
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

EXTEND: AN INTERACTIVE SIMULATION TOOL

David Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, U.S.A.

ABSTRACT

The Extend simulation environment provides the tools for
all levels of modelers to efficiently create accurate, credi-
ble, and usable models. Extend’s design facilitates every
phase of the simulation project, from creating, validating,
and verifying the model, to the construction of a user inter-
face which allows others to analyze the system. Simulation
tool developers can use Extend’s built-in, compiled lan-
guage, ModL, to create reusable modeling components. All
of this is done within a single, self-contained software pro-
gram that does not require external interfaces, compilers,
or code generators.

1 INTRODUCTION

Expectations for simulation software by modelers and non-
modelers are higher than ever. A robust simulation engine
is only a starting point. Modern simulation software must
include reusable modeling components, end-user interface
creation tools, flexible reporting mechanisms, and a broad
array of methods for communicating with other programs.

Extend includes a unique message-based simulation
engine that provides rapid model execution and flexible
model construction. Extend’s blocks can be easily config-
ured and combined to model very complex systems. This is
demonstrated by the wide range of industries that use Ex-
tend, such as consumer products, communications, manu-
facturing, service, healthcare, and logistics.

The automatic animation, debugging tools, and model
transparency aid in validating and verifying a model. Ex-
tend’s model transparency allows the modeler to easily see
how the model is operating. This includes interactive
model execution, modeling components that display his-
torical information about the model behavior and the inter-
action between other components, and an interactive de-
bugger which, along with open source, allows the modeler
to see every detail of the model operation including event
scheduling, resource assignment, and even how subtle tim-
ing issues are resolved. These tools reduce the amount of
time required to gain confidence in the model.

Components with a complete user interface can be

created by model builders with drag-and-drop ease. These
components can then be saved in a library and used in any
future modeling projects.

When the model is completed, an interface is often
created to make the model usable and immediately recog-
nizable by someone unfamiliar with the construction of the
model. Extend includes drag-and-drop tools for user inter-
face creation as well as a variety of methods for communi-
cating with other programs such as Microsoft Excel and
Access. This type of interface creation generally requires
no programming and can be done in very little time.

2 EXTEND PRODUCTS

The Extend family of products is designed to meet the needs
of the entire enterprise. Table 1 illustrates the range of Ex-
tend-based products sold directly by Imagine That! In addi-
tion to these, third-party developers have created their own
vertical market modules in diverse areas such as chemical
processing, supply chain, pulp and paper manufacturing, and
others. All products based on Extend include:

•
•

•
•
•

Drag and drop modeling
A full suite of interprocess communication tools
for communicating with other applications
Hierarchical modeling capabilities
Evolutionary optimization
A complete development environment for build-
ing custom components.

3 EXTEND INNOVATION

Originally released in 1988, Extend brought capabilities to
the desktop that were previously available only on main-
frame computers. The vision which led to the first graphi-
cal user-interface based simulation environment continues
today. In the process of developing and enhancing Extend,
Imagine That! has scored a number of “firsts” in the simu-
lation industry. Table 2 illustrates a few of the pioneering
features in Extend.

Krahl

Table 1: The Extend Product Family
Extend Product Description Typical use
Extend CP Drag and drop simulation for continuous model-

ing
Continuous modeling of scientific and engi-
neering systems

Extend OR Advanced discrete event modeling capabilities
added to the continuous modeling of Extend CP

Manufacturing, healthcare, communications,
service industries, transportation, logistics, and
business processes

Extend Industry Adds an integrated database and high speed sys-
tems modeling to Extend OR

Complex systems where it is useful to separate
the model data from the structure or high speed
/ high volume processes

Extend Suite Adds Proof Animation and Stat::Fit for distribu-
tion fitting to the Extend Industry package

Organizations which need to model complex
processes and build high quality animations

