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ABSTRACT

Two-stage indifference-zone selection procedures have b
widely studied and applied. It is known that mos
indifference-zone selection procedures also guarantee m
tiple comparisons with the best confidence intervals w
half-width corresponding to the indifference amount. W
provide the statistical analysis of multiple comparisons wi
a control confidence interval that bounds the difference b
tween each design and the unknown best and multiple co
parisons with the best confidence intervals. The efficien
of selection procedures can be improved by taking in
consideration the differences of sample means, using
variance reduction technique of common random numbe
and using sequentialized selection procedures. An exp
imental performance evaluation demonstrates the valid
of the confidence intervals and efficiency of sequentializ
selection procedures.

1 INTRODUCTION

When evaluatingk alternative system designs, we woul
like to select one as the best and to control the probabi
that the selected design really is the best. Letµi denote the
expected response of designi . Our goal is to find the design
with the smallest expected responseµ∗ = min1≤i≤k µi . If
the goal is to select a design with the biggest expec
response, just replace min with max in the above. W
achieve this goal by using a class of ranking and select
(R&S) procedures. Let CS denote the event of “corre
selection.” In a stochastic simulation, CS can never
guaranteed with certainty. The probability of CS, denot
by P(CS), becomes higher as sample sizes become lar

Most indifference-zone selection procedures are direc
or indirectly developed based on Dudewicz and Dala
(1975) or Rinott’s (1978) indifference-zone selection pr
cedures and efficiency is still a key concern for applicati
of simulation to R&S problems. There are several ne
approaches aiming to improve the efficency of R&S pr
n
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cedures; Chen and Kelton (2000) take into account th
difference between sample means, Kim and Nelson (200
propose using sequentialized selection procedures. For
overview of earlier methods of R&S see Law and Kel-
ton (2000). Furthermore, it is known that under the sam
assumptions of the indifference-zone selection procedure
most indifference-zone selection procedures also guaran
multiple comparisons with the best (MCB) confidence inter
vals (CIs) with half-width corresponding to the indifference
amount; see Section 2.1. We are also interested in ho
much better the unknown best is relative to each altern
tive. In this paper, we provide the statistical analysis o
multiple comparisons with a control (MCC) CIs that bound
the difference between each design and the unknown be
design as well as MCB CIs. Furthermore, we provide th
rationale of taking into account the difference of sampl
means when computing the sample sizes and the effect
using common random numbers (CRN) with indifference
zone selection procedures to reduce variances. We th
propose sequentializing Chen’s (2002) adjusted ETSS (e
hanced two-stage selection) procedure to improve P(C
and efficiency of R&S procedures.

The rest of this paper is organized as follows. In
Section 2, we provide the background of indifference zon
and Rinott’s selection procedure. In Section 3, we prese
our analysis of MCC and MCB CIs as well as technique
to improve the efficiency of two-stage selection procedure
In Section 4, we show our empirical-experimental results
In Section 5, we give concluding remarks.

2 BACKGROUND

First, some notation:

Xi j : the observation from thej th replication or batch
of the i th design,

Ni : the number of replications or batches for designi ,
µi : the expected performance measure for designi ,

i.e., µi = E(Xi j ),



Chen and Kelton

e-

for

ure

st

is

ig
e,
ou
rge
es

s
S)

S

t
ith

iffe

tee
th

ired

ely

f

l
e

r

e

ns
t

is
s.
e

e.
in

t
b-
I

at

ch

e
e

h-

rs
X̄i (r ): the sample mean performance measure for d
sign i with r samples, i.e.,

∑r
j =1 Xi j /r ,

X̄i : the final sample mean performance measure
designi , i.e.,

∑Ni
j =1 Xi j /Ni ,

σ 2
i : the variance of the observed performance meas

of design i from one replication or batch, i.e.,
σ 2

i = Var(Xi j ),
S2

i (Ni ): the sample variance of designi with Ni repli-

cations or batches, i.e.,S2
i (Ni ) = ∑Ni

j =1(Xi j −
X̄i )

2/(Ni − 1).

2.1 Indifference-Zone Selection Procedures

Let µil be thel th smallest of theµi ’s, so thatµi1 ≤ µi2 ≤
. . . ≤ µik . Our goal is to select a design with the smalle
expected responseµi1. However, in practice if the difference
betweenµi1 andµi2 is very small, we might not care if we
mistakenly choose designi2, whose expected response
µi2. The “practically significant” differenced∗ (a positive
real number) between the best and a satisfactory des
is called the indifference zone in the statistical literatur
and it represents the smallest difference that we care ab
Therefore, we want a procedure that avoids making a la
number of replications or batches to resolve differenc
less thand∗. That is, we want P(CS)≥ P∗ provided that
µi2 − µi1 ≥ d∗, where the minimal CS probabilityP∗
and the “indifference” amountd∗ are both specified by the
user. That means we want to select a systemi such that
µi − µi1 < d∗. Some literature refers to this event a
the probability of good selection (P(GS)) and use P(C
to indicate the event in which we select systemi1. In this
paper, we do not distinguish between the two and use P(C
to indicate the event that we select a good design.

