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ABSTRACT 
 

We describe a number of applications of simulation methods 
to practical problems in finance and insurance. The first en-
tails the simulation of a two-stage model of a property-
casualty insurance operation.  The second application simu-
lates the operation of an insurance regime for home equity 
conversion mortgages (also known as reverse mortgages).  
The third is an application of simulation in the context of 
Value at Risk, a widely-used measure for assessing the per-
formance of portfolios of assets and/or liabilities.  We con-
clude with an application of simulation in the testing of the 
efficient market hypothesis of the U.S. stock market. 

1 FREQUENCY-SEVERITY  
INSURANCE MODEL 

1.1 Formulating the Problem 

In property and casualty insurance, as well as in health in-
surance, the actuary is often asked to predict the amount of 
insured losses during the next period of observation, such 
as a calendar year.  In doing so, the actuary frequently has 
the results observed for a number of prior periods. Then if 

 is a random variable representing the amount of aggre-
gate claims during the i

iS
th policy year (or, equivalently, the 

ith period of observation), the problem may be considered 
to be the estimation of the quantity 
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where .  This is the conditional probability of the 
incurred losses during period 

0s 1m ≥+

1m + , given the results of 
the first m periods.  Such a probability distribution is usu-
ally called a predictive distribution.  
 One way of approaching this problem is to first deter-
mine the distribution of the frequency of loss (i.e., the 
number of insurance claims) and then to determine the se-
verity or amount of each individual claim. 
 We assume that given a parameter θ , the random 
variables S  are independent and identically 
distributed with conditional probability density function p.  
We use f to denote the density function of 

1mS,,2S,1 +…

θ .  Thus, using 
Bayes’ Theorem, we can write the conditional density 
function of S , given S as   1m+ 1 m2 S,,S, …
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is the posterior density function of  θ , given 
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1.2 Frequency Component 

For i  let  be the random variable representing 
the number of claims during the i-th period of observation, 
and let  have a Poisson distribution with parameter 
(mean)  Given 

,1,2,…=

iN
.Λ

iN

m observations , the pos-
terior distribution of  is 

m21 n,,n,n …
Λ m),nm +G( + βα as shown in 

Section 8.2.2 of Herzog (1999).   The parameters α  and  
β determine the prior gamma distribution.  The data are 

summarized by the parameters m  and ∑
=

=
m

1i

n inm  .  We 

let )g(λ  denote the density function of m),nmG( + +βα .  
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Then, we are able to write the conditional probability of 
 given , as 1m1m nN ++ = mm2211 nN,,nN,nN === …
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for and is in the form of a negative binomial 
density function.  

,1,2,n …=

1.3 Severity Component 

We assume that the amount of each individual claim, , 
has an exponential distribution with mean, , and prob-
ability density function given by 

X
∆
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for  and .  The moments of  are 

 and Var .  The mean claim 
amount, , has a conjugate prior distribution whose prob-
ability density function, 
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for and 3,m >′0, 0>δ   Such a density func-

tion is called an inverse gamma density function.  The in-
surance process is observed for m  periods of observation 
with claims occurring during period i .  The total ag-
gregate claim amount over the 

in
m periods of observation is 
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Then, the posterior density function of , ∆
( y,nm,y,m|f ′′ )δ , is proportional to 
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which is also an inverse gamma density function. 
 The predictive density function of , which reflects 
the uncertainty in the estimation of the parameter values as 
well as in the random nature of the claim amounts, is given 
by  

X
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Equation (1) can be rewritten as  
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which is a member of the Pareto family of density func-
tions.  
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 We next show how to use pseudo-random numbers 
and quasi-random numbers to simulate aggregate loss 
amounts using the predictive distributions for the fre-
quency and severity of insurance claims. 

1.4 Simulating Aggregate Losses 

1.4.1 Solving the Problem via a Pseudo- 
Random Number Generator  

1.4.1.1 Frequency Component 

We assume that the probability of observing claims 
during period is given by the negative binomial dis-
tribution 

1+mn
1+m
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for   We employ a pseudo-random number 
generator in conjunction with the algorithm for the Modi-
fied Table-Look-Up Approach to the negative binomial 
distribution, given in Section 3.2.5.1 of Herzog and Lord 
(2002), to simulate 10,000 trials of the number of claims. 
The results are summarized in Table 1. 