Table 2: Firsts for Extend Simulation Software
Year Innovation
1988 First template-based (library) simulation system
1988 First open source modeling components
1988 First simulation software designed for a GUI
1992 First hierarchical modeling environment
1992 First message-based discrete event architecture
1995 First Windows/Macintosh simulation system
1998 First DDE scriptable simulation environment
2001 First open source optimizer
2001 First drag and drop ActiveX/COM support
2001 First integrated support for Proof Animation
2001 First integrated support for network communi-

cation
2003 First integrated support for Internet data transfer

4 THE EXTEND MODELING
ENVIRONMENT

Before looking into how Extend can be used to build mod-
els, it is helpful to understand the Extend modeling envi-
ronment (Imagine That, Inc. 2003)

Extend models are constructed with library-based
iconic blocks. Each block describes a calculation or a step
in a process. Block dialogs are the mechanism for entering
model data and reporting block results. Blocks reside in li-
braries. Each library represents a grouping of blocks with
similar characteristics such as Discrete Event, Plotter,
Electronics, or Business Process Reengineering. Blocks are
placed on the model worksheet by dragging them from the
library window onto the worksheet. The flow is then estab-
lished between the blocks. Figure 2 illustrates the overall
structure of an Extend model.

There are two types of logical flows between the Ex-
tend blocks. The first type of flow is that of “items”, which
represent the objects that move through the system. Items
can have attributes and priorities associated with them. Ex-
amples of items include parts, patients, or a packet of in-
formation. The second type of logical flow is “values”,
which will change over time during the simulation run.
Values represent a single number. Examples of values
include the number of items in queue, the result of a ran-
dom sample, and the level of fluid in a tank.

Each block has connectors that are the interface points
of the block. Figure 1 shows the connector symbols for the
item and value connectors.

Item Input

Value Input Value Output

Item Output

Figure 1: Value and Item Connectors

Connections are lines used to specify the logical flow

from one block to another. Double lines represent item
connections and single lines represent value connections.
The concept of value connections in addition to item con-
nections is unique to Extend. Other contemporary simula-
tion applications require that a function be written when-
ever a simulation input is based on a value from another
point in the model. In Extend, this type of logic is per-
formed without programming of any type.

Connected references are relative rather than absolute.
This means that it is possible to easily create reusable
components. In addition, the logic of the model is visible to
anyone examining the model structure. To simplify the ap-
pearance of the model, the connections can be hidden.
Figure 2 illustrates the relationship between the libraries,
blocks, worksheet and any external programs (such as an
ActiveX object, Excel, or a DLL) which may be linked to
Extend. It also shows the visual nature of an Extend model.
Note that the Input Random Number blocks can be clearly
recognized as providing the delay (D) for the activities.

5 SINGLE SERVER, SINGLE
QUEUE EXAMPLE

The following example is of a single server, single queue
system. For the purpose of illustration, the model of a car

Krahl

ActiveX, COM, DLL...
Input data

Simulation results
Interface

Behavior (code)

Model Worksheet

Libraries of blocks
Dialog
Help
Icon

Initial data
Behavior (code)

Block dialogs
Input data

Simulation results

Figure 2: Extend Modeling Structure

wash will be used. This car wash will include one wash
bay and one waiting line. The model for this car wash is
shown in Figure 3.

Figure 3: A Single Server Single Queue Model

The block on the far left is a Generator block that pe-

riodically creates items (in this case dirty cars). Following
this is a Queue, FIFO block that holds the cars until re-
quested by the next block. The wash bay is represented by
the Activity Delay block with a limited capacity of one
processing unit. The delay for the activity is specified by
an Input Random Number block (connected to the “D” or
delay connector). Each time a car arrives to the activity, a
new value is sampled from the Input Random Number
block. The last block in the model is an Exit block that re-
moves the cars from the system.

Combining basic elements like this allows the Extend
modeler to build complex systems quickly and accurately.
The overall structure of the model segment is easily deter-
mined by glancing at the model.
5.1 Graphical Output

A Discrete Event Plotter graphically displays model met-
rics (values). In this example (Figure 4), the Plotter will
graph the contents of the Queue (the number of dirty cars
waiting in line) over time. Here the length connector (L) on
the Queue FIFO is connected to an input on the Plotter.

Figure 4: Discrete Event Plotter Added to Model

Figure 5 illustrates a sample plot from this model.