One way to look at the indifference amount is tha
indifference-zone procedures need to rank the designs w
a desired confidence when their performance measures d
by more thand∗. More specifically, if designj hasµ j <

µi1+d∗, then indifference-zoneprocedures do not guaran
the order of these designs with a desired confidence. On
other hand, ifµ j ≥ µi1 + d∗, indifference-zone procedures
do guarantee the order of these designs with a des
confidence.

2.2 The Two-Stage Rinott Procedure

The two-stage procedure of Rinott (1978) has been wid
studied and applied. Letn0 be the number of initial repli-
cations or batches. The first-stage sample meansX̄i (n0),
and marginal sample variances

S2
i (n0) =

n0∑
j =1

(Xi j − X̄i (n0))
2

n0 − 1
,

n

t.

)

r

e

for i = 1, 2, . . . , k are computed. Based on the number o
initial replications or batchesn0 and the sample variance
S2

i (n0) obtained from the first stage, the number of additiona
simulation replications or batches for each design in th
second stage isNi − n0, where

Ni = max(n0, d(hSi (n0)/d∗)2e), for i = 1, . . . , k, (1)

where dze is the smallest integer that is greater than o
equal to the real numberz, andh (which depends onk, P∗,
andn0) is a constant that solves Rinott’s (1978) integral (h
can be found from the tables in Wilcox (1984), or can b
calculated by the FORTRAN programrinott in Bechhofer
et al. (1995)). We then compute the overall sample mea
X̄i = ∑Ni

j =1 Xi j /Ni , and select the design with the smalles

X̄i as the best one. Basically, the computing budget
allocated proportionally to the estimated sample variance
Moreover, the derivation of this procedure is based on th
least favorable configuration(LFC, i.e., assumingµil =
µi1 + d∗, for all l = 2, 3, . . . , k). However, in reality, we
rarely encounter the LFC, so this procedure is conservativ
That is, it generally allocates more samples than needed
order to reach the desired correct-selection guarantees.

Nelson and Matejcik (1995) show that mos
indifference-zone procedures not only guarantee a pro
ability of correct selection, but they also guarantee MCB C
coverage probability of at leastP∗ with the half-width of the
CI corresponding to the indifference amountd∗ under the
same assumptions for indifference-zone procedures. Th
is,

P[µi − min j 6=i µ j ∈
[(X̄i − min j 6=i X̄ j − d∗)−, (X̄i − min j 6=i X̄ j + d∗)+],

for i = 1, 2, . . . , k] ≥ P∗,

where (x)− = min(0, x) and (x)+ = max(0, x). These
confidence intervals bound the difference between ea
design and the best of the others.

3 STATISTICAL ANALYSIS

In this section we examine the relationship between th
sample-size allocation strategy of Rinott’s indifference-zon
selection procedure and the CI half-width and provide tec
niques to improve the efficiency of R&S procedures.

3.1 Multiple Comparisons with a Control

Multiple comparisons with a control (with designi1 as
the control) provides simultaneous CIs for the paramete
µil −µi1, for l = 2, 3, . . . , k. These CIs bound the difference
between the performance of each design and designi1 with
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a prespecified confidence level. The probability of corr
selection is estimated by

P(CS) = P[X̄i1 < X̄il , for l = 2, 3, . . . , k]
= P[ X̄i1 − (X̄il − d∗)√

σ 2
il
/Nil + σ 2

i1
/Ni1

<

d∗
√

σ 2
il
/Nil + σ 2

i1
/Ni1

, for l = 2, 3, . . . , k].

Let

Zil = X̄i1 − (X̄il − d∗)√
σ 2

il
/Nil + σ 2

i1
/Ni1

and

Qil = h√
σ 2

il
/S2

il
(r ) + σ 2

i1
/S2

i1
(r )

, l = 2, 3, . . . , k.

Since Ni ≥ (h/d∗)2S2
i (r ) for all i ,

d∗
√

σ 2
il
/Nil + σ 2

i1
/Ni1

≥ Qil for l = 2, 3, . . . , k. (2)

Moreover, the variablesYi = (n0 − 1)S2
i (n0)/σ

2
i , for i =

1, 2, . . . , k are independentχ2 variables withn0−1 degrees
of freedom, so the variablesQil , for l = 2, 3, . . . , k, have
the same distribution. Let8(x) be the cdf (cumulative
distribution function) of the standard normal distributio
and Qil = Q, for l = 2, 3, . . . , k. Then, under the LFC,

P(CS)≥ P[Zil < Qil , l = 2, 3, . . . , k] ≥ E(8k−1(Q)).

