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cedures; Chen and Kelton (2000) take into account the
difference between sample means, Kim and Nelson (2001)

Two-stage indifference-zone selection procedures have beenpropose using sequentialized selection procedures. For an

widely studied and applied. It is known that most

indifference-zone selection procedures also guarantee mul-

tiple comparisons with the best confidence intervals with
half-width corresponding to the indifference amount. We
provide the statistical analysis of multiple comparisons with
a control confidence interval that bounds the difference be-

tween each design and the unknown best and multiple com-

parisons with the best confidence intervals. The efficiency
of selection procedures can be improved by taking into

overview of earlier methods of R&S see Law and Kel-
ton (2000). Furthermore, it is known that under the same
assumptions of the indifference-zone selection procedures,
most indifference-zone selection procedures also guarantee
multiple comparisons with the best (MCB) confidence inter-
vals (Cls) with half-width corresponding to the indifference
amount; see Section 2.1. We are also interested in how
much better the unknown best is relative to each alterna-
tive. In this paper, we provide the statistical analysis of

consideration the differences of sample means, using the multiple comparisons with a control (MCC) Cls that bound

variance reduction technique of common random numbers,
and using sequentialized selection procedures. An exper-

imental performance evaluation demonstrates the validity
of the confidence intervals and efficiency of sequentialized
selection procedures.

1 INTRODUCTION

When evaluatingk alternative system designs, we would
like to select one as the best and to control the probability
that the selected design really is the best. fetlenote the
expected response of designOur goal is to find the design
with the smallest expected responsé= mini<j<k wi. If

the goal is to select a design with the biggest expected
response, just replace min with max in the above. We
achieve this goal by using a class of ranking and selection
(R&S) procedures. Let CS denote the event of “correct
selection.” In a stochastic simulation, CS can never be
guaranteed with certainty. The probability of CS, denoted

the difference between each design and the unknown best
design as well as MCB Cls. Furthermore, we provide the
rationale of taking into account the difference of sample
means when computing the sample sizes and the effect of
using common random numbers (CRN) with indifference-
zone selection procedures to reduce variances. We then
propose sequentializing Chen’s (2002) adjusted ETSS (en-
hanced two-stage selection) procedure to improve P(CS)
and efficiency of R&S procedures.

The rest of this paper is organized as follows. In
Section 2, we provide the background of indifference zone
and Rinott’s selection procedure. In Section 3, we present
our analysis of MCC and MCB Cls as well as techniques
to improve the efficiency of two-stage selection procedures.
In Section 4, we show our empirical-experimental results.
In Section 5, we give concluding remarks.

2 BACKGROUND

by P(CS), becomes higher as sample sizes become larger.First, some notation:

Most indifference-zone selection procedures are directly
or indirectly developed based on Dudewicz and Dalal's
(1975) or Rinott’'s (1978) indifference-zone selection pro-
cedures and efficiency is still a key concern for application
of simulation to R&S problems. There are several new
approaches aiming to improve the efficency of R&S pro-
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Xij : the observation from th¢'h replication or batch
of theith design,

Ni: the number of replications or batches for design

ui: the expected performance measure for design
i.e., ui = E(Xij),



Chen and Kelton

Xi(r): the sample mean performance measure for de- fori = 1,2, ..., k are computed. Based on the number of
signi with r samples, i.e.zrj —1 Xij /T, initial replications or batcherg and the sample variance
)_(i: the final Samp|e mean performance measure for Sz(no) obtained from the first Stage,the number of additional

designi, i-e-yZJNi:l Xij /Ni, simulation replications or batches for each design in the

) second stage i8l; — ng, where
aiz: the variance of the observed performance measure 9 ! 0

of designi from one replication or batch, i.e.,
Uiz = Var(Xjj),
ﬁz(Ni): the sample variance of desigmwith N; repli-

Ni = max(ng, [(hS(ng)/d*)?]), fori =1,....k (1)

where [Z] is the smallest integer that is greater than or

cations or batches, i.e§F(Ni) = ZJN':l(Xij - equal to the real number andh (which depends ok, P*,
Xi)2/(N; —1). andnp) is a constant that solves Rinott’s (1978) integial (
can be found from the tables in Wilcox (1984), or can be
2.1 Indifference-Zone Selection Procedures calculated by the FORTRAN prograrmott in Bechhofer
et al. (1995)). We then compute the overall sample means
Let i, be thelt smallest of theu;’s, so thatui, < ui, < Xi = )4 Xij /Ni, and select the design with the smallest

