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ABSTRACT This has applications only in some very simple models in
gqueueing and insurance. Some partial success has been

We develop an observation that a simulation method in- obtained for the case of random walks, for some specific
troduced recently for heavy-tailed stochastic simulation, heavy-tailed distributions (Boots and Shahabuddin 2000).

namely hazard-rate twisting, is equivalent to doing expo- This paper attempts to build on a technique introduced
nential twisting on a transformed version of the heavy-tailed in Juneja and Shahabuddin (2002) called hazard rate twist-
random-variable; the transforming function is the hazard ing. Hazard rate twisting of a heavy-tailed random variable

function. Using this approach, the paper develops efficient involves twisting at a sub-exponential rate, rather than at a
methods for computing portfolio value-at-risk (VAR) when exponential rate as is done in exponential twisting. Concav-
changes in the underlying risk factors have the multivariate ity properties of the hazard function are used in Juneja and

Laplace distribution. Shahabuddin (2002) to prove asymptotic (i.e., as the thresh-
old tends tooco) efficiency in the simulation of sums and

1 INTRODUCTION geometric sums of heavy-tailed random variables. We de-
velop the observation that hazard rate twisting of any random

We consider the problem of estimating #reall probability variable is equivalent to exponentially twisting the hazard

that a random variable that is an output to a simulation function transformation of the random variable. We then
exceeds a large threshold. The output random variable give conditions under which one can use the latter approach
may be a function of several input random variables, and to estimate probabilities for more complicated random struc-
is generated via generating the input random variables. tures as compared to sums and geometric sums. Atthe more
Importance sampling based simulations of such problems conceptual level, whereas Juneja and Shahabuddin (2002)
have been studied extensively in the context where the thoughtin terms of hazard rate twisting of the input random
input random variables and the output random variables are variables, we think in terms of hazard rate twisting of the
light-tailed (see, e.g., Bucklew 1990, Heidelberger 1995 for output random variable, and then work backward to find
expositions). We consider estimation of such probabilities the corresponding changes of measure on the input random
for the case where some or all of these random variables variables (that mayot necessarily be hazard rate twisting).
may have heavy-tailed distribution, i.e., distributions whose Interpreting hazard rate twisting in terms of hazard function
tail decay at a subexponential rate. transformations facilitates this approach, as then one can
Rare-event simulation in the heavy-tailed context seems use the experience accumulated in light-tailed, importance
to be a challenging problem. One of the reasons is that sampling simulations.
“exponential twisting”, that is the main importance sampling We then apply this approach to the value-at-risk prob-
framework in the light-tailed setting, cannot be used on lem. The value-at-riskis animportant concept for quantitify-
heavy-tailed random variables. Hence new and innovative ing and managing portfolio risk (see, e.g., Jorion 1997, Wil-
methods are needed. Till date, provably efficient simulation son 1999). One core problem from the simulation method-
techniques and changes of measures exist only for estimatingology point of view is to estimate the risk of large portfolio
the probability that a sum of a fixed or a geometric number of losses in given time intervals, where the value of the port-
i.i.d heavy-tailed random variable exceeds a large threshold folio depends on several time-dependent and correlated risk
(Asmussen and Binswanger 1997, Asmussen, Binswanger factors. Recently new simulation approaches based on im-
and Hojgaard 2000, and Juneja and Shahabuddin 2002).portance sampling and stratification have been developed
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for this problem under different assumptions on the risk For any two functions, sagi(x) andgz(x), g1(X) ~ g2(x)

factors. Glasserman, Heidelberger and Shahabuddin (2000)denotes that lin, - g1(X)/g2(X) exists and it is equal to

developed fast simulation methods when the risk factors 1.

have the multivariate normal distribution. They developed We consider the problem of estimatingy) = P(Y >

a provably efficient, importance sampling change of measure y) whereY = h(X) (we assume the distribution of to

for estimating the risk, when the loss function is replaced have the same regularity properties as those ofXHse).

by a “quadratic approximation”. They then used the same We will assumeh(xy, ...Xn) to be a non-negative-valued

change of measure for estimating the risk associated with function, but the theory presented below also goes through

the actual loss function, and obtained orders of magnitude for the general case it (X) = maxh(X), 0) and h(X)

of variance reduction in the estimation. Stratification on have the same decay behavior in their tail probabilities,

the quadratic approximation made the technique even morei.e., Anx)(y) ~ Ap+(x)(y). There is signicant work in

efficient. the literature wherY is light-tailed. We concern ourselves
However, it has been observed that market returns ex- with the more general case wh&may be light-tailed or

hibit systematic deviations from normality in terms of the heavy-tailed.