Note the data for the plotter is displayed below the plot.
This information is saved with the model and does not dis-
appear when the model is saved and then reloaded.

5.2 Model Results

During and after the simulation run, the results of the simu-
lation are reported within the blocks, displayed on plotters,
sent to reports, and exported to other applications. Double-
clicking on each block reveals the information collected

Krahl

from the simulation run. For example, double-clicking on
the Queue, FIFO block opens a dialog showing the infor-
mation found in Figure 6. Each block reports its own statis-
tical information.

Figure 5: Plot of Queue Length

Figure 6: Dialog of Queue FIFO

The Plotter block shows the number of items stored in

the Queue, FIFO over time in both graphical and tabular
format.

Simulation results may be stored in a table, plotted,
cloned to a different area of the worksheet, exported to an-
other program such as a spreadsheet or database, displayed
in an animation, or even used to control some aspect of the
outside world through external device drivers.

5.3 Connectivity with Other Applications

The term interprocess communication (IPC) describes the
act of two applications communicating and sharing data
with one another. This feature allows the integration of ex-
ternal data and applications into and out of Extend models.
Automatic communication between Extend and other ap-
plications can take one of five forms:

•

•

“Paste-Link” where the information is automati-
cally updated between Extend and Excel
Blocks that utilize the IPC functions to communi-
cate directly with other applications
•
•

•

ODBC (Open DataBase Connectivity)
Embedded ActiveX or OLE (Object Linking and
Embedding) objects
DLL (Dynamic-Link Library).

Figure 7 illustrates an embedded Excel spreadsheet
used as a reporting mechanism for a model. The informa-
tion in the spreadsheet is “linked” to the model with Ex-
tend’s Paste-Link functionality.

Figure 7: ActiveX Excel Spreadsheet Embedded in Extend

The popularity of interfacing models with other appli-

cations (especially Microsoft Excel) makes these features
powerful tools for model developers. Extend modelers do
not have to program in an external language to communi-
cate with other applications. Instead, information can be
transferred using standard modeling components. As user
interface development is a large portion of the time re-
quired to build a model, particularly when the model is de-
signed to be used by non-modelers, this can represent a
significant time savings.

5.4 Integrated Database

The Extend Industry and Extend Suite packages contain an
integrated relational database that provides a complete data
management system for model input and output. The data-
base is built directly into the model and contains product
data, process information, and experimental results.

By separating your data from the model, the database
enables fast scenario implementation, flexible analysis and
improved project management.

•
•

•

•

Configure tables for experiments and reports
Use database-aware blocks to build powerful
model constructs
Assign strings to items using database-aware at-
tributes
Leverage dates, times and other data formats such
as currency.

Krahl

The Industry database is relational and parent-child re-
lationships can be used to better organize the information
in the model. For example, each entry in a table of part
types can reference its own unique routing table. This is an
extremely powerful feature for organizing the information
used in complex simulation models. This allows the mod-
eler to easily modify model parameters in a central location
without having to change values that are distributed
throughout the model.

5.5 Data Analysis

Extend offers a number of methods for analyzing both in-
put and output data. These range from internal analysis fea-
tures to built-in interfaces with other applications.

An interface to distribution-fitting programs is pro-
vided to aid users in selecting the appropriate statistical
distribution based on empirical data collected in the field.

Sensitivity analysis can be performed to determine how
sensitive a system is to changes in specific input parameters.
For example: to determine how sensitive the car wash is to
changes in the inter-arrival time of dirty cars, sensitivity
analysis can be performed on the inter-arrival mean parame-
ter of the Generator block. By selecting the inter-arrival time
dialog item and choosing Sensitize Parameter from the Edit
menu, the change in the parameter value from one run to the
next is defined. Cycling through different inter-arrival times
for the dirty cars and comparing the results from the differ-
ent runs, an understanding of how sensitive the car wash is
to the arrival rate of dirty cars can be obtained.

Finally, the Statistics library helps users to collect and
analyze output data. Blocks from the Statistics library
automatically gather data from the specific blocks and cal-
culate confidence intervals.

