivity of the solution to model parame-
ters (e.g. interarrival and service times).

Consider the example from Section 2.2 where s = 1.
For the time being, we will ignore the job waiting times
(variables W, ID, IN, and NEXT). The linear program is
given below in (2). The objective function is to minimize
the sum of the finish times. Ai is the arrival time of the ith
job, and Fi is its finish time. The service duration of the ith
job is tsi. The total number of jobs processed is N. The as-
sociated dual variable names are given in parentheses next
to the constraints.

 ()
()

1

1

min

. .

N

i
i

i i i i

i i i i

 F

s t F A ts U i=1,...,N

 F F ts V i=2,...,N

=

−

≥ +

− + ≥

∑
 (2)

Schruben, Roeder, Chan, Hyden, and Freimer

The dual LP is given in (3). Constraint i is associated
with the ith finish time. The constraints are totally uni-
modular, and the solution can be found extremely quickly.
In addition, the solution values will be integer. The prob-
lem data (interarrival and service times) only appear in the
objective function. The surprising (and pleasing) result is
that the dual variables tell the number of jobs in the busy
period (Ui) and the remaining number of jobs in the busy
period (Vi). Thus, given the input data, we can solve a LP
(which has taken as few as zero basis pivots) and find the
busy periods, the lengths of the busy periods, and the job
finish times. In addition, we can use sensitivity analysis
information to determine what effect changes in the data
(interarrival and service times) will have on the system be-
havior.

 (3)

()
1 2

1 2

1

max

. . 1
1

1

N N

i i i i i
i i

i i i

N N

 A ts U tsV

s t U V
 U V V i=2,...,N-1
 U V

= =

+

+ +

− ≤
+ − ≤
+ ≤

∑ ∑

Figure 2 shows the dual graph for N=3. The dual vari-

ables can be interpreted as the amount of flow across their
arcs, and the shaded values are the revenues earned by a
unit flow across the arc. Each of the Fi nodes has a “de-
mand” of one unit, and we are trying to create a “max
flow” from A0 to Fi, i = 1, 2, 3. For G/G/1 queues, this is
known as the lot-sizing problem. See (Chan and Schruben
2003) for more details on dual formulations and their in-
terpretations.

In (Chan and Schruben 2003) show further results for
tandem queues. They use the LP formulations to show re-
versibility of queueing systems with blocking. Although

A1 A3 A2

ts3ts2ts1

U1 U2 U3

F2
ts3

V3 F3 F1
ts2

V2

A3 A2 A1

A0

Figure 2: Dual Graph for G/G/1 Queue with
Three Jobs

(Schruben 2000) uses integer (assignment) variables for the
formulations of G/G/s queues, we have been able to formu-
late them as LPs, albeit with a large number of constraints.

6 RARE EVENT ESTIMATION

The G/G/s model described in Section 2.2 tracks the wait-
ing times for individual customers. When systems get
large, this can become cumbersome because of the amount
of memory and processing time required. In (Schruben
and Roeder 2003), the authors describe the drawbacks of
job-driven simulations, where each job is tracked. They
suggest that resource-driven simulations may be more ap-
propriate for most purposes; here, only counts of jobs and
available resources are kept. This makes modeling aspects
of systems and obtaining certain output statistics such as
waiting time distributions more difficult.

This section describes ongoing research in estimating
waiting time distributions without tracking individual jobs.
We will restrict ourselves to FIFO G/G/1 systems here.
Before explaining how to estimate delay times without
maintaining records of each job, we will describe an “in-
termediate” step for estimating the probability a job has to
wait less than some set time delay L.

To do so, we will supplement the model described in
Section 2.2 by an additional event DELAY. It will be
scheduled unconditionally by the ENTER event, and will
occur L time units after a job arrives. Its state changes will
consist of incrementing a delay counter D by one. If, when
this DELAY event occurs, there have been more START
events than DELAY events, we know that the job began
service before it was delayed L time units. To capture this,
we increment a service counter ST by one every time a
START event occurs. The DELAY event will have addi-
tional state changes counting the number of jobs that have
begun service before their “time was up,” and updating the
estimate of the probability of waiting less than L: The
counter W is incremented by one if (D≤ST) is true, and the
probability PROB is updated to W/ST. The value of PROB
at the end of the simulation run will be our estimate of the
probability that W<L.