.,1,0n 1m …=+

 For the 10,000 trials simulated here we have observed 
a total of 30,278 claims, which is slightly more than the 3 
claims per trial that are expected. (See the discussion in 
Section 3.2.5 of Herzog and Lord (2002) for more details.) 

1.4.1.2 Severity Component 

For each of the 30,278 individual claims of the previous 
section, we need to simulate an individual loss (or claim) 
amount. We do this by using a pseudo-random number 
generator to produce uniform random numbers over [0,1), 
in conjunction with the inversion scheme of Section 3.1.6 
of Herzog and Lord (2002) applied to the Pareto probabil-
ity distribution function given by 
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where α = 20 and .000,000,2=β In particular, if U is the 
result of simulating a uniform random variable over [0,1), 
then the corresponding Pareto random variable is 

./1)1(
βα

β −
−U

The results are summarized by the loss sever-

ity distribution for which various percentiles are displayed 
in Table 2. 

 

Table 1: Frequency Component Con-
structed using Pseudo-Random Num-
ber Generator 

Number of  
Claims 

Frequency of 
Occurrence 

0 1,234 
1 1,852 
2 1,910 
3 1,548 
4 1,110 
5 847 
6 572 
7 356 
8 237 
9 128 

10 93 
11 47 
12 33 
13 14 
14 7 
15 4 
16 6 
17 0 
18 2 

Total 30,278 
 

Table 2: Loss Severity Distribution Constructed using 
Pseudo-Random Number Generator 

Percentile Point 

0  $             4 
10  10,930
25  29,148
50  70,435
75  144,126
90  244,628
100  1,447,454

1.4.1.3 Loss Amounts 

Finally, we employ the results of Sections 2.4.1.1 and 
2.4.1.2 to produce the distribution of individual loss 
amounts summarized in Table 3. To illustrate the process, 
if an individual trial resulted in two claims, then we drew 
two values from the loss severity distribution. 
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Table 3: Distribution of Loss Amounts using Pseudo-
Random Numbers 

Percentile Point 

0  $             0
10  0
25  71,590
50  229,179
75  471,889
90  753,763
100  2,738,627

1.4.2 Solving the Problem using  
Quasi-Random Numbers 

Because we do not know in advance how many quasi-
random numbers we need as input to the algorithm em-
ployed to simulate the negative binomial distribution, we 
can not employ a quasi-Monte Carlo scheme to simulate 
the number of claims. If we attempted to do so, we would 
end up with a biased result. However, we can use a quasi-
Monte Carlo scheme to simulate the severity portion of the 
problem, the loss amounts on the 30,278 claims resulting 
from the first stage of our model. 

Our approach is to employ the Neiderreiter se-
quence 
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where This gives us an empirical loss 
severity distribution consisting of 30,278 individual claim 
amounts in ascending order. The results are summarized in 
Table 4. 

.278,302556,60 ×=

 
Table 4: Loss Severity Distribution using Quasi-
Random Numbers 

Percentile Point 

0 $             2
10 10,563
25 28,974
50 70,526
75 143,540
90 244,011
100 1,468,469

 

We then employed a pseudo-random number generator to 
obtain a “random” permutation of the integers from 1 to 
30,278, in order to “randomly” re-order (or “shuffle”) these 
loss amounts. The loss amounts are then assigned to an in-
dividual trial to produce the distribution of loss amounts 
summarized in Table 5. 
 

Table 5: Distribution of Loss Amounts using Quasi-
random Numbers to Generate the Severity of Loss 

Percentile Point 

0  $            0
10  0
25  67,749
50  227,986
75  467,540
90  753,417
100  2,969,518

 
 Because the quasi-random numbers were “superior” in 
our previous comparisons, we suspect that the results of 
Table 5 are “superior” to those of Table 3. 