tail-weight. Two different families of tail behaviors have

been advanced in the literature (see, e.g., Heyde and Kou3 PRELIMINARIES

(2002)and references therein). The first is polynomial type

tails of which the multivariate t distribution is an example. 3.1 Importance Sampling and Exponential Twisting

The second is exponential type tails (which is still an or-

der of magnitude heavier than the Gaussian type tails) of For y large, the evenfY > y} may be rare, and we

which the multivariate Laplace distribution (see, e.g., Kotz, use importance sampling to simulate fBfY > y) more

Kozubowski and Podgorski 2001) is an example. efficiently. In particular, iff; (x) is a new probability density
Glasserman, Heidelberger and Shahabuddin (2002) ex- function for X;, with the same support 8§, then we may

tend the work in their earlier paper to the case where the risk express

factors have the multivariate t distribution of the type in An-

derson (1984). In this paper we consider the case where the PYY>y)=E( >y)=EN >yIX) ()

risk factors have the multivariate Laplace distribution. Un-

like the case in Glasserman, Heidelberger and Shahabuddinwhere

(2000), in both the above cases the quadratic approximation m oo
is heavy-tailed and thus, as mentioned above, necessitates (X1, ..., Xn) = H N'(X')’
the development of new ideas not found in the predomi- izq fi(xi)

nantly light-tailed importance sampling literature. It should .

be mentioned here that Glasserman, Heidelberger and Sha-and theE(-) indicates that thei’s have the new pdf, i.e.,
habuddin (2002) also used a tranformation approach that the fi’s. The quantity within the expectation on the RHS
changes their problem into a light-tailed estimation prob- (right-hand side) of (1) forms an unbiased, “importance
lem. However the particular transformation they consider sampling” estimator oP (Y > ).

is specific to the multivariate and not easily generalizable The attempt is to findfi’s so that the variance of this

to other assumptions on the risk factors like the one we New estimator is as low as possible. More specifically,

have. we want to E(1 (Y > y)I%(X)) to be the least possible.
The change of measuidr, ..., fy) is called “asymptoti-

2 A GENERAL PROBLEM cally logarithmically efficient” (also called asymptotically
efficient) if

Let X = (Xg,..., Xm) be a vector of independent, non- .

negative random variables. For simplicity in presentation we mi InE(1(Y > y)I2(X))

. . . X im inf > 1L (2)

will assume that eaclX; has a probability density function y—>00 2Ina(y)

(pdf) fi(x) which is positive at all points o010, co). Let

the cumulative distribution function (cdf) b&;(x), and This means that the exponential rate of decrease of the

let F(x) = 1— F(x). Also let A (x) = fi(x)/Fi(x) be second moment is twice the exponential rate of decrease of

the hazard rate function, antly, (x) = fox i (s)ds be the the probability one is trying to estimate. Non-negativity of

hazard function. Hence x,(0) = 0. The assumption on  the variance implies that this is the fastest possible rate for

the f; (x) implies thatk; (x) > 0 for all x in (0, co), which any unbiased estimator. This is the reason why asymptotic

implies that A, (x) is strictly increasing. It is also well  logarithmic efficiency is also called “asymptotic logarithmic

known thatA x, (x) = — In(F; (x)). For any generic random  optimality” or simply “asymptotic optimality’. Note that for

variableW we will let Aw(x) denote its hazard function.
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standard simulation(In E(1 (Y > WIX)))/2Inaly)) ~
1/2.