The first inequality follows from (2) and the second inequ
ity follows from Slepian’s inequality (Tong 1980) sinceZil ’s
are positively correlated. In Rinott’s procedure, the cr
ical value h is computed such that E(8k−1(Q)) = P∗.
Furthermore, (2) can be rewritten as

d∗ ≥ Q
√

σ 2
il
/Nil + σ 2

i1
/Ni1 for l = 2, 3, . . . , k. (3)

When testing the null hypothesis H0 : µil ≤ µi1, the
test statistic that will be used to make a decision whet
or not to reject the null hypothesis is

z = X̄il − X̄i1

σX̄il −X̄i1

,

where σ 2
X̄il −X̄i1

is the variance of the values̄Xil − X̄i1.

Let z1−α denote the 1− α quantile of the standard norma
t

r

distribution. We reject the null hypothesis only ifz > z1−α,
or similarly

X̄il − X̄i1 > z1−ασX̄il −X̄i1
= wil ,

wherewil is the one-tailed 1−α CI half width. By definition,
wil ensures P[µil −µi1 ≥ X̄il −X̄i1−wil ] ≥ 1−α. Moreover,
for us to conclude with confidence 1−α thatµil > µi1 the
lower endpoint of the one-tailed 1−α CI must be positive,
i.e., X̄il − X̄i1 − wil > 0. For details on the duality of
confidence intervals and hypothesis tests see Rice (1995

By symmetry of the normal distribution,

P[(X̄il − X̄i1) + wil ≥ µil − µi1] ≥ 1 − α. (4)

The simultaneous one-tailedP∗ CIs half-width, with design
i1 as a control, is

wil = zh

√
σ 2

il
/Nil + σ 2

i1
/Ni1 ,

wherezh is a critical value such that E(8k−1(zh)) = P∗.
To achieve

P[X̄il − X̄i1 > 0] ≥ 1 − α,

the sample sizesNi should be large enough so thatµi l−µi1 >

wil . Note that the half-widthwil depends on the sample
sizes.

SinceQ = zh, it follows from (3) that under the LFC
the sample sizes determined by Rinott’s procedure guarant

d∗ ≥ wil for l = 2, 3, . . . , k.

Consequently,

P[µi − µi1 ∈ [X̄i − X̄i1 − d∗,∞] for i 6= i1] ≥ P∗,

P[µi − µi1 ∈ [−∞, X̄i − X̄i1 + d∗] for i 6= i1] ≥ P∗,

and

P[µi − µi1 ∈ [X̄i − X̄i1 − d∗, X̄i − X̄i1 + d∗] for i 6= i1]
≥ 2P∗ − 1.

Let the set I = {1, 2, . . . , k} includes allk designs
under consideration. Sinceµi1 − µi1(= 0) is within the
above three CIs with probability 1 andµi −µi1 ≥ 0 for all
i , we have the following result.

Theorem 1 Under the same assumptions for
indifference-zone procedures, the sample sizes determin
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by Rinott’s indifference-zone selection procedure also gua
antee with high confidence that

1. The simultaneous lower one-tailed confidence in
tervals,

P[µi − µi1 ∈ [(X̄i − X̄i1 − d∗)+,∞],∀i ] ≥ P∗.

2. The simultaneous upper one-tailed confidence in
tervals,

P[µi − µi1 ∈ [0, X̄i − X̄i1 + d∗],∀i ] ≥ P∗.

3. The simultaneous two-tailed confidence intervals

P[µi − µi1 ∈ [(X̄i − X̄i1 − d∗)+, X̄i − X̄i1 + d∗],
∀i ] ≥ 2P∗ − 1.

Furthermore, X̄b ≤ X̄i1, where X̄b = mini∈I X̄i .
Therefore,

P[µi − µi1 ∈ [(X̄i − X̄i1 − d∗)+,∞]] ≥
P[µi − µi1 ∈ [(X̄i − X̄b − d∗)+,∞]]

and

P[µi − µi1 ∈ [0, X̄i − X̄i1 + d∗]] ≤
P[µi − µi1 ∈ [0, X̄i − X̄b + d∗]].

In practice we do not know which design is the true bes
and can substitute the sample mean of the unknown be
with the best sample mean to construct upper one-taile
CIs.