-+ = Wig. Our goal is to select a design with the smallest  x. 55 the best one. Basically, the computing budget is
expected responge, . However, in practice if the difference  5cated proportionally to the estimated sample variances.

betweery.i, and i, is very small, we might not care if we  nigreover, the derivation of this procedure is based on the
mistakenly choose design, whose expected response is  |aast favorable configuratiofLFC, i.e., assumings, =

Wi,. The “practically significant” diﬁerencd*_(a positive wi, +d* foralll =2 3,...,k). However, in reality, we
real number) between the best and a satisfactory design rarely encounter the LFC, so this procedure is conservative.

is called the indifference zone in the statistical literature, That'is. it generally allocates more samples than needed in
and it represents the smallest difference that we care about. 5 qer to reach the desired correct-selection guarantees.

Therefore, we want a procedure that avoids making a large Nelson and Matejcik (1995) show that most

number of replications or batches to resolve differences i, jifference-zone procedures not only guarantee a prob-
less thand™. Trat is, we want P(CSy P* provided thft ability of correct selection, but they also guarantee MCB ClI
Wiz — piy = d*, where the minimal CS probabilit coverage probability of at least* with the half-width of the
and the “indifference” amourd* are both specified by the ¢ corresponding to the indifference amoutit under the

user. That means we want to select a systesuch that same assumptions for indifference-zone procedures. That
wi — pi; < d*. Some literature refers to this event as

the probability of good selection (P(GS)) and use P(CS)
to indicate the event in which we select systemIn this
paper, we do not distinguish between the two and use P(CS)
to indicate the event that we select a good design.

Plui —minj 4 pj €
[(X; — MiN;j i )_(j —d"~, (X — min; )_(j +dHT],

One way to look at the indifference amount is that fori =1,2,...,k] > P*,
indifference-zone procedures need to rank the designs with
a desired confidence when their performance measures differwhere (x)~ = min(0, x) and (x)* = max(0, x). These
by more thard*. More specifically, if desigrj hasuj < confidence intervals bound the difference between each

ui, +d*, then indifference-zone procedures do not guarantee design and the best of the others.
the order of these designs with a desired confidence. On the

other hand, ifiej > i, +d*, indifference-zone procedures 3 ~ STATISTICAL ANALYSIS

do guarantee the order of these designs with a desired

confidence. In this section we examine the relationship between the
sample-size allocation strategy of Rinott’s indifference-zone
2.2 The Two-Stage Rinott Procedure selection procedure and the CI half-width and provide tech-

niques to improve the efficiency of R&S procedures.
The two-stage procedure of Rinott (1978) has been widely

studied and applied. Lety be the number of initial repli- 3.1 Multiple Comparisons with a Control
cations or batches. The first-stage sample me&riag),
and marginal sample variances Multiple comparisons with a control (with design as
the control) provides simultaneous Cls for the parameters
No (Xij — Xi(ng))2 Wi —uig, forl = 2,3, ..., k. These Cls bound the difference

Fno) =Y

j=1

no— 1 , between the performance of each design and deésigiith
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a prespecified confidence level. The probability of correct
selection is estimated by

P(CS) P[Xi, < Xj,, forl =2,3,...,Kk]

)-<i1 - ()-<i| - d*) <
[o2 /Ny + o2 /Niy

d , forl =2,3,..., K]

[o2 /Ny + o2 /Niy

= P

Let
— )_<i1 - ()_<i| - d*)

v Ui|2/Ni| + Uii/Nil

h
Jot /SO + 02/

Zj,

and

Qi = =23, ...,k

SinceN; > (h/d*)2S2(r) for all i,

d*
>Qjforl =23,....k. (2)
VT Ny + 0 /Ny
Moreover, the variable¥; = (ng — 1)S*(no) /o2, for i =
1,2, ..., kare independent? variables wittng— 1 degrees
of freedom, so the variable®;,, for| =2,3,...,k, have

the same distribution. Le®(x) be the cdf (cumulative
distribution function) of the standard normal distribution
andQj, = Q, forl =2,3,...,k. Then, under the LFC,

P(CS)> PIZ, < Q.1 =2,3,..., k] = E(@* Q).