Extend’s block architecture aids the modeler in devel-
oping custom statistical calculations. Virtually any statistic
can be calculated by combining the appropriate blocks.
This makes it easier to develop custom reports displaying
statistics familiar to the model end-user.

5.6 Optimization

Extend’s Evolutionary Optimizer employs powerful “en-
hanced evolutionary” algorithms to determine the best pos-
sible model configuration. Using a drag and drop interface,
performance metrics and parameters that can be varied are
entered into the Optimizer block. These parameters are
used in an equation that defines the objective function.
When the model is run, the Optimizer block generates al-
ternatives and locates the statistically best configuration.
Unlike external optimizers, Extend’s optimization is well
integrated into the program. For example, when the opti-
mization process is complete, model parameters are auto-
matically set to the optimal configuration. In addition, be-
cause the Optimizer has been implemented in a block, the
source code is available for examination and modification.
6 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical and
interactive nature of Extend. However, Extend can also
take the shape of the modeled system. Interfaces, compo-
nents, and graphics can be created which tailor the model
to a specific application area.

The most visible aspect of a custom model is the user
interface. By modifying an existing interface or creating a
new one, the simulation modeler is able to create a model
which can be exercised by someone more familiar with the
system than with the simulation tool. This means that mod-
els can be built that fit naturally into the conceptual frame-
work of the person using the model. The following sections
will describe some of the tools provided in Extend that fa-
cilitate customization.

6.1 Animation

Animation is a powerful presentation and debugging tool
that can greatly increase model clarity. In Extend, anima-
tion icons moving from block to block represent the flow
of items through the system. Users can choose from a
number of icons provided with Extend, create their own in
an external drawing package, or import them.

Animation is automatically a part of every Extend
model. A default animation is displayed when “Show
Animation” is turned on. Animation features can be added
to a model in the form of different animation pictures that
represent various types of items, displaying values, levels,
color changes, or even sounds in response to simulation
events. In addition, custom animation can be added to dis-
play pictures and text, level indicators, and pixel maps.

For more sophisticated animation, Extend Suite in-
cludes Wolverine Software’s animation package, Proof
Animation. Activities, Resources, Generators, and Exit
blocks each have specific functionality to send information
to the Proof animation during simulation execution (Wol-
verine Software Corporation 2002). Additional animation
features in Proof can be accessed in Extend through the
Proof library of blocks and Extend’s equation blocks. This
allows Extend modelers to easily utilize the industry’s
most sophisticated animation package.

6.2 Hierarchical Modeling

In the past, there have been at least two definitions of hierar-
chy in simulation modeling. The first definition, model hier-
archy, coined by Imagine That, Inc (Imagine That, 1992),
describes the grouping or aggregation of system components
(blocks) into a single object. Extend includes extensive sup-
port for this through the its ability to combine multiple
blocks into a single block and then store these new blocks in
libraries for later re-use. The second definition, structural hi-
erarchy refers to programming new components based on

Krahl

existing code. Extend’s open source architecture allows pro-
grammers to view and modify Existing modeling compo-
nents, potentially creating new ones.

Extend provides unlimited layers of model hierarchy,
created using a simple menu command. Hierarchy allows
models to be subdivided into logical components or sub-
models, represented by a single descriptive icon. Double-
clicking on the hierarchical block opens a new window
displaying the sub-model. This greatly simplifies the repre-
sentation of a model and allows the user to hide and show
model details as appropriate for the target audience.

Even a medium-sized call center model can become
difficult to maintain if all of the modeling components
must be at the same level. Extend’s hierarchy allows the
modeler to decompose the model into smaller, more man-
ageable segments. Additionally, new model segments can
be added by dropping in a new hierarchical block. Figure 8
illustrates the use of hierarchy to organize a model where
each icon encapsulates a separate model segment.