This approach will give an accurate estimate of the
probability, and works for FIFO G/G/s queues with s>1 as
well. Its disadvantage is that, though we are not directly
tracking each job, we are maintaining an event (DELAY)
for each job on the FEL. Since the DELAY event does not
schedule other events, we can dispense with it and instead
just use an array to track the times the job would have been
delayed L time units. This saves storage space on the order
of magnitude of the number of jobs in the system, O(N).
The order of the approach we will describe next is inde-
pendent of the number of jobs.

The “bin” approach divides the simulation time line
into equally-sized bins. When a job arrives at time t, we
update the number of jobs that will have been delayed L

Schruben, Roeder, Chan, Hyden, and Freimer

time units for the bin that contains time t+L, and all subse-
quent bins. Figure 3 shows the step functions for the
DELAY and START events (dashed and normal lines, re-
spectively), and also shows the resulting “bin” step func-
tion for bin size b (bold line). The ENTER step function is
not shown. It is the same as the DELAY function, shifted
to the left L units.

The original approach compares the height of the
DELAY and START curves at time t. If the DELAY curve is
above the START curve, the job has waited too long. The
“bin” approach compares the height of the START curve to
the height of the BIN curve. If the BIN curve is above the
START curve, we will classify the job as having waited
longer than L. We should note that this will lead to the
misclassification of some jobs. In Figure 3, specifically,
jobs 1 and 4 will be misclassified, as indicated by the
shaded areas. To count the number of jobs misclassified,
we can count the shaded rectangles in the graph. These are
the areas where the BIN curve occurs before the START
curve, though the DELAY curve itself happens after the
START curve. The size of the rectangle does not give any
indication about the magnitude of the error in the misclas-
sification. It does show how big a tolerance there is for the
actual START time – if the START occurs anywhere in that
region, the job will be misclassified. Overall, our estimate
of the probability of waiting less than L will be underesti-
mated. That is, we will think our system is performing
more poorly than it actually is.

The magnitude of the error clearly depends on the bin
size. As the bin size approaches 0, we will move closer
and closer to the complete job-driven case. The error will
also depend on the parameters of the model. If the system
is very lightly loaded, we will be less prone to error since
the START event will happen much sooner than the DELAY
event will, assuming L is not close to zero.

Figure 4 shows results for an M/M/1 queue with interar-
rival rate 2/3 and service rate 1. It shows that, as expected,
the estimates of the probability get worse as the bin size in-

time

count
DELAY START

3b 2b b

approximated
DELAY

t2 t1

44

5

6

1

3

2

Figure 3: Step Functions for G/G/1 Queue
creases. This is especially true for smaller delays. As the
delays get larger, all estimates become more accurate.

0

0.2

0.4

0.6

0.8

1

0 5 10 15delay

P{
w
ai
t<
de
la
y} exact

bin = 1 approx

bin = 2 approx

bin = 4 approx

Figure 4: P{wait < delay} for M/M/1 Queue and
Different Bin Sizes

For the simple M/M/1 system, the run times for the
“bin” model do not result in a great speed-up compared to
models that track individual jobs and return the exact wait-
ing times. However, we are exploring the possibilities of
incorporating bin approximations into large models, where
the additional processing required to increment all bin
counters may still be less than that of tracking individual
jobs. We are also investigating the possibility of improv-
ing the approximation in the bins themselves by adding a
probability that a job may actually not be delayed even
though the bin counter indicates it is.

ACKNOWLEDGMENTS

Conversations with Deborah Pederson and Nirmal Govind
have been extremely helpful. This work was supported in
part by the Semiconductor Research Consortium and the
National Science Foundation.

REFERENCES

Chan, W. K., and L. W. Schruben. 2003. Properties of Dis-
crete Event Systems from Their Mathematical Pro-
gramming Representations. Proceedings of the 2003
Winter Simulation Conference. ed. S. Chick, P. J. San-
chez, D. Ferrin and D. J. Morrice.

Derrick, E., O. Balci, R. Nance, and H. Shen. 2000. Con-
ceptual Frameworks for Discrete-Event Simulation
Modeling. Computer Science Working Paper Virginia
Polytechnical Institute. Blacksburg, VA.