The first inequality follows from (2) and the second inequal-
ity follows from Slepian’s inequality (Tong 1980) sinZg 's

are positively correlated. In Rinott’s procedure, the crit-
ical valueh is computed such that(@kfl(Q)) = P*,
Furthermore, (2) can be rewritten as

d* > Q\/0?/Ny + 0 /Nj; forl =2,3,.... k. (3)
When testing the null hypothesisoH i, < wi,, the
test statistic that will be used to make a decision whether
or not to reject the null hypothesis is

Xi, — Xi,

UXH *Xil

zZ =

where o2 «_ Is the variance of the valueX — Xi,.

i A

Let z;_, denote the 1 « quantile of the standard normal
458

distribution. We reject the null hypothesis onlyzit- z;_,,
or similarly

Xij = Xiy > 21005, _x, = Wi,

wherew;, is the one-tailed £ « Cl half width. By definition,

wj, ensures Rui, —ui; > Xi, —Xi; —wj,] > 1—a. Moreover,

for us to conclude with confidence-l« thatuj, > ui, the

lower endpoint of the one-tailed-1« Cl must be positive,

i.e., Xi — Xi, —wj, > 0. For details on the duality of

confidence intervals and hypothesis tests see Rice (1995).
By symmetry of the normal distribution,

P[(Xh - Xil) + wi = uj — Mil] >1-o. (4)
The simultaneous one-taild* Cls half-width, with design
i1 as a control, is

wiy = 202 /Ny + o2 /Niy,

wherez, is a critical value such that @ 1(z,)) = P*.
To achieve

P[)_(iI — )_(il >0]>1—q,

the sample sizelN; should be large enough so that—pi; >
wj,. Note that the half-widthw;, depends on the sample
sizes.
Since Q = z, it follows from (3) that under the LFC
the sample sizes determined by Rinott's procedure guarantee

d* > wj forl =2,3,...,k
Consequently,

Plui — wiy € [Xi — Xiy —d*, 00] fori #i1] > P*,

Plui — iy € [—00, Xi — Xiy +d*] fori #i1] > P*,

and

Plui — pip € [Xi — Xi; —d*, Xj — Xi; +d*] fori #i1]
> 2P* — 1.

Let the setl = {1,2,...,k} includes allk designs
under consideration. Singej, — ui, (= 0) is within the
above three Cls with probability 1 and — i, > 0 for all
i, we have the following result.

Theorem 1 Under the same assumptions for
indifference-zone procedures, the sample sizes determined
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by Rinott's indifference-zone selection procedure also guar-
antee with high confidence that
1. The simultaneous lower one-tailed confidence in-
tervals,

Plui — piy € [(Xi — Xj, —d*)*, 00, Vi] > P*,

2. The simultaneous upper one-tailed confidence in-
tervals,
Plui — wi, € [0, Xi — Xiy +d*],Vi] > P*.
3. The simultaneous two-tailed confidence intervals,

Plui — iy € [(Xi — Xip —dH1, X — X, +d*],

Vi] > 2P* — 1.

Furthermore, X, < Xi;, where X, = mini¢j X.
Therefore,

Plui — piy € [(Xi — Xiy, —d*)T, 00]] >
Plui — piy € [(Xj — Xp — d*)*, o0]]
and
Plui — iy €10, Xj — Xi; +d*]] <
Plui — wi, € [0, Xi — Xp + d*]].

In practice we do not know which design is the true best
and can substitute the sample mean of the unknown best
with the best sample mean to construct upper one-tailed
Cls.

We, therefore, have the following result.

Theorem 2 Under the same assumptions for
indifference-zone procedures, the sample sizes determined
by Rinott's indifference-zone selection procedure also guar-
antee with high confidence that the difference between each
design and the unknown best is bounded by the difference

between the sample mean of each design and the best sample

mean plus the indifference amount. That is,
Plui — iy € [0, Xi — Xp +d*], Vi] = P*,

where Xp = minie; X;.
Sinceb € |, Theorem 2 implies

Plib — iip € [0, Xp — Xp + d*]] > P*i.e,
Plub — pi; < d*]1> P*.