2 MODELING HOME EQUITY  
CONVERSION MORTGAGES 

2.1 Introduction 

Many older Americans who own their own homes have most 
of their wealth in their homes.  Some may not otherwise have 
sufficient wealth to pay for (1) medical bills resulting from 
sudden, unanticipated medical problems, (2) major repairs to 
their houses and/or (3) everyday expenses for food, clothing, 
and so on.  Home Equity Conversion Mortgages (HECMs) 
are designed to allow older people to borrow money by using 
the equity in their homes as collateral, without being forced 
to move out of their homes.  The amounts borrowed accumu-
late with interest until the mortgage’s due date, at which 
point the lender is repaid the entire debt. 

There are three principal types of HECMs: term, split-
term, and tenure.  In a term HECM, equal monthly pay-
ments are made to the older homeowner for a certain num-
ber of months, for example, 180 months or 15 years.  At 
the end of the term, the loan is due and payable.  Term 
HECMs are not popular with older people who fear that 
they will not be able to repay the loan at the end of the 
term and be forced out of their homes. 

In a split-term HECM, equal monthly payments are 
made for a certain number of months, but the loan need not 
be repaid until the older person dies, moves out, or sells 
his/her house.  Finally, in a tenure HECM, equal monthly 
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payments are made and the loan need not be repaid as long 
as the older person is alive and living in his/her house. 

The purpose of this work is to estimate the amount of 
a level-payment (annuity) of a tenure HECM.  We assume 
an insurance premium structure comprising two compo-
nents.  The first, payable at origination, is equal to 2 per-
cent of the appraised value of the property.  The second is 
an annual insurance fee equal to 0.5 percent of the actual 
outstanding balance of the loan and is payable monthly.  
We also assume that the insurer and/or mortgagee has a 
share of the future appreciation, if any, of the house. 

Our HECM model attempts to approximate likely fu-
ture experience and is flexible in the sense that it can in-
corporate a wide range of assumptions.  Another important 
feature is that it incorporates the variation associated with 
the key parameters of the model.  Because these parameter 
values are themselves statistical estimates, such a model 
more accurately reflects the total variation of the process of 
interest.  This aspect of the model incorporates concepts 
employed in Herzog and Rubin (1983).  

Our results show that viable HECM programs can be 
constructed by using either a 50/50 shared appreciation 
scheme (that is, where the mortgagor and insurer and/or 
mortgagee share future appreciation equally) or one in 
which the insurer and/or mortgagee receives 100 percent  
of the nominal appreciation.  Of course, the monthly pay-
ments are slightly higher in the 100 percent case. 

2.2 Assumptions 

In this section, we discuss the assumptions of our model. 

2.2.1 Appreciation 

The annual rate of nominal appreciation of individual houses 
is a key element of the HECM model.  Estimates of the an-
nual rate of nominal appreciation are necessarily imprecise 
because (1) the rate of appreciation may vary widely from 
year to year and from neighborhood to neighborhood and (2) 
the expense of annual appraisals of individual houses makes 
the attainment of a reliable nationally representative data-
base of U.S. house values impractical. 

Our approach to estimating the nominal appreciation 
of HECM houses is to construct a two-stage stochastic 
simulation model.  In the first stage, we use annual national 
appreciation data compiled by the National Association of 
Realtors (NAR)(1989) to simulate the posterior distribution 
of national appreciation rates.  We then use the results of 
the first-stage model together with some metropolitan 
NAR data to simulate the posterior distribution of appre-
ciation rates of individual HECM houses.  

As shown in the last column of Table 6, the NAR’s 
mean annual rate of increase of the median sales prices of an 
existing home between December 1981 and December 1988 
was 4.26 percent.  The corresponding sample variance was 
0.000256.  The sample autocovariance coefficients of these 
appreciation rates at lags of one, two, and three years are 
0.000110, 0.000029, and 0.00000084, respectively. 