We, therefore, have the following result.
Theorem 2 Under the same assumptions for

indifference-zone procedures, the sample sizes determin
by Rinott’s indifference-zone selection procedure also gua
antee with high confidence that the difference between ea
design and the unknown best is bounded by the differen
between the sample mean of each design and the best sam
mean plus the indifference amount. That is,

P[µi − µi1 ∈ [0, X̄i − X̄b + d∗],∀i ] ≥ P∗,

where X̄b = mini∈I X̄i .
Sinceb ∈ I , Theorem 2 implies

P[µb − µi1 ∈ [0, X̄b − X̄b + d∗]] ≥ P∗, i .e.,

P[µb − µi1 ≤ d∗] ≥ P∗.

Once the procedure has selected the designb, the event
µb − µi1 ≤ d∗ is either true or false. However, if we try
this selection procedure many times (approaching infinite
the frequency of the event is true will be greater tha
or equal toP∗. In words, the selected designb will be
within d∗ of the best design with high confidence, as the
indifference-zone R&S procedures advertised.
t

d

h
e
le

3.2 Multiple Comparisons with the Best

Multiple comparisons with the best provides simultaneou
CIs for the parameterµi − min j 6=i µ j , i = 1, 2, . . . , k.
These CIs bound the difference between the performan
of each design and the best of the others with a prespecifi
confidence level. We follow the discussion of Nakayam
(1997) to construct MCB intervals. Define the events

E = {µi − µi1 ≤ X̄i − X̄i1 + d∗,∀i 6= i1},

EL = {µi − min
j 6=i

µ j ≥ (X̄i − min
j 6=i

X̄ j − d∗)−,∀i },

EU = {µi − min
j 6=i

µ j ≤ (X̄i − min
j 6=i

X̄ j + d∗)+,∀i },

ET = {µi − min j 6=i µ j ∈ [(X̄i − min j 6=i X̄ j − d∗)−, (X̄i −
min j 6=i X̄ j + d∗)+],∀i }.

Note that E is the event that the upper one-tailed
confidence intervals for multiple comparison with a contro
with the control being designi1, contain all of the true
differenceµi − µi1. From the second item of Theorem 1
in Section 3.1, we know that P[E] ≥ P∗. Now following
an argument developed by Edwards and Hsu (1983),
have thatE ⊂ EL ∩ EU , which will establish the result
P[ET ] ≥ P∗.

First we prove thatE ⊂ EL :

E ⊂ {µi1 − µ j ≥ X̄i1 − X̄ j − d∗,∀ j 6= i1}
⊂ {µi1 − µi2 ≥ X̄i1 − X̄ j − d∗,∀ j 6= i1}
⊂ {µi − µi2 ≥ (X̄i − min

j 6=i
X̄ j − d∗)−,∀i }

⊂ {µi − min
j 6=i

µ j ≥ (X̄i − min
j 6=i

X̄ j − d∗)−,∀i },

where the second step follows sinceµi1 − µi2 ≥ µi1 − µ j

for all j 6= i1 and the third step follows sinceµi − µi2 ≥ 0
for all i 6= i1 and (x)− ≤ 0.

Now we showE ⊂ EU .

E ⊂ {µi − µi1 ≤ X̄i − min
j 6=i

X̄ j + d∗,∀i 6= i1}
⊂ {µi − min

j 6=i
µ j ≤ (X̄i − min

j 6=i
X̄ j + d∗)+,∀i },

where the first step follows since minj 6=i X̄ j ≤ X̄i1 for all
i 6= i1 and the last step follows sinceµi1 − min j 6=i1 µ j ≤ 0
and (x)+ ≥ 0. Hence,E ⊂ EL ∩ EU , and the proof is
complete. These MCB CIs are the same as those establis
in Nelson and Matejcik (1995).
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3.3 The Adjusted ETSS Procedure

It is informative that Rinott’s selection procedure also gua
antees MCB CIs with half-width corresponding to the in
difference amount, but these CIs come at a cost. If t
objective is to select the best design instead of estim
ing the difference of sample means, then the sample si
only need to be large enough so that the half-widths a
smaller than the differences between means; see (4). C
and Kelton (2000) propose the ETSS procedure that tak
into account not only the sample variances, but also t
difference between the sample means across designs.
sample-size allocation strategy of the ETSS procedure
similar to that of Chen et al. (2000), who show that with
fixed computational budget the probability of selecting th
best design can be asymptotically maximized when the al
cated sample sizes satisfy certain ratios. Chen (2002) refi
the ETSS procedure by adding a conservative adjustm
to increase P(CS).

Let X̄b(n0) = mink
i=1 X̄i (n0), U(X̄b(n0)) be the upper

one-tailedP∗ confidence limit ofµb, and

di = max(d∗, X̄i − U(X̄b(n0))).

The adjusted ETSS procedure computes the number
required simulation replications or batches for each des
based on the following formula

Ni = max(n0, d(hSi (n0)/di )
2e), for i = 1, . . . , k. (5)

The Adjusted ETSS Algorithm:
1. Simulaten0 replications.
2. For each designi , compute the needed number o

additional replicationsNi − n0. Here Ni will be
computed according to (5).