Once the procedure has selected the debigthe event
wp — pi; < d* is either true or false. However, if we try
this selection procedure many times (approaching infinite),
the frequency of the event is true will be greater than
or equal toP*. In words, the selected desidnwill be
within d* of the best design with high confidence, as the
indifference-zone R&S procedures advertised.
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3.2 Multiple Comparisons with the Best

Multiple comparisons with the best provides simultaneous
Cls for the parametepj — minj4 nj, i = 1,2,... k.
These Cls bound the difference between the performance
of each design and the best of the others with a prespecified
confidence level. We follow the discussion of Nakayama
(1997) to construct MCB intervals. Define the events

E = {ui — pi, <X — Xi, +d*, Vi #i1},
EL = {ui —mingj > (X —minXj —d" ™, Vi},
L {1 j#i:uj_(l A j ) }

Eu = {ui —minp; < (X —minX;i +d*T,Vi},
{1 j#iﬂj (X i j ) }

Et = {wi —minj4 uj € [(Xj —minj4 Xj —d*)~, (X; —
min;j i Xj +d*)*], vi}.

Note that E is the event that the upper one-tailed
confidence intervals for multiple comparison with a control,
with the control being desigiy, contain all of the true
differenceui — ui,. From the second item of Theorem 1
in Section 3.1, we know that[E] > P*. Now following
an argument developed by Edwards and Hsu (1983), we
have thatE c E_ N Ey, which will establish the result
P(ET] > P*.

First we prove thatE C E|:

E C {wmip—uj =Xy —Xj—d*Vj £i1}
C {uiy — sip = Xip = Xj —d*, Vj #i1}
C{mi — pip = (Xi — rjn7i£|in>_<j —d*)", vi}
C {wi —miny; Z(Xi—m;ién)_(j—d*)_,‘v’i},
j #i

j#

where the second step follows singg — wi, > wi; — K]
for all j # i, and the third step follows singg — i, > 0
foralli #i1 and(x)™ < 0.

Now we showE C Ey.

E C {Mi—Milfxi—m;ién)_(j"‘d*aVi7“1}
j#i

C {ui— minp; < (Xi _T;?Xj +d*)*,vi},

where the first step follows since mig X; < X;, for all

i # i1 and the last step follows singg, —min;jj, uj <0

and (x)T > 0. Hence,E c E_ N Ey, and the proof is
complete. These MCB Cls are the same as those established
in Nelson and Matejcik (1995).
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that contains the best design. Inferior designs are excluded
from further simulation to reduce the overall computational
efforts. Chen (2001) shows that the ETSS procedure has an
intrinsic subset pre-selection built-in, so a separate subset
pre-selection process is not needed.

3.3 The Adjusted ETSS Procedure

It is informative that Rinott’s selection procedure also guar-
antees MCB Cls with half-width corresponding to the in-
difference amount, but these Cls come at a cost. If the
objective is to select the best design instead of estimat-
ing the difference of sample means, then the sample sizes 3.4 Multiple Comparison Confidence Intervals

only need to be large enough so that the half-widths are of the Adjusted ETSS

smaller than the differences between means; see (4). Chen

and Kelton (2000) propose the ETSS procedure that takes Using the same reasoning in Sections 3.1 and 3.2, multiple
into account not only the sample variances, but also the comparison Cls can also be constructed with the outcomes
difference between the sample means across designs. Theofthe adjusted enhanced two-stage selection procedure. The

sample-size allocation strategy of the ETSS procedure is simultaneous upper one-tailed confidence intervals,
similar to that of Chen et al. (2000), who show that with a
fixed computational budget the probability of selecting the
best design can be asymptotically maximized when the allo-

cated sample sizes satisfy certain ratios. Chen (2002) refines

Plui — wiy € [0, Xi — Xiy + wij,], Vil > P*.