Figure 8: Call Center Model with Hierarchical Blocks

By selecting a group of blocks and choosing Make Se-

lection Hierarchical from the Model menu, a section of the
model can be encapsulated within a hierarchical block. Ex-
tend’s hierarchy fully encapsulates the enclosed block and
does not require the renaming of variables and connec-
tions. All of the connection names within the hierarchical
block are local to that block. This allows multiple instances
of identical hierarchical blocks in the same model (Pidd
and Castro 1998). The hierarchical blocks can be copied
within a model or saved to a library to be used again in
other models. The icon for the hierarchical block can be
modified by using the built-in icon editor or by importing
an existing picture. While the representation of the model
is more intuitive and simple than a non-hierarchical model,
all of the detail of the model can still be accessed by dou-
ble-clicking on any of the hierarchical blocks to display the
underlying sub-model.
By utilizing hierarchy, modelers are able to rapidly
and accurately create reusable model segments. For exam-
ple, a call center may have a number of similar groups of
agents (differing in number of agents and call time distri-
bution). One hierarchical block can be built and, using
cloning, a user interface and report are created. This block
can then be replicated multiple times. The only changes
that need to be made are easily accessible in the hierarchi-
cal block’s user interface.

6.3 Dialog Cloning and the Notebook

As noted earlier, input and output parameters associated
with the model can be found in the dialogs of the appropri-
ate blocks. While this provides an intuitive association be-
tween system metrics and the constructs used to model
them, it can make searching for specific data cumbersome.
This is especially true when working with large models
containing many layers of hierarchy. An effective way of
dealing with this is to use the Extend Notebook and the
cloning feature. With the Notebook, a single custom inter-
face can be created that consolidates critical parameters,
results, and model control to a central location.

The Notebook is a separate window associated with
each model. Initially, the Notebook is a blank worksheet to
which text, pictures, and clones can be added. Clones are di-
rect links to dialog parameters and are created by selecting
the Cloning Tool from the tool bar and using it to drag a dia-
log parameter from a block dialog to the Notebook or model
worksheet. Figure 9 illustrates creating a clone by selecting
the clone tool (an alternate cursor type) and dragging a dia-
log variable from a block onto the model Notebook.

Figure 9: Creating a Clone with the Clone Tool

Once a clone is created, any changes to the clone are

immediately reflected in the block and vice-versa. There-

Krahl

fore, it is no longer necessary to access the block’s dialog
to change an input parameter or view updated results.
Creative use of the Notebook can result in a simple yet ef-
fective interface for a large, complex model. As an illustra-
tion of how the Notebook can be used to consolidate im-
portant parameters into one location, Figure 10 shows the
Notebook for the Call Center model.

Figure 10: Notebook for Call Center Model

Cloning and the Notebook are another example of the

tools available in Extend which facilitate model develop-
ment. Without this feature set, the modeler would be re-
quired to learn and utilize a procedural programming lan-
guage to develop a similar user interface.

6.4 Block Development

The block development environment is one of Extend’s
most powerful features. While the majority of Extend users
find the pre-built constructs sufficient for their needs, the
block development environment provides a way for users
to expand their modeling capabilities to perform unusual or
highly specialized tasks. It typically takes only minutes for
someone with programming experience to learn the basics
of building modeling components in Extend.

Extend’s open source architecture allows access to the
structure of most blocks that are shipped with Extend. By
opening the structure, the icon, dialog, help text, and pro-
gramming code of the block can be edited. The interface
and functionality of any block can be modified or a new
block created from scratch.

ModL is the powerful and flexible language used to
define the behavior of each block. This language provides
high-level functions and features while having a familiar
look and feel for users with experience programming in C.
In addition, external XCMDs and DLLs can be called from
within ModL, giving the option of programming in any
language which supports this feature (such as C or Pascal).

The ModL development environment with its interface
for editing the dialog, help, icons, connectors, and code, is
illustrated in Figure 11. Other tools include block perform-
ance profiling, “include” files, and an interactive debugger.

Figure 11: ModL Block Development Environment

The advantages of a development environment such as

this are obvious. Model builders are able to easily and re-
liably create new or modified modeling constructs for de-
manding modeling situations or new applications.

The significance of a powerful programming language
such as ModL should not be underestimated. Traditional
simulation “languages” or scripting environments typically
lack full sets of language features such as flexible condition
statements (some are limited to a single condition at a time),
user defined data structures, and user interface development
tools. Because ModL has all of these features (and more),
there is rarely a need for a modeler to resort to an external
language such as C++ or Visual Basic. With Extend and
ModL, only one language and interface needs to be learned.
And, since ModL is based on the C language, its learning
curve is typically short. With less time learning and switch-
ing between languages, model developers are able to de-
velop more sophisticated models in less time.