Define a random variable, sa¥;, to be light-tailed if
liminfyx_ o Aj(X)/x > A; for some postive constakt. For

light-tailed random variables one may use a special change
of measure that is obtained by “exponential twisting”. For

example, for the case ofj(x), the exponentially twisted
density by amouné, 6 > 0, is given by

fi (x)e7*d
fLo(x) = %(G)X

whereMy () denotes the moment generating function (mgf)

of the random variablaV. Note that if Ax (X) ~ AiX

for somea; > 0, then exponential twisting makes sense

only wheno¢ < Aj. In many cases below we will use
fi (xX) = fi o (x) for some appropriately chosen

3.2 Light-Tailed Simulations

Consider the case whenis light-tailed. For simplicity in
presentation, we will consider the special case wvidras
an “exponential tail”, i.e.Ay(y) ~ Ay for somei > 0. In
that case the attempt in the literature is to chofase. ., fn,
so that one “achieves” exponential twisting on thieby
amountd. If one is able to do that, then by the definition
of exponential twisting| (X) = My (9)e~?Y. Hence

EQ(Y > yl’X)) = E((Y >yMi@e*")
M2 (@)e 2.

A

3)

One then choosesto minimizeM$ (0)e=2 or equivalently
to minimize InMy (6) —0y. It can be shown that appropriate
convexity properties hold so that the optimal solutiop,

may be obtained as the solution of the equation (see, e.g.,

Bucklew 1990 for this and other results mentioned here)

My ()
T =Y (4)

My (6)

The6y is continuous and increasingyn and limy_, o 65 =

A. It is also known that (except for some pathological
examples),

®)

Using (2),(3) (witho replaced bysy) and (5), one can
infer that doing exponential twisting ov by amoumﬁ;,k is
asymptotically logarithmically efficient.

We still need to show as to how to “achieve” the
exponential twisting on th¥ by any amoun#, 0 < 6 < A,
i.e., whatf; should one choose for th§ . We will illustrate

—In {My(e;)e—m} ~ 2.

this for a case where exponential twisting is very useful,

i.e., whereY = Zim:l Xi, and X;’s are light-tailed random
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variables. Consider doing exponential twisting by amount
6 on Xj. Then one can easily see that

m
1(X) = [ [(Mx; (0)e™?") = My (9)e™",
i=1

and hence we have achieved exponential twistingy doy
amountt.

4 THE HAZARD FUNCTION TRANSFORMATION
APPROACH

4.1 Heavy-Tailed Random Variables and
Hazard Function Transformations

Now consider estimating = P(Y > y), whereY is a
heavy-tailed random variable. For the purposes of this paper
we will characterize random variables being heavy or light-
tailed based on their hazard functign(x). In particular,

we assume heavy-tailed to mean thatx)/x — 0 as

X — oo. Three common examples aréeibull(i, o), a <

1, with A(x) = A*x%, Lognormalu, 02) with A(x) ~
In2(x)/(202), and thePareta), o) with A(x) = «In(1+

AX). Note that the above three distributions are ordered
with respect to increasing heaviness of their tails.

Exponential twisting is not defined for heavy-tail¥d
since the mgfMy (6) is not defined for6 > 0. Hence
the approach described in Section 3.2 cannot be used
here. However, it can be trivially shown thaty(Y) is
exponentially distributed with rate 1 (see Lemma 4.1).
Also, by the monotonically increasing property af, (y),
P(Y > y) = P(Ay(Y) > Avy(y)). Hence one has trans-
formed a heavy-tailed estimation problem into a light-tailed
one!

Lemma 4.1 LetW be a random variable with in-
creasing and continuougw(y). ThenAw(W) is an ex-
ponential random variable with rate 1.

Proof. Since the hazard functiofw (y) is strictly increas-
ing and continuous, the invers'e@,%y) is defined, and is
also increasing and continuous. Hence

P(Aw(W) > y) P(ARH (AwW)) > Ayt(y)

= PW > Ay (y)
e AW (Y) — g

However it is usually not possible to knowy (y)
(otherwise one can trivially computg(y)). In those cases
one uses the transformatian(Y), instead ofAy(Y) where
A(y) is an increasing continuous function such that) ~
Ay(y). Then one is still assured that(Y) is a random
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variable with its tail probability decaying exponentially at
rate 1.

Lemma 4.2  SupposeA(y) ~ Avy(y) with A(y)
continuous and increasing for all sufficiently large Then

_logPAMY) >y)
y

lim

y—00

1

Proof.