Theorem 3  Under the same assumptions for

the ETSS procedure by adding a conservative adjustment indifference-zone procedures, the sample sizes determined

to increase P(CS). . )
Let Xp(no) = mink_; Xi(no), U (Xp(no)) be the upper
one-tailedP* confidence limit ofup, and

di = max(d*, X; — U (Xp(no))).
The adjusted ETSS procedure computes the number of
required simulation replications or batches for each design
based on the following formula
Ni = max(no, [(hS(no)/d)?), fori =1,....k. (5)

The Adjusted ETSS Algorithm:

1. Simulateng replications.

2. For each design compute the needed number of
additional replicationsN; — ng. Here N; will be
computed according to (5).

3. SimulateN; — ng additional replications for each
designi.

4. Return the values and X, where Xp =
mink_; Xi.

The difference between (5) and (1) is that is being
used instead ofi*. The differences between the sample
means are embeddeddn consequently, this procedure will
allocate fewer replications or batches to the less promising
designi, whose sample meaX; are far in excess oKp,.

Let wip denote the one—tailetrjP*)lel Cl half-with of

wui — up. Following the discussion of Section 3.1, the

by the adjusted enhanced two-stage selection procedure also
guarantee with high confidence that

Plui — i, € [0, rJn;ZIiX()_(i — Xj +wi )T vil > P~

Theorem 4  Under the same assumptions for
indifference-zone procedures, the sample sizes determined
by the adjusted enhanced two-stage selection procedure also
guarantee with high confidence that multiple comparisons
with the best confidence interval coverage probability will
be at leastP* with the half-width of the confidence in-
terval corresponding to the difference between the sample
means. That is, i — minj 4 p1j € [maxj (X — Xj —
wi )7, man#()_(i — )_(j + wiyj)+],‘v’i] > P*.

Since the sample sizes should be large enough to ensure
wip < d;, the sample sizes should also be large enough to
ensurew;j j < max(di, dj). Hence, the CI half-widthw; j
in Theorems 3 and 4 can be approximated by (dax;).
Furthermore, ifd; = d* for all i, i.e., under the LFC, then
the MCC (withi as the control) equation in Theorem 3 can
be simplified to Bui — ui; € [0, Xi — Xp +d*],Vi] > P*
and the MCB equation in Theorem 4 can be simplified
0 Plpi —minj# pj € [(Xj —minjz Xj —d*)7, (Xj —
minj i Xj +d*)*], vi] > P*.

3.5 Using Common Random Numbers

We can use common random numbers to improve P(CS)

sample sizes determined by the adjusted ETSS procedureythout any further assumptions. Lej(€S) denote the

should guarantee

di > wip Vi.

probability of correct selection with independent sam-
pling, Pc(CS) denote P(CS) with CRN, ever, for
I =2,3,...,k denoteX; — Xj; > 0, and let P(E|) and

Subset pre-selection is a screening device that attempts Pc (E|) denote the probability of ever; with independent

to improve the efficiency of the selection procedures by
selecting a (random-size) subset of khalternative designs
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sampling and with CRN, respectively. With independent
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sampling across alternatives, thg's are positively corre-
lated and by Slepian’s inequality (Tong 1980)

k
P/ (CS)=P[E forl =2,3,...,k] > HP| [E].
=2

Equality holds fork = 2, and fork > 2 strict inequality
holds. Using the notions defined in Section 3.1, under the
LFC, HE] = ®(Q;j), and Q;, = Q. Since the critical
constanh ensures Eb*1(Q)) = P*, after the constartt

is assigned a numeric valué,(Q) = (P*)lel and P(CS)
> P,
It is known that in some cases

k
PclEi forl =2,3,....k] < [ PcIEil.
=2

However,

k k
[[PiE] < []PclEN,
1=2 1=2

so the following may still hold
Pc[E forl =2,3,...,k]>P/[E forl =2,3,...,K].

That is, R(CS) is still greater than or equal tg (€S).
However, it has not been proved that(ES) is always
larger than or equal to|RCS).