3. SimulateNi − n0 additional replications for each
designi .

4. Return the valuesb and X̄b, where X̄b =
mink

i=1 X̄i .
The difference between (5) and (1) is thatdi is being
used instead ofd∗. The differences between the sampl
means are embedded indi ; consequently, this procedure will
allocate fewer replications or batches to the less promisi
designi , whose sample mean̄Xi are far in excess of̄Xb.

Let wi,b denote the one-tailed(P∗)
1

k−1 CI half-with of
µi − µb. Following the discussion of Section 3.1, th
sample sizes determined by the adjusted ETSS proced
should guarantee

di ≥ wi,b ∀i .

Subset pre-selection is a screening device that attem
to improve the efficiency of the selection procedures b
selecting a (random-size) subset of thek alternative designs
-
s

n
s

he
s

-
s
t

f
n

g

re

ts

that contains the best design. Inferior designs are exclud
from further simulation to reduce the overall computationa
efforts. Chen (2001) shows that the ETSS procedure has
intrinsic subset pre-selection built-in, so a separate sub
pre-selection process is not needed.

3.4 Multiple Comparison Confidence Intervals
of the Adjusted ETSS

Using the same reasoning in Sections 3.1 and 3.2, multip
comparison CIs can also be constructed with the outcom
of the adjusted enhanced two-stage selection procedure. T
simultaneous upper one-tailed confidence intervals,

P[µi − µi1 ∈ [0, X̄i − X̄i1 + wi,i1 ],∀i ] ≥ P∗.

Theorem 3 Under the same assumptions for
indifference-zone procedures, the sample sizes determin
by the adjusted enhanced two-stage selection procedure a
guarantee with high confidence that

P[µi − µi1 ∈ [0, max
j 6=i

(X̄i − X̄ j + wi, j )
+],∀i ] ≥ P∗.

Theorem 4 Under the same assumptions for
indifference-zone procedures, the sample sizes determin
by the adjusted enhanced two-stage selection procedure a
guarantee with high confidence that multiple comparison
with the best confidence interval coverage probability wi
be at leastP∗ with the half-width of the confidence in-
terval corresponding to the difference between the samp
means. That is, P[µi − min j 6=i µ j ∈ [maxj 6=i (X̄i − X̄ j −
wi, j )

−, maxj 6=i (X̄i − X̄ j + wi, j )
+],∀i ] ≥ P∗.

Since the sample sizes should be large enough to ens
wi,b ≤ di , the sample sizes should also be large enough
ensurewi, j ≤ max(di , dj ). Hence, the CI half-widthwi, j

in Theorems 3 and 4 can be approximated by max(di , dj ).

Furthermore, ifdi = d∗ for all i , i.e., under the LFC, then
the MCC (withi1 as the control) equation in Theorem 3 can
be simplified to P[µi − µi1 ∈ [0, X̄i − X̄b + d∗],∀i ] ≥ P∗
and the MCB equation in Theorem 4 can be simplifie
to P[µi − min j 6=i µ j ∈ [(X̄i − min j 6=i X̄ j − d∗)−, (X̄i −
min j 6=i X̄ j + d∗)+],∀i ] ≥ P∗.

3.5 Using Common Random Numbers

We can use common random numbers to improve P(C
without any further assumptions. Let PI (CS) denote the
probability of correct selection with independent sam
pling, PC(CS) denote P(CS) with CRN, eventEl , for
l = 2, 3, . . . , k, denoteX̄il − X̄i1 > 0, and let PI (El ) and
PC(El ) denote the probability of eventEl with independent
sampling and with CRN, respectively. With independen
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sampling across alternatives, theEl ’s are positively corre-
lated and by Slepian’s inequality (Tong 1980)

PI (CS)= PI [El for l = 2, 3, . . . , k] ≥
k∏

l=2

PI [El ].

Equality holds fork = 2, and fork > 2 strict inequality
holds. Using the notions defined in Section 3.1, under t
LFC, P[El ] = 8(Qil ), and Qil = Q. Since the critical
constanth ensures E(8k−1(Q)) = P∗, after the constanth

is assigned a numeric value,8(Q) = (P∗)
1

k−1 and P(CS)
≥ P∗.

It is known that in some cases

PC[El for l = 2, 3, . . . , k] <

k∏
l=2

PC[El ].

However,

k∏
l=2

PI [El ] ≤
k∏

l=2

PC[El ],

so the following may still hold

PC[El for l = 2, 3, . . . , k] ≥ PI [El for l = 2, 3, . . . , k].

That is, PC(CS) is still greater than or equal to PI (CS).
However, it has not been proved that PC(CS) is always
larger than or equal to PI (CS).