Freimer, M. 2001. Integrating Data Collection and Model
Analysis in Simulation. Ph.D. Dissertation, School of
Operations Research and Industrial Engineering, Cor-
nell University. Ithaca, NY.

Freimer, M., and L. W. Schruben. 2001a. Graphical Repre-
sentation of IPA Estimation. Proceeding of the 2001

Schruben, Roeder, Chan, Hyden, and Freimer

Winter Simulation Conference. ed. B. A. Peters, J. S.
Smith, D. J. Medeiros and M. W. Rohrer. Piscataway,
NJ, USA: IEEE. pp.422-427.

Freimer, M., and L. W. Schruben. 2001b. Visualizing In-
finitesimal Perturbation Analysis Estimators. Techni-
cal Report 1291, School of ORIE, Cornell University.
Ithaca, NY.

Glasserman, P. 1991. Gradient Estimation Via Perturba-
tion Analysis. Kluwer Academic Publishers, Norwell,
MA.

Hyden, P. 2003. Time Dilation: Decreasing Time to Deci-
sion with Discrete-Event Simulation. Ph.D. Disserta-
tion, School of Operations Research and Industrial
Engineering, Cornell University. Ithaca, NY.

Hyden, P., and L. Schruben. 1999. Designing Simultane-
ous Simulation Experiments. Proceedings of the 1999
Winter Simulation Conference. ed. P. A. Farrington,
H. Black Nembhard, D. T. Sturrock and G. W. Evans.
Piscataway, NJ, USA: IEEE. pp.389-394.

Hyden, P., and L. Schruben. 2000. Improved Decision
Processes through Simultaneous Simulation and Time
Dilation. Proceedings of the 2000 Winter Simulation
Conference. ed. J. A. Joines, R. R. Barton, K. Kang
and P. A. Fishwick. Piscataway, NJ, USA: IEEE.
pp.743-748.

Schruben, L. W. 1997. Simulation Optimization Using Si-
multaneous Replications and Event Time Dilation.
Proceedings of the 1997 Winter Simulation Confer-
ence. ed. Winter Simulation Conf. Board of Directors.
pp.177-180.

Schruben, L. W. 2000. Mathematical Programming Models
of Discrete Event System Dynamics. Proceedings of
the 2000 Winter Simulation Conference. ed. J. A.
Joines, R. R. Barton, K. Kang and P. A. Fishwick. Pis-
cataway, NJ, USA: IEEE. pp.381-385.

Schruben, L. W., and T. M. Roeder.2003. Fast Simulations
of Large-Scale Highly Congested Systems. Simula-
tion: Transactions of the Society for Modeling and
Simulation International.

Yücesan, E., and L. Schruben.1992. Structural and Behav-
ioral Equivalence of Simulation Models. ACM Trans-
actions on Modeling & Computer Simulation. 2(1):
82-103.

AUTHOR BIOGRAPHIES

LEE W. SCHRUBEN is a Professor in and Chair of the
Department of Industrial Engineering and Operations Re-
search at UC Berkeley. His email address is
<schruben@ieor.berkeley.edu>.

THERESA M. ROEDER is a Ph.D. candidate in the De-
partment of Industrial Engineering and Operations Re-
search at UC Berkeley. Her email address is
<roeder@ieor.berkeley.edu>.
WAI KIN CHAN is a Ph.D. student in the Department of
Industrial Engineering and Operations Research at the
University of California, Berkeley. His e-mail is
<kin@ieor.berkeley.edu>.

PAUL HYDEN is an Assistant Professor in the Depart-
ment of Mathematical Sciences at Clemson University. He
received all of his degrees in Operations Research and In-
dustrial Engineering from Cornell University. His email
address is <hyden@clemson.edu>.

MIKE FREIMER is an Assistant Professor in the De-
partment of Management Science and Information Systems
at the Smeal College of Business at the Pennsylvania State
University. His email address is <mbf10@psu.edu>.

mailto:<kin@ieor.berkeley.edu>u
mailto:hyden@clemson.edu
mailto:kin@ieor.berkeley.eduu
mailto:hyden@clemson.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 159
	02: 160
	03: 161
	04: 162
	05: 163
	06: 164
	07: 165