By the Bonferroniinequality (Law and Kelton 2000)

k
P(CS)=PE|, for| =2.3,....k] > 1— ) (1-PIE]).
1=2

If we find the constanh with

1-P* 4
P=(1-
( k—l)

’

then the sample sizes will guarantegER > 1 — (1 —
P*)/(k—1) forl =2,3,... k. Thus,Y [ _»(1—P[E]) <
1— P* and P(CS)> P*. Hence, we can use CRN to
increase PE/] forl = 2,3,...,k and P(CS) without any
further assumptions. For example kit= 10 and we want
to have P(CS)}> 0.95, we use

1—p*

k—1
= 0.951097
k—1 )

P=@1-
to find the constanh. If h is obtained withP* = 0.95
andk = 10, we state that P(CS) 0.948852, i.e., - (k —
11— (PHY&D) Similarly, we can use CRN with the
ETSS and its variants to improve P(CS).
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3.6 Sequentializing the Adjusted ETSS Procedure

Chen and Kelton (2003) propose sequentializing the ETSS
procedure to eliminate the drawback of two-stage proce-
dures and to improve its efficiency. Rinott’s procedure
and its variants are based on P(C%P > Xi,, for | =
2.3,...,kl = P* and RX; > Xi,] = (PH)¥k1, for

Il = 2,3,...,k. To further improve the efficiency of
sequentialized ETSS procedure they perform all pairwise
comparisons at each iteration. Inferior desigrsich that
P[Xi > Xj] > PY&=D for some desigrj will be excluded
from further simulation at each iteration.

Since it is computationally intensive to perform all
pairwise comparisons when the number of designs under
consideration is large, users can modify the procedure to
perform pairwise comparisons between designd the best
b designs or when the number of designs under contention
has been reduced to a pre-determined number.

The Sequentialized Adjusted ETSS Procedure

1. Initialize the set toinclude alk designs. Simulate

r = ng replications or batches for each design
i e |. Setthe iteration numbgr= 0, andNg j =
N2,j =...= Nk j = ng, whereN; j is the sample
size allocated for designat the j " iteration. Let
Xi,j denote the sample mean of desigat the j'"
iteration.

2. Let Xpj = mini¢; X j. For alli € |, compute

dij = maxd*, Xij — U(Xp,j)), whereU (Xpj)
is the upper one-taile®* confidence limit ofuyp
at the j 1" iteration, and compute

8ij+1=[((hST))/di )% -t

3. Setj = j + 1 and the incremental sample size at
the jt" iteration§; = mini¢; {5i j8ij > O}.
4. Ifi #bandsjj =0, delete design from 1.
5. Perform all pairwise comparisons and delete infe-
rior designi from | .
6. For alli € I, simulate additionab; samples and
setr =r 4 §j. If there is more than one element
(or the pre-determined number of best designs) in
|, go to step 2.
7. Return the valueb and Xp, where Xy, = min X,
1 <i < kandi was not eliminated by all pairwise
comparisons.
In the sequential procedure, all the alternatives: 1
i < k are included in the set initially for R&S. If all
k — 1 designs were eliminated frorh through the two-
samplet test, then B1 € |] > P*. On the other hand, if
some designs were eliminated frambecause its required
additional sample size at thg" iteration i,j = 0, then
the procedure can only guarantee P(GSP*. We use the
equation§’(r) = (3 Xizj /1 —X2(r))r/(r —1) to compute
the sample variance so that we are only required to store the
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Table 1: P(CS) for Experiment 1 Table 2: P(CS) for Experiment 2
P* =0.90 P* =0.95 P* =0.90 P* =0.95

No 20 30 20 30 No 20 30 20 30

IS(CS) 0.9866 0.9868 0.9956 0.9939 IS(CS) 0.9866 0.9868 0.9956 0.9939
PSC 0.9390 0.9355 0.9674 0.9677 PP2 0.9866 0.9868 0.9956 0.9939
PC2 1.0000 1.0000 1.0000 1.0000 PP3 1.0000 1.0000 1.0000 1.0000
PC3 0.9886 0.9896 0.9941 0.9954 PP4 1.0000 1.0000 1.0000 1.0000
PC4 0.9912 0.9901 0.9953 0.9951 PP5 1.0000 1.0000 1.0000 1.0000
PC5 0.9886 0.9880 0.9942 0.9950 PP6 1.0000 1.0000 1.0000 1.0000
PC6 0.9892 0.9892 0.9957 0.9949 PP7 1.0000 1.0000 1.0000 1.0000
PC7 0.9912 0.9883 0.9931 0.9958 PP8 1.0000 1.0000 1.0000 1.0000
PC8 0.9876 0.9904 0.9948 0.9947 PP9 1.0000 1.0000 1.0000 1.0000
PC9 0.9886 0.9882 0.9945 0.9935 PP10 1.0000 1.0000 1.0000 1.0000

PC10 0.9899 0.9872 0.9948 0.9948

for ui — wi; does not contain the true value, it is because
triple (r, Zgzl Xij , er Xﬁ ), instead of the entire sequence  ui — i, > Xi — Xp +d* and we may still haveX; > X;,.
(Xi1, Xj2, ..., Xir).