By the Bonferroni inequality (Law and Kelton 2000)

P(CS)= P[El , for l = 2, 3, . . . , k] ≥ 1 −
k∑

l=2

(1 − P[El ]).

If we find the constanth with

P = (1 − 1 − P∗

k − 1
)k−1,

then the sample sizes will guarantee P[El ] ≥ 1 − (1 −
P∗)/(k − 1) for l = 2, 3, . . . , k. Thus,

∑k
l=2(1− P[El ]) ≤

1 − P∗ and P(CS)≥ P∗. Hence, we can use CRN to
increase P[El ] for l = 2, 3, . . . , k and P(CS) without any
further assumptions. For example, ifk = 10 and we want
to have P(CS)≥ 0.95, we use

P = (1 − 1 − P∗

k − 1
)k−1 = 0.951097

to find the constanth. If h is obtained withP∗ = 0.95
andk = 10, we state that P(CS)≥ 0.948852, i.e., 1− (k −
1)(1 − (P∗)1/(k−1)). Similarly, we can use CRN with the
ETSS and its variants to improve P(CS).
3.6 Sequentializing the Adjusted ETSS Procedure

Chen and Kelton (2003) propose sequentializing the ET
procedure to eliminate the drawback of two-stage proc
dures and to improve its efficiency. Rinott’s procedu
and its variants are based on P(CS)=P[X̄il > X̄i1, for l =
2, 3, . . . , k] ≥ P∗ and P[X̄il > X̄i1] ≥ (P∗)

1
k−1 , for

l = 2, 3, . . . , k. To further improve the efficiency of
sequentialized ETSS procedure they perform all pairwi
comparisons at each iteration. Inferior designsi such that
P[X̄i > X̄ j ] ≥ P1/(k−1) for some designj will be excluded
from further simulation at each iteration.

Since it is computationally intensive to perform a
pairwise comparisons when the number of designs un
consideration is large, users can modify the procedure
perform pairwise comparisons between designi and the best
b designs or when the number of designs under content
has been reduced to a pre-determined number.

The Sequentialized Adjusted ETSS Procedure:
1. Initialize the setI to include allk designs. Simulate

r = n0 replications or batches for each desig
i ∈ I . Set the iteration numberj = 0, andN1, j =
N2, j = . . . = Nk, j = n0, whereNi, j is the sample
size allocated for designi at the j th iteration. Let
X̄i, j denote the sample mean of designi at the j th

iteration.
2. Let X̄b, j = mini∈I X̄i, j . For all i ∈ I , compute

d̂i, j = max(d∗, X̄i, j − U(X̄b, j )), whereU(X̄b, j )

is the upper one-tailedP∗ confidence limit ofµb

at the j th iteration, and compute

δi, j +1 = d((hSi (r ))/d̂i, j )
2 − r )+e.

3. Set j = j + 1 and the incremental sample size a
the j th iterationδ j = mini∈I {δi, j |δi, j > 0}.

4. If i 6= b andδi, j = 0, delete designi from I .
5. Perform all pairwise comparisons and delete inf

rior designi from I .
6. For all i ∈ I , simulate additionalδ j samples and

setr = r + δ j . If there is more than one elemen
(or the pre-determined number of best designs)
I , go to step 2.

7. Return the valuesb and X̄b, whereX̄b = min X̄i ,
1 ≤ i ≤ k andi was not eliminated by all pairwise
comparisons.

In the sequential procedure, all the alternatives 1≤
i ≤ k are included in the setI initially for R&S. If all
k − 1 designs were eliminated fromI through the two-
sample-t test, then P[i1 ∈ I ] ≥ P∗. On the other hand, if
some designs were eliminated fromI because its required
additional sample size at thej th iteration δi, j = 0, then
the procedure can only guarantee P(CS)≥ P∗. We use the
equationS2

i (r ) = (
∑r

j X2
i j /r − X̄2

i (r ))r/(r −1) to compute
the sample variance so that we are only required to store
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Table 1: P̂(CS) for Experiment 1

P∗ = 0.90 P∗ = 0.95
n0 20 30 20 30
P̂(CS) 0.9866 0.9868 0.9956 0.9939
PSC 0.9390 0.9355 0.9674 0.9677
PC2 1.0000 1.0000 1.0000 1.0000
PC3 0.9886 0.9896 0.9941 0.9954
PC4 0.9912 0.9901 0.9953 0.9951
PC5 0.9886 0.9880 0.9942 0.9950
PC6 0.9892 0.9892 0.9957 0.9949
PC7 0.9912 0.9883 0.9931 0.9958
PC8 0.9876 0.9904 0.9948 0.9947
PC9 0.9886 0.9882 0.9945 0.9935
PC10 0.9899 0.9872 0.9948 0.9948

triple (r,
∑r

j =1 Xi j ,
∑r

j X2
i j ), instead of the entire sequenc

(Xi1, Xi2, . . . , Xir ).