 
Table 6: Annual Appreciation Rates, 
1981-1988. Source: National Association 
of Realtors (1989) 

Year Existing Homes 
Median Sales 

Price 

Annual  
Appreciation 

Rate 
1981 $66,600  
1982 $67,800 1.80% 
1983 $70,300 3.69% 
1984 $72,400 2.99% 
1985 $75,500 4.28% 
1986 $80,300 6.36% 
1987 $85,600 6.60% 
1988 $89,100 4.09% 
Mean  4.26% 

 
We assume that the first-stage model has a multivari-

ate normal distribution with mean 4.26 percent and vari-
ance-covariance matrix equal to 0.0001 times. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.56 1.10 0.29 0 .   .   . .   .   . .   .   . .   .   . 0
1.10 2.56 1.10 0.29 .
0.29 1.10 2.56 1.10 .
0 .
. .
. .
. 0
. 1.10 2.56 1.10 0.29
. 0.29 1.10 2.56 1.10
0 .   .   . .   .   . .   .   . .   .   . 0 0.29 1.10 2.56

 Thus, we assume that the average rate of appreciation 
over the entire U.S. in year  is influenced by the rates 
of appreciation in years and . 

2n +
n +n 1

The second-stage model is used to predict the appre-
ciation rates of individual house values.  For each year, we 
use a separate univariate normal distribution whose mean 
is the corresponding result of the first-stage model and 
whose standard deviation is 0.08.  The value of 0.08 is 
chosen as a rough measure of the dispersion of the distribu-
tion of annual appreciation rates from the first quarter of 
1988 to the first quarter of 1989 in the 84 large metropoli-
tan areas of the U. S. considered by Downs (1989).  In par-
ticular, we note from Appendix B of DiVenti and Herzog 
(1991) that, based on a mean appreciation rate of  5.21 per-
cent and a standard deviation of 8 percent, we observe one 
metropolitan area, namely Fort Worth, whose appreciation 
rate is more than two standard deviations below the mean 
and five metropolitan areas in California – San Francisco, 
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Orange County, Los Angeles, San Diego, and Riverside – 
whose appreciation rates are more than two standard devia-
tions above the mean. 

The procedures used to generate the random normal 
deviates required for both stages of the model are de-
scribed in Chapter 4 of Herzog and Lord (2002). 

In addition to 4.26 percent, we also run the model with 
annual average appreciation rates of 3 percent, 2 percent, 
and  0 percent.  This is because the elderly tend to live in 
the oldest housing stock, have difficulty keeping their 
property in good repair, and are unlikely to make home 
improvements, their property is not likely to appreciate as 
fast as other property. 

2.2.2 Mortality Rates 

The basic mortality rates are taken from Wade (1989).  
Following May and Szymanoski (1989), we assume that all 
of the mortgagors are single females.  This may not be a 
sufficiently conservative assumption if many married peo-
ple or other individuals obtain HECMs jointly.  Unfortu-
nately, the Social Security Administration cannot provide 
us with the necessary projected joint mortality rates for 
married couples.  Moreover, our model does not incorpo-
rate the likely adverse selection of healthier older people 
choosing an HECM.  Consequently, we recommend that 
those using this model to price an HECM product make 
appropriate adjustment for these two factors. 

As with the appreciation component, we develop a 
two-stage stochastic simulation model to predict future 
mortality experience of HECM mortgagors.  In the first 
stage, we simulate the death rates q  using 
a separate univariate normal model for each death rate.  
The means of these models are taken from Wade (1989), 
see Table 7.  In particular, we use the value of   pro-
jected for calendar year 1990 for   We 
set  equal to one; that is, we assume that no one sur-
vives to age 111. 

1057065 q,,q, …

x65q +

.,400,5,x …=x+

110q

The standard errors are estimated as follows.  We first 
use the method of least squares to fit a separate linear 
equation to each of the four sets of 26 values of , for 

   The 26 values of the  are taken from 
the 1961-1986 U.S. Life Tables for Female Lives, con-
structed by the National Center for Health Statistics (see 
Table 8).  The standard error of the estimate is used as the 
estimated standard error of each of these four sets of .  
The remaining standard errors are obtained by fitting a lin-
ear equation to the standard errors of the estimates of 

.  The resulting equation is: 

x65q +

.15,105,0,x =

7570 and,q,q

sq'

sq'