_logP(A(Y) > y)
y
_logP(Y > A™L(y))
y
Av(A~L(y)
y—oo A(ATL(Y))
im AY® _
z—oo A(2)

lim

y—>00

y—00

Note that the third equality follows by making the change
of variablez = A—1(y), and then making use of the fact
that A(y) is increasing and continuous for all sufficiently
largey. ®

In most cases it is easy to determine such\&).
For example, consider the case wh¥re- > ", X; where
the Xi's are i.i.d. andWeibullA, @), « < 1. Hence
Ax,(X) = A“x¥. Now the WeibullA, @), & < 1, be-
longs to a large class of heavy-tailed distributions called
subexponential distribution, for which

m
PO Xi>y) ~ PmaxXy...Xm) >Y)
i=1
~ mP(X1>y) (6)
(see, e.g., Embrechts, Kluppelberg and Mikosch 1997).
Hence

m
P(Y >y) =P X >y ~me*Y,
i=1

and one may choos&(y) = A%y~.

In summary, the hazard function transformation ap-
proach is based on first recognizing the fact that wity)
satisfying the properties in Lemma 4.2,Y) is a light-
tailed random variable, and that due to the monotonicity of
A(y),

P(Y >y) = P(A(Y) > A(y)).

So once again we have a light-tailed problem, and we can use
exactly the same procedure as we did to estinkaté > y)
whenY was light-tailed. In particular, we would now try

to find new pdfs for theX;’s, f,’s, that achieve exponential
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twisting of the A(Y) by amounty. The optimal, 6, will
now be obtained as the solution of
Yaon® _ 4 )
Ma(y) (@) 7
instead of (4). Observing (5), it should be clear that (we
seth=1 in (5), sinceA(Y) has an exponential tail of rate 1)

—In{Maen @) A0} ~ Ay, 8)

since the main thing that has changed in (7) is thdias
been replaced by a continuous, increasing functiay).
This immediately yields asymptotic logarithmic efficiency
in the simulation.

However, there are two problems with this approach.
The first is thatM vy (6) may not be easily computable.
Consider for example the case considered previously where
Y =", X; whereX;’s are i.i.d. Weibull(A, @), @ < 1.

If we use A(y) = A“y* as we had mentioned previously,
then A(Y) = 243", Xi)®, for which it is extremely
difficult to compute the mgf (since it is not decomposable
as a sum of independent random variables). The second is
that it may be very difficult to findf;'s that will achieve the
exponential twisting ofA(Y) by amountd. So the above
approach needs to be modified.

()

4.2 Hazard Function Transformations with Upperbound

Let A(y) satisfy the conditions of Lemma 4.2. L&t =
h(X1, ..., Xm) be a random variable such that:

e AKY)<V wp. 1L

V is decomposable as a sum of functionsXefs
respectively, so thaMy (9) is easy to compute.
A(Y) and V have the same asymptotic log-tall
behavior, i.e. Av(Y) ~ Aacr)(y) ~ Y.

It is possible to findf;’s that will achieve expo-
nential twisting ofV by amounts.

The modified approach tries to achieve exponential twisting
of V instead ofA(Y). In that case

P(Y > y) E(1(A(Y) > A(Y))
E(1 (A(Y) > A(Y)My (©)e V).

Hence the new unbiased estimator isS(A(Y) >
A(Y)My (e ?V, whereY andV are obtained from the
Xi's, and theX;’s are sampled using th&'s.

Given the conditions oW, this new estimator can be
shown to be asymptotically, logarithmically efficient. In
particular, we have the upperbound

E(1 (A(Y) > A(Y)IZ(X))

E(l (A(Y) > A(y)MZ (©)e V)
E((V > A(y)MZ(©)e V)
MZ (6)e" @AW,

A

IA
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Hence 4.3 Hazard Rate Twisting and Hazard
Function Transformations
E(L(ACY) > AIZ(X) < ME©@%)e 2V,
As mentioned in the Introduction, Juneja and Shahabud-

where6y is the solution of din (2002) introduced the idea of “hazard rate twisting”.
Hazard rate twisting may be viewed as a generalization

My, (6) of exponential twisting to non-negative random variables

W = AY). ©) with both light-tails and heavy-tails. For any non-negative

random variable, say;, with pdf fj(x), the hazard rate
As in (8), sinceV also has an exponential tail of rate 1, twisted pdf by amoung, 0 < 6 < 1, is given by