4 EMPIRICAL EXPERIMENTS

In this section we present some empirical results obtain
from simulations. Instead of using systems simulation e
amples, which offer less control over the factors that affe
the performance of a procedure, we use various norma
distributed random variables to represent the systems. Si
the MCB CIs and the effects of using CRN with selectio
procedures are well known, we focus on the MCC CIs.

4.1 Experiment 1: Rinott Procedure

There are ten alternative designs under consideration. S
pose Xi j ∼ N (i , 62), i = 1, 2, . . . , 10, whereN (µ, σ 2)

denotes the normal distribution with meanµ and variance
σ 2. We want to select a design with the minimum mea
design 1. The indifference amountd∗ is set to 1.00 for
all cases. We use two different initial replicationsn0 = 20
and 30. Furthermore, 10,000 independent experiments
performed to obtain the proportion of allk − 1 CIs contain
the true value simultaneously; we denote this event as PS

The results of experiment 1 are in Table 1. We list th
observedP̂(CS) (the proportion of the design 1 is selected
PSC, and the proportion of individual CIs that contain th
true value, i.e., PCl = P[µil − µi1 ∈ [0, X̄il − X̄b + d∗]],
for l = 2, 3, . . . , k, which should be greater than or equa

to the nominal value of(P∗)
1

k−1 , i.e., 0.988362 (0.90
1
9 ) and

0.994317 (0.95
1
9 ) for P∗ = 0.90 and 0.95, respectively.

Note that PC1 = P[µi1 − µi1 ∈ [0, X̄i1 − X̄b + d∗]] = 1.
Since Rinott’s procedure is based on the LFC, it

conservative. The observed̂P(CS)’s are all greater than
the nominal values. The proportion of thesek − 1 CIs that
contain the true value is greater thanP∗ even though some
of the proportion of the individual CIs that contain the tru

value is less than(P∗)
1

k−1 . Note that even when the CI
e

-

e

.

Table 2: P̂(CS) for Experiment 2

P∗ = 0.90 P∗ = 0.95
n0 20 30 20 30
P̂(CS) 0.9866 0.9868 0.9956 0.9939
PP2 0.9866 0.9868 0.9956 0.9939
PP3 1.0000 1.0000 1.0000 1.0000
PP4 1.0000 1.0000 1.0000 1.0000
PP5 1.0000 1.0000 1.0000 1.0000
PP6 1.0000 1.0000 1.0000 1.0000
PP7 1.0000 1.0000 1.0000 1.0000
PP8 1.0000 1.0000 1.0000 1.0000
PP9 1.0000 1.0000 1.0000 1.0000
PP10 1.0000 1.0000 1.0000 1.0000

for µi − µi i does not contain the true value, it is becaus
µi − µi1 > X̄i − X̄b + d∗ and we may still havēXi > X̄i1.

4.2 Experiment 2: Adjusted ETSS Procedure

In this experiment, we use the adjusted ETSS proc
dure to perform R&S. All the settings are kept the sam
as in experiment 1. Since the upper confidence lim
maxj 6=i (X̄il − X̄ j +max(dil , dj )) is likely to be large so that
PCl = P[µil −µi1 ∈ [0, maxj 6=i (X̄il − X̄ j +max(dil , dj ))]],
for l = 2, 3, . . . , k will be high, we list the proportion of
individual correct pairwise comparisons with the contro
i.e., PPl = P[X̄il > X̄i1], for l = 2, 3 . . . , k. The results
of experiment 2 are summarized in Table 2. We list th
observedP̂(CS) and PPl for l = 2, 3 . . . , k, which should

be greater than or equal to(P∗)
1

k−1 , i.e., 0.988362 and
0.994317 forP∗ = 0.90 and 0.95, respectively. Note tha
PP1 = P[X̄i1 > X̄i1] = 0.

PPl for l = 3, 4, . . . , 10 are 1.0. Sinceµi2 = µi1 +
d∗ and di2 ≥ d∗, the PP2’s are just below the nomina

value (P∗)
1

k−1 . Furthermore, PP2 and̂P(CS) have the
same values, indicating when the procedure makes a wro
selection, it selects design 2. Even though the sample si
allocated for inferior designs whose sample meansX̄i are far
in excess ofX̄b are smaller relative to Rinott’s procedure, th
adjusted ETSS procedure obtains higher than the specifi
nominal value for MCC. The adjusted ETSS procedure c
significantly improve the efficiency of Rinott’s procedure
when the objective is to select the best design.