80q
 

standard error of q  0.000740.000686x5x60 −=+

for . 98,,76,,5x =

 

 
Table 7: Mortality Rate 
by Year for Annuitants 
Aged 65 in 1990 

 
1990

65q  1.3653% 

1995
70q  2.0428% 

200075q  2.8602% 
2005

80q  4.4065% 
2010

85q  6.9947% 
2015

90q  11.5756% 
2020

95q  17.8137% 
2025

100q  23.2054% 
2030

105q  28.7804% 
 
Table 8: U.S. Female Mortality Rates by Age 
and Calendar Year 

Age Calendar 
Year 65 70 75 80 
1961 1.83% 2.84% 4.64% 7.65% 
1962 1.84 2.84 4.69 7.73 
1963 1.85 2.84 4.71 7.78 
1964 1.80 2.73 4.52 7.46 
1965 1.79 2.69 4.50 7.44 
1966 1.78 2.73 4.52 7.41 
1967 1.73 2.66 4.37 7.12 
1968 1.78 2.71 4.46 7.29 
1969 1.72 2.66 4.32 7.04 
1970 1.69 2.64 4.33 6.99 
1971 1.62 2.57 4.20 6.75 
1972 1.62 2.62 4.24 6.71 
1973 1.57 2.53 4.16 6.62 
1074 1.51 2.47 3.95 6.30 
1975 1.44 2.36 3.77 5.95 
1976 1.43 2.30 3.68 5.86 
1977 1.42 2.24 3.55 5.65 
1978 1.42 2.22 3.48 5.62 
1979 1.39 2.15 3.37 5.45 
1980 1.44 2.21 3,46 5.61 
1981 1.43 2.17 3.39 5.62 
1982 1.42 2.13 3.30 5.28 
1983 1.40 2.15 3.34 5.39 
1984 1.40 2.15 3.33 5.38 
1985 1.40 2.15 3.35 5.41 
1986 1.40 2.16 3.33 5.34 

 
After the first-stage simulation is run, we obtain the inter-
mediate mortality rates by using a geometric interpolation  
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procedure described on page 272 of Waldman and Gordon 
(1988).  To illustrate this method, we calculate  
 

x/5

70

75
70x70 q

q
qq 








⋅=+  

 
for . 43,2,1,x =
 The second-stage model is a binomial model that 
simulates the experience of each of the individual insureds.  
The mortality rates used here are those resulting from the 
first stage of the model and the interpolation scheme de-
scribed above.  The procedure employed to select the 
pseudo-random numbers is described in Section 3.2.3 of 
Herzog and Lord (2002). 
 Finally, we wonder how the value of the property will 
be affected if probate problems increase the time it takes 
the insurer/mortgagee to acquire legal title to the property. 

2.2.3 Move-Out Rates  

Some mortgagors may move out of their homes and repay 
their HECM loans because they are in poor health and need 
to move to a hospital, nursing home, or the home of a 
friend or relative.  Others may move simply because they 
desire to live in another place.  Because their monthly 
HECM payments terminate in all these instances, we must 
accurately predict the rate and time at which such moves 
take place for the population of insureds.  Unfortunately, 
little or no useful data are currently available to construct 
such estimates.  May and Szymanoski (1989) use a rate of 
30 percent of the mortality rate at each individual age.  We 
have employed this assumption as well as an assumption of 
zero.  Although we know that zero is too low, it neverthe-
less does give a measure of the sensitivity of our results to 
changes in the value of this parameter. 

2.2.4 Origination Fees and Other Closing Costs 

We assume that at the time the HECM is originated, the 
mortgagor pays closing costs equal to 1.5 percent of the 
appraised value of the property.  This is intended to cover 
such costs as the origination fee charged by the lender, the 
cost of the appraisal of the property, and legal fees.  We 
assume the mortgagor will borrow the closing costs from 
the lender and incorporate them into the loan. 