4.2 Experiment 2: Adjusted ETSS Procedure
4 EMPIRICAL EXPERIMENTS

In this experiment, we use the adjusted ETSS proce-
In this section we present some empirical results obtained dure to perform R&S. All the settings are kept the same
from simulations. Instead of using systems simulation ex- as in experiment 1. Since the upper confidence limit
amples, which offer less control over the factors that affect max;i (X, — Xj +maxdi, dj)) is likely to be large so that
the performance of a procedure, we use various normally PQ = P[uj, —pui; € [0, max i (>_(iI —)-(j +max(d; , dj))H11,
distributed random variables to represent the systems. Sincefor | = 2,3, ..., k will be high, we list the proportion of
the MCB Cls and the effects of using CRN with selection individual correct pairwise comparisons with the control,
procedures are well known, we focus on the MCC Cls. i.e., PP = P[>_(iI > Xil], forl = 2,3...,k. The results

of experiment 2 are summarized in Table 2. We list the
4.1 Experiment 1. Rinott Procedure observedls(CS) and PPfor| =2,3...,k, which should

be greater than or equal t(P*)kf*l, i.e., 0.988362 and
There are ten alternative designs under consideration. Sup-0.994317 forP* = 0.90 and 0.95, respectively. Note that
pose Xij ~ N(i,6%), i = 1,2,...,10, whereN (i, 0?) PP1 = BX;, > Xi,] = 0.
denotes the normal distribution with meanand variance PR for | = 3,4,...,10 are 10. Sinceui, = ui, +
o?. We want to select a design with the minimum mean: g* and di, > d*, the PP2’s are just below the nominal

dﬁSIQn L V':'/he md}:fferzpfcf:e angtqfl IS SI.Gt tto 103 f20(; value (P*)kf_l. Furthermore, PP2 an®(CS) have the
a (;:a:\gsbes'.: tehuse wo 1(') gg%n. '3' a rzp I(t:a oS = i same values, indicating when the procedure makes a wrong
an - rurthermore, 19, indepenaent experiments areselection, it selects design 2. Even though the sample sizes

fherftormed lto Ot_)ta'rllt the prolg)grtlondof ekil—ti_CIs co?talnPSC allocated for inferior designs whose sample mexénare far
€ true valueé simultan€ously; we denote this event as “in excess oKy, are smaller relative to Rinott’s procedure, the

b Thedrgsggs ct);: expenmﬁnt l]?trr? "; Ta}blell: Wel “stt tge adjusted ETSS procedure obtains higher than the specified
observed>(CS) (the proportion of the design 1 is selected), nominal value for MCC. The adjusted ETSS procedure can

PSC, and the proportion of individual Cls that contain the significantly improve the efficiency of Rinott's procedure

true value, i.e., PC= P[ui, — pi, € [0, X, — Xp + d*]], S ;
forl =2,3,...,k, which should be greater than or equal when the objective is to select the best design.

1

to the nominal value ofP*)%1, i.e., 0.988362 (®05) and 4.3 Experiment 3: Sequentialized Adjusted ETSS
0.994317 (M5d) for P* = 0.90 and 0.95, respectively.
Note that PC1 = Fui; — ui; € [0, Xiy — Xp +d*]] = 1. In this section, we present some empirical results ob-

Since Rinott's procedure is based on the LFC, it is tained from simulations using the Rinott, ETSS, EZSS
conservative. The observe@d(CS)'s are all greater than  (adjusted ETSS withJ (Xp) being the upper 108*% con-
the nominal values. The proportion of thdse 1 Cls that fidence limit), SARS (sequentialized adjusted ETSS with-
contain the true value is greater thRf even though some  out multiple comparisons, i.e., step 5 of the algorithm in
of the proportion of the individual Cls that contain the true  Section 3.6 is not performed), and SAMC (SARS with
value is less thaiP*)®1. Note that even when the CI  multiple comparisons). We considered only the LFC,
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Table 3: I5(CS) and Sample Sizes for Experiment 3