—in {My @& | ~ Ay). PO b 1O N bl T
L0 Jo2 &M% £ (s)ds (1-06)
This leads to asymptotic logarithmic efficiency in the esti-
mation of P(Y > y). Itis easy to verify that doing hazard rate twisting by amount
Let us now consider the application of this approach ¢ on X is equivalent to doing exponential twisting by the
to estimatingP(Y > y) whereY = ', X; and theX;’s same amount o x; (X;).
are i.i.d and heavy-tailed. We will now restrict ourselves Juneja and Shahabuddin (2002) applied hazard rate

to X; belonging the class of subexponential distributions twisting to the problem mentioned in the previous subsection,
that we had mentioned earlier. Different asymptotically, i-€., of estimatingP(Y > y) whereY = >3, X;, with
logarithmically efficient changes of measure for this problem Xi's being i.i.d. subexponential random variables. Our
have been given in Asmussen, Binswanger and Hojgaard contribution is to extend this approach to estimatihg’ >
(2000), and Juneja and Shahabuddin (2002). We use this ¥) for some more general functio¥s= h(X). At the more
example just to illustrate our approach. Most subexponential conceptual level, whereas Juneja and Shahabuddin (2002)
distributions (i.e., excepting pathologoical cases) satisfy the thought in terms of hazard rate twisting of the’s, we
property that the hazard function is eventually concave think in terms of hazard rate twisting directly of thés.
(see, e.g., Juneja and Shahabuddin 2002). For purposesVe then work backwards to determine the corresponding
of illustration we will restrict ourselves to the case where change of measure on the’s (that maynot necessarily be
Ax, (x) is always concave (one can check this for the Weibull hazard rate twisting). Viewing hazard rate twisting in terms
and Pareto). By the property of subexponential distributions of hazard function transformations facilitates this approach.
given in (6), Ay(Xx) ~ Ax,(x) and hence we can use

A(X) — AX;L(X)- We can then us&y/ = Z:“:lA(XI) Let 5 APPLICATIONS TO VALUE-AT-RISK

us check whether this satisfies the propertiey ahat we
had stated earlier. 5.1 The Value-at-Risk Problem

* Due to the concavity of\(y),
We give a brief overview of the standard setting that has
m m also been considered in Glasserman, Heidelberger, Sha-
AY) = A(Z Xi) < ZA(Xi) =V. habuddin (2000) and Glasserman, Heidelberger, Shahabud-
i=1 i=1 din (2002). Consider a portfolio that is based wnrisk
) ] ) factors and le§(t) = (S.(1), ..., Sn(t)) denote their values
* Unlike A(Y), V is decomposable into a sum of 4 timet. Let AS= [S(t + At) — S(O)]T (the notationAT
independent random variables. This together with  ¢i5n4s for the transpose of the mat@ be the random
the fact from Lemma 4.1 thak (Xi) = Ax; (Xi) change in risk factors over the future intengalt + At).
is exponentially distributed with rate 1, we getthat  1hg yajue of the portfolio at current timeis given by
Mv(©) = 1/(1—6)"™. HenceMy (0) is easily V(S(t),t) and the loss over the intervat is given by
computable. _ o L = V(S(t),t) — V(S(t) + AS t + At) (note that the
* Since the A(Xi)'s are exponentially distributed  4n1y random quantity in the expression for the losais).
with rate 1, theV is an Erlang with rate parameter  1hq risk problem is to estimatB(L > x) for a givenx,
1. HenceA xcy)(y) ~ Av(Y). _ and the value-at-risk problem is to estimatesuch that
 SinceV is sum gf light-tailed random variables, P(L > x) = p for a givenp, 0 < p < 1. Usuallyp is of
exponential twisting of eaci\ (Xi) by amounty the order 001. As mentioned in Glasserman, Heidelberger
will yield exponential twisting ofV by amount and Shahabuddin (2000) and Glasserman, Heidelberger and
(as described at the end of Section 3.2). Shahabuddin (2002), techniques that are efficient for esti-
mating P(L > x) for a givenx, can be adapted to estimate
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the value-at-risk. Hence the focus in this paper, as in the
previous papers, is efficient estimation BfL > x).

Usually some probability model is assumed for th§,
and parameters of the model are estimated from the data.
The usual assumption is thatS is multivariate normal
with mean 0 and some covariance matdx (see, e.g.,
Glasserman, Heidelberger and Shahabuddin 2000). The
multivariate normal is quite light-tailed and there is evidence
from empirical finance that risk factors may have tails that
are heavier than normal. This led Glasserman, Heidelberger
and Shahabuddin (2002) to consider the case whera $e
has the multivariate t distribution. The t distribution has

a tail that decays polynomially, rather than according to
2

%ezt%z, as in the case of a normal.