2.2.5 Transaction Costs 

We include estimated transaction costs incurred in selling 
the house after the older person dies or moves out.  Be-
cause the real estate sales commission is typically 6 or 7 
percent and there are frequently other costs borne by the 
seller, we assume seller transaction costs of 8 percent of 
the sale price of the house.  If the insurer/mortgagee has to 
take possession of the property and carry out the preserva-
tion costs normally done with a PD (property disposition ) 
property, the transaction costs may be larger than 8 per-
cent.  Foster and van Order (1984) used transaction costs 
of 10 percent of the sale price of the house in their study of 
defaults on FHA-insured mortgages.  We also wonder 
whether the insurer/mortgagee will be notified promptly 
after older people die or move out of their homes. 

2.2.6 Salaries and Administrative Expenses 

We include a component for staff salaries and administra-
tive expenses incurred in running a HECM operation.  We 
set this cost equal to 1 percent of the initial appraised value 
of the property insured.  This rate is comparable to that 
employed in the principal FHA single-family program. 

2.2.7 Interest Rates 

We consider three pairs of assumptions for the contract 
interest rate on the annuity and the discount rate. 

Table 9: Interest and Discount Rates 
Contract Interest Rate Discount Rate 

8.5% 7.0% 
10.0% 8.5% 
11.0% 10.0% 

2.2.8 House Price 

We assume that the HECM is based on an appraised house 
value of $100,000.  This value is selected for mathematical 
convenience.  If the appraised value of the house is less 
than $100,000, then the amount of the monthly payment 
should be reduced proportionately.  The NAR data shown 
in the Appendix of DiVenti and Herzog (1991) for the en-
tire U.S. give a median home sales price of $91,600 for the 
first quarter of calendar year 1989.  Hence, even in 1990 a 
substantial portion of older Americans may have less than 
$100,000 of equity in their homes.  Consequently, their 
monthly annuity payment would be less than those shown 
in Table 10. 

2.3 Results 

We have run each of the first-stage models 10 times and 
simulated 100 individual HECMs.  The mean of the 1,000 
simulations is shown in Table 10.  These results are sensi-
tive to changes in mean annual appreciation rates, mortal-
ity rates, interest rates, and move-out factors.  The choice 
of an appropriate set of assumptions is of course subjec-
tive.  The insurer/mortgagee naturally must be conserva-
tive.  By using a move-out factor of 1.0 (to compensate for 
the high mortality rates resulting from the use of female 
lives selected from the general population), an annual av- 
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Table 10: Monthly Annuity Payments Based on a $100,000 
House and an Annuitant Age 65 at Purchase 

Monthly Annuity Pay-
ments 

Contract Interest Rate 
11.5% 10.0% 8.5% 

Discount Rate 

 
 
 

Appreciation 
Rate 

 
 

Insurer’s 
Share of 

Appreciation 
10.0% 8.5% 7.0% 

Move-out Factor = 1 
4.258% 100% $335 $379 $433 
 50 269 298 334 
3.0 100 282 314 352 
 50 240 264 292 
2.0 100 247 272 302 
 50 221 240 264 
0.0 100 193 208 226 
 50 185 199 215 

Move-out Factor = 1.3 
4.258% 100% $395 388 $439 
 50 321 352 388 
3.0 100 337 370 410 
 50 290 315 344 
2.0 100 299 325 365 
 50 269 289 314 
0.0 100 238 254 273 
 50 229 243 261 

 
erage nominal appreciation rate of 2 percent, a contract in-
terest rate of 11.5 percent, and a discount rate of 10.0 per-
cent, we obtain a monthly payment of $221 with a 50/50 
shared appreciation HECM and $247 with all the potential 
appreciation going to the insurer/mortgagee.  Hence, 
HECM instruments may be attractive to some older home-
owners.  On the other hand, if the insurer decides to de-
crease the projected mortality rates sharply, increase the 
standard deviation of the second stage model (say, from 8 
percent to 18 or 20 percent), and/or eliminate the shared 
appreciation feature, then the monthly HECM payment 
may be so low that no older people will be interested in ob-
taining one.   