P* =0.90 P* =0.95
Procedure P(CS) T P(CS) T
Rinott(20) 0.9326 4259 0.9650 5412
ETSS(20) 0.6834 1820 0.7318 2317
ETSS(20) 0.8735 3347 0.9346 4640
SARS(20) 0.9529 3840 0.9800 5165
SAMC(20) 0.9363 2731 0.9705 3820
Rinott(30) 0.9320 4057 0.9655 5120
ETSS(30) 0.7662 2013 0.8029 2516
ETSS(30) 0.8976 3326 0.9530 4520
SARS(30) 0.9475 3655 0.9773 4872
SAMC(30) 0.9338 2730 0.9742 3705
u1+d* = u2 = ... = u1o, because the minimum P(CS)
should occur at this configuration, where = 0 andd™ = 1.
The variances are? = 62 for i = 1,2...,k. We com-

pute P(CS) of those procedures using two different initial
replicationsng = 20 and 30. As discussed in Section 3.5,
we suggest usin@ instead ofP* when finding the critical
constanh. However, since the constants listed only for
several commonly used probabilities, ETSS and its variants
useP* to approximaté® = (1— 1=2-)*~1 when finding the
critical constant in this experiment. The approximations
are generally close to their true values. For example, when
k =10 andP* = 0.90, we haveP ~ 0.904333.

Table 3 lists the results of experiment 3. TﬁéCS)
columns list the proportion of correct selection. The
column lists the average of the number of total simulation
replicationsT = Y 120905k ' Ng /10000, and\r; isthe
total number of replications or batches for desigmthe Rt
independent run) used in each procedure. The Rinott(20),
ETSS(20), ETSE20), SARS(20), and SAMC(20) rows list
the results of the respective procedure with the initial sample
sizeng = 20 (and similarly fong = 30). Rinott's procedure
is conservative, but when we encounter the LFC, it is very
effective. In this setting, i.e., under the LFC and with large
variances, the observelé(CS)’s of the ETSS procedure
are less than the specifidd*. We don't think this is a
major drawback of the ETSS procedure since we rarely
encounter the LFC and it may not be too costly to select
designj whosey j is equal to or just greater than, + d*.

The conservative adjustment effectively increa$¥€s).
Since ETSS and adjusted ETSS take into account sample
means, they have better performance with a larger initial
sample sizes. The sequentialized procedures eliminate the
drawback of relying too heavily on information obtained
in just one stage and achieve high@(CS) than do the
two-stage procedures. Among these five procedures tested,
SAMC is the most effective in achieving high(CS) with
small sample sizes.
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5 CONCLUSIONS

We have provided the statistical analysis of MCC Cls
of each design and the unknown best design and MCB
Cls of indifference-zone selection procedures. Rinott’s
indifference-zone selection procedure also guarantees simul-
taneous MCC and MCB Cls with half-width corresponding
to the indifference amount. However, if the objective is to
select a good design and not to estimate the difference of
sample means, then Rinott’'s selection procedure is less de-
sirable since these tight Cls come at a cost. The procedures
of Chen and Kelton (2000) and Chen (2002) provide an
effective enhancement to selecting the best design by taking
into account the differences of sample means and can be
used when the number of designs under consideration is
large. However, the half-width of the Cls for the differences
betweenu; and pj, is around magd*, uj — ui,) instead

of d*. This approach is consistent with the philosophy of
ordinal comparison (Ho et al. 1992). That is, in our solu-
tion technique we are more interested in whether a given
design is better than the others rather than the accuracy of
the performance measures. Furthermore, CRN can be used
with selection procedures to increase P(CS) without any
further assumptions.

To reduce the drawback that two-stage selection proce-
dures rely heavily on the first-stage information, we sequen-
tialized the adjusted ETSS procedure and incorporated all
pairwise comparisons to eliminate inferior designs at ear-
lier iterations to improve the overall computational effort
as well as the probability of correct selection. Since the
sequentialized version of the procedures have much better
performance, we strongly recommend using the sequential-
ized version instead of two-stage procedures.
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