As mentioned in the Introduction, we consider the case
whereAS has the multivariate Laplace distribution. In this
case, the tails of the marginal distributions decay according
to e %%, for some constant > 0. Also, the multivariate
Laplace random-variable may be expressed/8W where
B is an exponentially distributed random variable with rate 1,
andW = (Wy, ..., Wy) is the multivariate normal random
vector with mean 0, and covariance matix (see, e.g.,
Kotz, Kozubowski and Podgorski 2001). Hence one can
write

AS=VBW.

Once a probability model is assumed for thé, then
one can estimatd®(L > x) by simulation. The naive
simulation method is to generateS, computeV (S(t) +
AS, t+ At) and compute the lods. Thenl (L > x) is an
estimator ofP(L > x). Howeverx may be large leading
to most samples of (L > x) being 0, i.e., the typical rare-
event simulation problem. Also, a portfolio may consist of
many different types of instruments based on theisk
factors, making each evaluation ¥f(S(t) + AS,t + At)
very time consuming. Hence one needs to use variance
reduction techniques that reduce the number of samples
needed for an accurate estimation.

5.2 A Quadratic Approximation
for the Delta-Hedged Case

A quadratic approximation t& is given by

L~ay+a AS+ (ASTAAS=ay+ Q, (10)
where ap is a scalar,a is a vector, andA is a matrix.
The importance sampling approach given in Glasserman,
Heidelberger, Shahabuddin (2000), involves finding efficient
change of measure for estimatifgQ + ap > x), and then
using the same change of measure for estimaiflg > x);
sinceL ~ agp+ Q, it is likely that such an approach will be
efficient for estimating the latter. Sin€@ is more tractable
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it is easier to come up with efficient changes of measure
for estimatingP(Q > x —ag) and proving their asymptotic
logarithmic efficiency.

One quadratic approximation for the is the delta-
gamma approximation. This is simply a Taylor series

expansion of the los& in terms of AS. In particular,

a0 = —OAt, a = —(&), and A = — — 3(Ij) in (10),
2 .

where® = &L, § = 5%, andIyj = % (all partial

derivatives are evaluated é®(t), t)). Many of thes;’s and
Tij's (especially thel'jj 's) are routinely computed for other
purposes and hence are usually available prior to running
the simulation.

For the purposes of this paper we consider the case
where the portfolio is “delta-hedged”, i.e, the proportion of
investments in the various securities are selected such that
theé’s are zero. Hence, in the delta-hedged case,0 in
(10), and thuQ = (AS)T A(AS). For generating\ S, one
can findC such thatCCT = £. Then one can generate
a multivariate standard normal, and an exponentiaB
with rate 1, and seAS = +/BCZ In that caseQ =
B(ZTCTACZ2). In order to develop importance sampling
techniques for estimatin@ (Q > x — ap) for largex, it is
advisableto find & suchthaZ TCT AC Zis a “diagonalized
quadratic form”. To find such &, first find any C such
thatCCT = ¥ (say using Cholesky factorization). We then
solve a eigenvalue problem, i.e., find an orthonormal matrix
U (i.e.,U such thatuT = U~1) and a diagonal matrix\
such thatCTAC = UAUT. Let C = CU. Then we have
that CCT = CUUTCT =CCT = ¥ and

Z'c"Acz Z'UTETACuz=2"AzZ.

Hence

m
Q=BZ"AZ) = Z Bk Z?
i=1

whereAj’s are the diagonal elements of. Without loss
of generality we will assume thaty > ... > Am.

5.3 Asymptotic Logarithmic Efficiency
for Estimating P(Q > vy)

Let y = x — ap. We now show how the hazard transfor-
mation approach of Section 4 can be used to determine an
asymptotically, logarithmically efficient change of measure
for the estimation ofP(Q > y). It is easy to check that
each componerBA; Zi2 of Q is heavy-tailed and s@Q may

be considered aependensum of heavy-tailed random-
variables. Thus this problem is very different in essence
from the ones considered in Asmussen and Binswanger
(1997), Asmussen, Binswanger and Hojgaard (2000) and
Juneja and Shahabuddin (2002), that considered sums of
independent heavy-tailed random variables.
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To keep things simple, we will also assume that> 0,
though it is not at all necessary for our method or the
asymptotic logarithmically efficient proof. It is easy to
check thatQ is heavy-tailed, and hence as in Section 4.1,
the first step is to find & (y) such thatAq(y) ~ A(y). The
following theorem gives the asymptotic order®fQ > y)
for largey.