3 INTRODUCTION TO VALUE AT RISK 

3.1 Introduction 
 
As another example of an application of simulation meth-
ods to a practical problem in finance, we consider the topic 
of Value at Risk, a widely-used measure for assessing the 
risk and/or performance of portfolios of assets and/or li-
abilities, especially those that include derivatives.  At its 
simplest, Value at Risk (often written VaR) is merely a 
summary measure of market risk.  It provides, in terms of 
dollars or any other appropriate monetary unit, a number 
that can be interpreted as an indication of a portfolio’s sen-
sitivity to financial market risk.  Although it is but one of 
many possible summary measures, Value at Risk is used 
extensively (1) in risk management as a measure of capital 
adequacy and (2) as a measure of the performance of port-
folios of assets and/or liabilities. 

The widespread acceptance of VaR as a measure of 
capital adequacy has been accelerated by its endorsement 
by financial regulators, rating agencies, and certain indus-
try groups. 

A basic reference for this topic is Value at Risk by 
Jorian [2000]. 

 
3.2  Basic Concepts 

 
The theoretical basis for Value at Risk is found in probabil-
ity theory while the terminology of VaR comes from the 
frequentist paradigm of statistics. As with other probabilis-
tic models, the application of VaR entails a number of un-
derlying assumptions. The principal assumption of VaR is 
that current market conditions will prevail for the immedi-
ate future.  Then, simply stated, the VaR of the portfolio is 
the maximum loss anticipated over a given time period for 
a specified confidence level. 

We are now ready to present the basic definition of 
Value at Risk. We first let W denote the portfolio’s value 
at the beginning of the time period of interest, T denote the 
length of the time period, and V denote the random vari-
able representing the value of the portfolio at the end of the 
time period. Then, given a confidence level α, and the as-
sumption(s) on financial market conditions, the Value at 
Risk, VaR, satisfies the equation 

 
  (3) ]VaRVWPr[]VaRWVPr[ ≤−=−≥=α

 
To be more specific, if α=95% and the length of T is 

one year, then Equation (3) states that the probability is 
95% that the portfolio will lose no more than VaR dollars 
over the one-year period. 

 
3.3  Estimating Tail Probabilities  

using Constrained Resampling 
 

The calculation of VaR is equivalent to calculating the per-
centile of a probability distribution, typically the lower or 
left-hand tail of the distribution.  Frequently, the distribu-
tion is multivariate, or for other reasons, may be difficult to 
handle.  For example, in many insurance applications the 
distribution may have a fat tail.  Although simulation 
methods employing pseudo-random numbers offer a wide 
variety of methods for probing the distribution’s tail, such 
methods may be inefficient.  More efficient solutions can 
usually be obtained by using constrained sampling in con-
junction with low discrepancy sequences. 
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4 A TEST OF STOCK  
MARKET EFFICIENCY 
 

The efficient market hypothesis contends that fluctuations 
about the mean market value of a portfolio of common 
stocks should be capable of being modeled by a sequence of 
independent, identically distributed random variables.  Un-
der such a scenario, common stock prices are said to follow 
a random walk. Various empirical studies call into doubt this 
hypothesis.  Evidence of negative serial correlation of a time 
series of common stock prices shows that greatly over-
priced or under-priced stocks tend to revert toward a mean 
value.  One conjecture – the rational speculative bubbles 
hypothesis – argues that investors realize prices sometimes 
exceed fundamental values, but believe there is a good prob-
ability that the bubble will continue to expand and yield a 
higher return.  The hope of a higher return exactly compen-
sates the investor for the probability of a crash.  This model 
thereby justifies the rationality of holding over-priced 
stocks. In this application, we first describe a second-order 
Markov model.  We then show how the model can be ap-
plied to annual common stock returns in the United States in 
order to (1) test the efficient market hypothesis and (2) test 
the rational speculative bubbles hypothesis. 

In order to test these two hypotheses, we employ a pair 
of likelihood ratio tests each of which is asymptotically 
distributed as a chi-square.  Unfortunately, the number of 
observations is only 39.  Consequently, we feel that it is 
more prudent here to use simulation methods for small 
samples to estimate the p-value of each test statistic. 

The material in this section is based heavily on 
McQuenn and Thorley [1991].  The rational speculative 
bubbles hypothesis is  from Blanchard and Watson [1982]. 
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