This level of extensibility has prompted many users to
develop libraries of custom blocks for specific industries.
Users and third-party developers have created libraries for
modeling high-speed production systems, chemical proc-
esses, silicon wafer fabrication, pulp and paper mills, envi-
ronmental processes, and radio and microwave communi-
cation systems. Some blocks coded by customers can be
found on the Imagine That, Inc. company web site
(http://www.imaginethatinc.com/).

6.5 Scripting

Scripting is a feature that allows models to be created
and/or modified through a suite of ModL functions. With
this functionality, users can create objects that automati-
cally build and modify models. With scripting, users can
develop their own model building “wizards” or self-
modifying models. Without having to rely on general-
purpose “wizards” provided by the software vendor, users
can develop “wizards” specific to their needs and can have

http://www.imaginethatinc.com/
http://www.imaginethatinc.com/

Krahl

complete control over the level of detail and accuracy re-
sulting from automated model building.

Coupled with Extend’s ability to communicate with
other applications using interprocess communication
(IPC), scripting provides an easy way to allow other ap-
plications to control every aspect of Extend, including
building the model, importing/exporting data, and run-
ning the simulation.

7 MODEL INTERACTIVITY

Simulation should be fun. Simulation tools should allow
modelers to get in and play with the system. Much of the
benefit of building a simulation model comes from the un-
derstanding of the modeled system that is gained by merely
constructing, validating, and verifying the model. Simula-
tion software should make it easy to try alternatives and
immediately see the effect. Interactivity is thoroughly em-
bedded in Extend’s architecture. In Extend, model parame-
ters can be changed mid-run without requiring the modeler
to program which parameters can be changed. When the
user clicks on a dialog value, the simulation pauses giving
the modeler time to enter a new value. When the simula-
tion resumes, the new value will be used by the model. In
addition, when a value has been changed a message han-
dler can check for errors or inform other blocks that a
value change has taken place.

Controls such as sliders and switches allow the model
user to interactively operate the model. Adding this type of
functionality to an Extend model requires only that the
control be added and connected to the relevant blocks.

Even more interesting types of model interactivity can
be created though the use of embedded ActiveX controls.
Extend blocks can be built that access a commercially
available control (such as an Excel spreadsheet) and dy-
namically communicate to the control while the simulation
is running.

8 WHAT MAKES EXTEND UNIQUE

Extend provides features and capabilities not found in
other simulation software. This allows the modeler to con-
centrate on the modeling process and quickly produce a
model that is easy to manipulate and communicate to oth-
ers. These features include:

•

•

Interactivity: Even during a model run, Extend
parameters and model logic can be changed “on
the fly.” Extend’s point and click interactivity
translates into faster answers and quicker, easier
restating of problems.
Reuseability: Extend blocks (modeling compo-
nents and hierarchical sub-models) can be saved
in libraries, reused in other simulations, and even
distributed to other modelers. This feature in-
creases productivity and consistency of design.
•

•

•

•

•

Scalability: Because of Extend’s unlimited hier-
archical structure, it is used to produce enterprise-
wide models with hundreds of thousands of
blocks.
Visual Transparency: Extend’s block icons are
designed specifically to convey the structure and
behavior of the model at a glance.
Connectivity: Extend supports the COM model
(ActiveX/OLE) and ODBC. Unlike other simula-
tion tools, these technologies have been imple-
mented in Extend as modeling components so that
interapplication communication is a drag and drop
operation, with no programming necessary.
Extendability (Open Source): The blocks that
come with Extend are developed using Extend’s
compiled language and integrated development
environment. They are open source to allow
modification and enhancement. This speeds the
evolution of better modeling techniques, as the
user can improve components and develop new
proprietary components.
Third Party Support: Because of its integrated
development environment, Extend has proven to
be the simulation engine of choice for more third
party applications than any other simulation tool.