Theorem 5.1
A1 > 0. Then

Supposer; > A2 > ... > Am, and

vor —[Zy

The proof uses the Laplace method (see, e.g., Bleistein
and Handelsman 1975) for which we need a lemma:

P(Q >y~

1/4

Lemma 5.2  Supposer; > Az > ... > Am, and
A1 > 0. Then on domainD := {(u,vi,...,vm) :
S Ajuv? > 1,u > 0} we have
max(— u——sz]—— /E
A
i=1
Proof. (of Lemma 5.2) Sincei1 > A2 > ... > Ay, ON

domainD, we have} [T, riuv? > 30 Ajuv? > 1, ie.

UZMZ. 2>0 Thus,
1, 1 y LI
—u— = v < — 5~ 5 vi.
2; )‘12|—1v| 2;
Note that
1 13, 1 1¢
- 4+ = ve > 2 X = v?
AlZimzlviz 2|:1 I \]Alzimzl i 2; |

Hence, we have thatu— 3 3" v? < — /. By taking

/1 [2
u=,/z5.v1= 471,02:03:...:vm20,we reach

the maximum, which is—,/%. m

Proof. (of Theorem 5.1)

m
PO 1Bz >y)

i=1
/m/{(t,zl,...zm):zim1Aitzi2>y,t>0}

e_% Zimzlziz_tdtdzl...dzm
[change variablesu = t/\/y, vi = z /Y]

m+2

v
(v2r)m

V2r)m

),
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wherel (y) = [ ... [p, e VX Tl vP+Wd ydyy..duy, and
the domainDq is defined asDg := {(u,v1,...,vm) :
SmiAiuv? > L,u > 0}. I(y) is anm + 1-dimension
Laplace type integral. By a result in Bleistein and Han-
delsman (1975), we know that

27)(M+1)/2
yT

e\/y ¢m ax

Heregmax = maxD[—u—% >, v¥]whereDis the closure
of Dg. The result then follows from Lemma 5.2a

From Theorem 5.1 we see that one can chabgg) =
V2y/x1. Hence, if we letj = A;/(2)11),

m m
AQ=2VB | Y NZP<B+) kZf,

i=1 i=1

where the last inequality uses the fact thet@ < x? +x3.
Hence we can us¥ = B+ 3" ; 4 Z2. Sincex; Z? is are
gamma random variables (witthZ? having the heaviest
exponential tail of rate 1), it is easy to check thathas
an exponential tail of rate 1. The mgf &f is trivial to
compute:

(11)

My (©) 1 ﬁ 1
\Y = —.
(1_9)i:1 1-— 26

The only thing we need to do now is to find a changes of
measure o andZz;’s that will achieve exponential twisting

on theV by amountd, 0 < 6 < 1. As shown at the end

of Section 3.2, sinc¥ is a sum of independent light-tailed
random variables, doing an exponential change of measure
by amountd, 0 < 6 < 1, on the B and each of thig Z%'s
yields and exponential change of measure by ameunt
on theV. The exponential change of measure by amount
6 on B yields another exponential distribution with rate
(1—6). One can also easily show that if the new measure

on theZ; is N(0, 1/+/1 — 24;6), then the likelihood ratio

ise %2 /\/1— 23;6. Hence with this new measure on the
Zi, we achieve exponential twisting m‘Zi2 by amount).

5.4 The Importance Sampling Algorithm

To summarize, we give the steps of the importance sampling
algorithm to estimatd®(L > x) for a givenx and At. We
assume that we are giveap and A from the quadratic
approximation, and& for the W in AS= +/BW.

Preprocessing:

* Find current portfolio valueV/ (t, S(t)).