4.3 Experiment 3: Sequentialized Adjusted ETSS

In this section, we present some empirical results o
tained from simulations using the Rinott, ETSS, ETSSa

(adjusted ETSS withU(X̄b) being the upper 100P∗% con-
fidence limit), SARS (sequentialized adjusted ETSS with
out multiple comparisons, i.e., step 5 of the algorithm i
Section 3.6 is not performed), and SAMC (SARS wit
multiple comparisons). We considered only the LFC
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Table 3: P̂(CS) and Sample Sizes for Experiment 3

P∗ = 0.90 P∗ = 0.95

Procedure P̂(CS) T P̂(CS) T
Rinott(20) 0.9326 4259 0.9650 5412
ETSS(20) 0.6834 1820 0.7318 2317
ETSSa(20) 0.8735 3347 0.9346 4640
SARS(20) 0.9529 3840 0.9800 5165
SAMC(20) 0.9363 2731 0.9705 3820
Rinott(30) 0.9320 4057 0.9655 5120
ETSS(30) 0.7662 2013 0.8029 2516
ETSSa(30) 0.8976 3326 0.9530 4520
SARS(30) 0.9475 3655 0.9773 4872
SAMC(30) 0.9338 2730 0.9742 3705

µ1 + d∗ = µ2 = . . . = µ10, because the minimum P(CS)
should occur at this configuration,whereµ1 = 0 andd∗ = 1.
The variances areσ 2

i = 62 for i = 1, 2 . . . , k. We com-

pute P̂(CS) of those procedures using two different initia
replicationsn0 = 20 and 30. As discussed in Section 3.5
we suggest usingP instead ofP∗ when finding the critical
constanth. However, since the constanth is listed only for
several commonly used probabilities, ETSS and its varian
useP∗ to approximateP = (1− 1−P∗

k−1 )k−1 when finding the
critical constanth in this experiment. The approximations
are generally close to their true values. For example, wh
k = 10 andP∗ = 0.90, we haveP ≈ 0.904333.

Table 3 lists the results of experiment 3. TheP̂(CS)
columns list the proportion of correct selection. TheT
column lists the average of the number of total simulatio
replications (T = ∑10000

R=1
∑k

i=1 NR,i /10000, andNR,i is the
total number of replications or batches for designi in theRth

independent run) used in each procedure. The Rinott(2
ETSS(20), ETSSa(20), SARS(20), and SAMC(20) rows list
the results of the respective procedure with the initial samp
sizen0 = 20 (and similarly forn0 = 30). Rinott’s procedure
is conservative, but when we encounter the LFC, it is ve
effective. In this setting, i.e., under the LFC and with larg
variances, the observed̂P(CS)’s of the ETSS procedure
are less than the specifiedP∗. We don’t think this is a
major drawback of the ETSS procedure since we rare
encounter the LFC and it may not be too costly to sele
design j whoseµ j is equal to or just greater thanµi1 +d∗.
The conservative adjustment effectively increasesP̂(CS).
Since ETSS and adjusted ETSS take into account sam
means, they have better performance with a larger initi
sample sizes. The sequentialized procedures eliminate
drawback of relying too heavily on information obtained
in just one stage and achieve higherP̂(CS) than do the
two-stage procedures. Among these five procedures tes
SAMC is the most effective in achieving higĥP(CS) with
small sample sizes.
e
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n
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t
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5 CONCLUSIONS

We have provided the statistical analysis of MCC CIs
of each design and the unknown best design and MC
CIs of indifference-zone selection procedures. Rinott’
indifference-zoneselection procedure also guarantees sim
taneous MCC and MCB CIs with half-width corresponding
to the indifference amount. However, if the objective is to
select a good design and not to estimate the difference
sample means, then Rinott’s selection procedure is less d
sirable since these tight CIs come at a cost. The procedur
of Chen and Kelton (2000) and Chen (2002) provide a
effective enhancement to selecting the best design by takin
into account the differences of sample means and can
used when the number of designs under consideration
large. However, the half-width of the CIs for the differences
betweenµi and µi1 is around max(d∗, µi − µi1) instead
of d∗. This approach is consistent with the philosophy o
ordinal comparison (Ho et al. 1992). That is, in our solu-
tion technique we are more interested in whether a give
design is better than the others rather than the accuracy
the performance measures. Furthermore, CRN can be us
with selection procedures to increase P(CS) without an
further assumptions.

To reduce the drawback that two-stage selection proc
dures rely heavily on the first-stage information, we sequen
tialized the adjusted ETSS procedure and incorporated a
pairwise comparisons to eliminate inferior designs at ea
lier iterations to improve the overall computational effort
as well as the probability of correct selection. Since th
sequentialized version of the procedures have much bett
performance, we strongly recommend using the sequentia
ized version instead of two-stage procedures.
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