9 SAMPLE APPLICATION

Since Extend is a general purpose simulation program, it
has been used in many types of simulation projects. Areas
where Extend has been successfully applied include manu-
facturing, service industries, business process reengineer-
ing, communications, logistics, healthcare, control systems,
science, environmental studies, and high speed processing.
The sample application here is of a supply chain model for
a major manufacturer of paint application tools.

Other sample applications including medical labora-
tory automation, supply chain management, pulp and paper
processing, and high speed manufacturing are available in
earlier versions of this paper (Krahl 2001).

9.1 Supply Chain Simulation

James Dailey & Associates, an independent developer of
simulation tools using Extend, recently completed a sup-
ply-chain model for Wagner SprayTech, a leading supplier
of consumer and professional paint application tools. As
production of SKU's was being established in China, Wag-
ner was particularly interested in communicating optimum
inventory and ordering policies both internally and exter-
nally to better manage this lengthened supply-chain. Figure
12 shows the top level of the model. Each store, distribu-
tion center, and assembly operation is a hierarchical block.
The model logic can be found by drilling down into each
of these top level blocks.

ahl
Kr

Figure 12: Supply Chain Model

The model was built with extensive use of the internal

database capability This organized the large amount of data
typically found in a supply chain model while simultane-
ously minimizing model run time. The final model simu-
lated annual supply chain activity of 16 inventory nodes
plus assembly line product mix constraints and delays. Ex-
tend's Evolutionary Optimizer was implemented to find op-
timum safety stock levels at each of the node levels under
expected demand variance and service level requirements.
The optimizer located the best policy (to 99% confidence
level) in less than 90 minutes.

10 SUMMARY

Is Extend the one-click answer to all of the world’s simula-
tion needs? Of course not. But its intuitive interface, rich
set of modeling components, extensive authoring and de-
velopment environment, and more advanced simulation
technology make it a better solution for simulation engi-
neers who need to efficiently utilize their modeling time.

REFERENCES

Imagine That, Inc. 1992. Extend Software Manual. San
Jose, CA.

Imagine That, Inc. 2003. Extend 6 Developer’s Reference
San Jose, CA.

Imagine That, Inc. 2003. Extend 6 User’s Guide. San Jose,
CA.

Krahl, Dave. 2001. The Extend simulation environment. In
Proceedings of the 2001 Winter Simulation Confer-
ence, ed. B. A. Peters, J. S. Smith, D. J. Medeiros, and
M. W. Rohrer, 217-225. IEEE, Piscataway, NJ.

Pidd, M. and R. Bayer Castro. 1998. Hierarchical modeling
in discrete simulation. In Proceedings of the 1998
Winter Simulation Conference Proceedings, ed. D. J
Medeiros, E. F. Johnson, J. S. Carson, M. S. Manivan-
nan, 383-389. IEEE, Piscataway, NJ

Wolverine Software Corporation. 2002. Using Proof Ani-
mation. Annandale, VA

AUTHOR BIOGRAPHY

DAVID KRAHL, a Certified Modeling and Simulation
Professional, is Vice President of Technical Sales with
Imagine That, Inc. He received a MS in Project and Sys-
tems Management in 1996 from Golden Gate University
and a BS in Industrial Engineering from the Rochester In-
stitute of Technology in 1986. Mr. Krahl has worked ex-
tensively with a range of simulation programs including
Extend, SLAM II, TESS, Factor, AIM, GPSS, SIMAN,
XCELL+ and MAP/1. A few of the companies that Mr.
Krahl has worked with as a consultant and educator are
Chrysler, Ford, Williams International, Tefen, Raytheon,
and Boeing. He is actively involved in the simulation
community and is an adjunct faculty member at Golden
Gate University. His email address is <mailto:davek@
imaginethatinc.com> and the Imagine That Inc.
site is <www.imaginethatinc.com>

mailto:davek@imaginethatinc.com
mailto:davek@imaginethatinc.com
mailto:davek@imaginethatinc.com
mailto:davek@imaginethatinc.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 188
	02: 189
	03: 190
	04: 191
	05: 192
	06: 193
	07: 194
	08: 195
	09: 196