« Find C such thatCCT = % (e.g., use Cholesky

factorization). Solve the eigenvalue problem, i.e.,
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find a orthonormal vectdd and a diagonal matrix
A, suchthaCTAC = UAUT. LetAq, ..., Ambe
the diagonal elements of arranged in descending
order and letkj = 1;/(2x1). SetC = CU.

risk-free, annual rate of interest of 5%. We investigate losses
over 10 days At = 0.04 years). Each option has a maturity
of 0.5 years. We use the Black-Scholes formula to price the
options. In the first three portfolios, we take the initial price
« Sety = x—ap. Computedy as the solution of of each asset to be 100; we also assume the asset prices
(9) where My (0) is given by (11) andA(y) = to be uncorrelated, with each having an annual volatility of
V2y/*1. ComputeMy (65). 0.3.
Generating a sample under importance sampling: 1.
1. GenerateB that is exponentially distributed with
rate (1—9;;). Generate independent normals

Z1, Z2, ..., Zm, with Zj =4 N(O, TM)

2. Compute likelihood ratio 2.

Delta-hedged: short ten at-the-money (i.e., strike
price is the same as the initial price) calls and certain
fixed number of puts on each of 10 underlying
assets, such that the portfolio is delta-hedged.
Largers: same as ‘Delta-hedged’ but with number
of calls and puts on first asset increased by a factor
of 10.

Lineari: same as ‘Delta-hedged’ but with number
of calls and puts onth asset increased by a factor
ofi,i =1,...,10.

Index: short fifty at-the-money calls and a cer-
tain fixed number of at-the-money puts on each of
10 assets, such that the port-folio is delta-hedged.
The asset prices are correlated; the covariance ma-
trix was is from the RiskMetrics website, and is
given in Glasserman, Heidelberger and Shahabud-
din (2000a). The initial asset prices are taken as
(100 50, 30, 100, 80, 20, 50, 200, 150, 10).

_p* m A 52
| = l(B, Zl, e Zm) = Mv(@;)e ey(B+Z|=1 Zk]_zl ) 3.

3. SetAS = v/BC(Z1,...,Zm)'. ComputeL =
V(t, S(t)) — V(S(t) + AS, t + At). 4.
4. Computel (L > x)I.
By generatingh samples ofl (L > x)I independently,
and taking the sample mean one gets an unbiased estimator
of P(L > x).

Table 1: Variance Ratios (VR) of Standard Sim-
ulation to Importance Sampling in Estimating

PL>%. . Table 1 gives importance sampling estimate® o) >
Portfolio 1: Delta-hedged. y), P(L > x) (recall thaty = x — ag) and the variance
y 400 500 600 reduction factor achieved by importance sampling in the
P(Q >y) | 0.01519] 0.00693| 0.00326 estimation of P(L > x). We estimate each of these from
P(L > x) | 0.01405| 0.00592| 0.00257 100,000 samples. Results from more detailed experimen-
VR 6.24 11.25 20.39 tation may be found in Huang and Shahabuddin (2003).
Portfolio 2: Largers.
y 1000 1200 1400 ACKNOWLEDGMENTS
P(Q >y) | 0.01265| 0.00762| 0.00486
P(L > x) | 0.01212] 0.00716| 0.00445 This work was partially supported by the National Science
VR 3.96 12.60 | 17.23 Foundation (U.S.A.) Grant DMI 03-00044. The observation
Portfolio 3- Linear. _that hgzard rate twisting (_)f a hegvy—tailed random varigble
y 5500 5600 5800 is equwaleqt to exponentially tW|§t|ng the hazardl fun.ct|on
P(Q = y) | 0.01122 0.00977| 0.00765 tr.ansfor.matlon of the randpm variable, came up in dlsgu_s—
P(L = x) | 0.01021] 0.00885| 0.00674 sions with P. Glasserman (it has been mentioned m_ourjo_lnt
VR '12 T3 '14 0 '17 35 proposal for the NSF Gran_t DMI 03-00044 submitted in
Portf;)lio T Ind.ex - October 2002) and S. Juneja.
y 200 300 400 REFERENCES
P(Q > y) | 0.02070| 0.00717| 0.00282
P(L > x) | 0.02048] 0.00670| 0.00255 Anderson, T.W. 1984. An Introduction to Multivariate
VR 6.54 13.39 24.83 Statistical AnalysisSecond Edition. New York, U.S.A.:
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Wiley.

Asmussen, S., and K. Binswanger. 1997. Simulation of
ruin probabilities for subexponential claimsASTIN
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We test the performance of the method described above on
some test portfolios consisting of calls and puts. We assume
250 trading days in a year, and a continuously compounded,
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