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ABSTRACT 

Simulation is a popular tool for decision making.  How-
ever, simulation efficiency is still a big concern particu-
larly when multiple system designs must be simulated in 
order to find a best design.  Simulation run allocation has 
emerged as an important research topic for simulation effi-
ciency improvement.  By allocating simulation runs in a 
more intelligent way, the total simulation time can be dra-
matically reduced.  In this paper we develop a new simula-
tion run allocation scheme. We compare the new approach 
with several different approaches.  One benchmark ap-
proach assumes that the means and variances for all de-
signs are known so that the theoretically optimal allocation 
can be found.  It is interesting to observe that an approxi-
mation approach called OCBA does better than this theo-
retically optimal allocation.  Moreover, a randomized ver-
sion of OCBA may outperform OCBA in some cases. 

1 INTRODUCTION 

Simulation is a popular tool for analyzing systems and 
evaluating decision problems since real situations rarely 
satisfy the assumptions of analytical models. While simula-
tion has many advantages for modeling complex systems, 
efficiency is still a significant concern when conducting 
simulation experiments (Law and Kelton 2000). To obtain 
a good statistical estimate for a design decision, a large 
number of simulation samples or replications is usually re-
quired for each design alternative. If the accuracy require-
ment is high, and if the total number of designs in a deci-
sion problem is large, then the total simulation cost can 
easily become prohibitively high. 
 The problem we consider is that of selecting the best 
design among a finite number of choices, where the per-
formance of each design must be estimated with some un-
certainty, specifically through stochastic sampling. The 
primary context is that of simulation, where the goal would 
be to determine the best allocation of simulation replica-
 
tions among competing designs. This problem setting falls 
under the well-established branch of statistics known as 
ranking and selection and/or multiple comparison proce-
dures. In the context of simulation, Goldsman and Nelson 
(1998) provide a nice overview of this field.  The ranking 
and selection algorithms determine the number of simula-
tion replications required for each design in order to guar-
antee a pre-specified level of correct selection, whereas 
multiple comparison procedures provide confidence inter-
vals on estimated performance differences between sys-
tems. More recently, Chen et al. (1997, 2000) and Chick 
and Inoue (2001ab) have approached the problem from the 
perspective of allocating a fixed number of simulation rep-
lications in order to maximize the probability of correct se-
lection.  Chen has called this optimal computing budget al-
location (OCBA). 
 Intuitively, to ensure a high probability of correctly 
selecting a good design (the so-called probability of correct 
selection, P{CS}), a larger portion of the computing 
budget should be allocated to those designs that are critical 
in the process of identifying good designs. In other words, 
a larger number of simulations must be conducted with 
those critical designs in order to reduce estimator variance. 
On the other hand, limited computational effort should be 
expended on non-critical designs that have little effect on 
identifying the good designs even if they have large vari-
ances. Overall simulation efficiency is improved as less 
computational effort is spent on simulating non-critical de-
signs and more is spent on critical designs. Ideally, one 
would like to allocate simulation runs to designs in a way 
that maximizes P{CS} within a given computing budget.  
However, solving such an optimal run allocation problem 
is a big challenge because i) there is no closed-form ex-
pression for P{CS}; ii) P{CS} is a function of the means 
and variances of all designs which are unknown; and iii) a 
solution should be found efficiently. Otherwise the benefit 
of efficient run allocation will be lost. 
 In this paper, we develop a new approach based on 
OCBA. We also compare this new approach with a few 
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different approaches including the theoretically optimal al-
location, equal allocation, a Rinott-type approach (1978), 
and OCBA given by Chen et al. (2000).  The theoretically 
optimal allocation, which serves as a benchmark for com-
parison, assumes that the means and variances for all de-
signs are known so that the optimal allocation for maxi-
mizing P{CS} can be found.  It is interesting to observe 
that OCBA and the newly developed approach perform 
better than the theoretically optimal allocation. 
 The paper is organized as follows: In the next section, 
we define the notation and the simulation run allocation 
problem. Section 3 presents our new simulation run alloca-
tion approach. Section 4 gives a brief description for all 
other approaches we are comparing in the paper.  Numeri-
cal experiments are given in Section 5.  Section 6 con-
cludes the paper. 

2 PROBLEM STATEMENT 

Our goal is to select a design associated with the smallest 
mean performance measure among k alternative designs 
with unequal and possibly unknown variances. We con-
sider terminating (finite-horizon) simulations in this paper. 
(Our approach is equally applicable to steady-state simula-
tions where we need N approximately independent samples 
rather than N independent simulation replications. In that 
case, the batch means method can be applied to approxi-
mate the independence of the samples.)  We further assume 
that the simulation output is independent from replication 
to replication. The sampling across designs is also inde-
pendent. Suppose that the computing budget is limited. 
Denote by 
 Xij: the j-th independent and identically distributed 

(i.i.d.) sample of the performance measure from 
design i. To simplify the illustration, Xij is as-
sumed to be normally distributed in this paper. 

 Ni : the number of simulation runs for design i, 
 iX :  the sample average of the simulation output for 

design i; iX  = ∑
=

iN

jiN 1

1 Xij, 

 : the sample variance of the simulation output for 
design i, 

2
iS

 µi: the unknown mean performance measure; µi = 
E[Xij], 

   : the variance for design i, i.e.,  = Var (X2
iσ 2

iσ ij). In 

practice,  is unknown beforehand and so is ap-
proximated by sample variance. 

2
iσ

 b: the design with the smallest sample mean per-
formance; b = arg {

i
min iX }. 

 δb,i  ≡ bX  - iX . 
 While the design with the smallest sample mean (de-
sign b) is usually selected, design b is not necessarily the 
one with the smallest unknown mean performance. Correct 
selection (CS) is therefore defined as the event that design 
b is actually the best design (i.e., with the smallest popula-
tion mean, hence the true best design). In this paper, we 
wish to maximize the probability of correctly identifying 
the true best design, P{CS}, with a given computing 
budget T. Assume that the computation cost for each run is 
roughly the same across different designs. The computa-
tion cost can then be approximated by N1 + N2 + ⋅⋅⋅ + Nk, 
the total number of runs. In the numerical experiments 
given in Section 4, we will compare the probability of cor-
rect selection P{CS} that each procedure can obtain with a 
given computing budget. The achieved P{CS} serves as a 
measure of the effectiveness for each approach.  

3 A NEW COMPUTING BUDGET  
ALLOCATION APPROACH 

In this section, we present a new computing budget alloca-
tion scheme called Randomized OCBA (ROCBA). This is 
developed based on the OCBA algorithm due to Chen et al. 
(2000). OCBA allocates simulation runs by considering the 
following optimization problem:  

 
  P{CS} 

kNN ,,1

max

 s.t. N1 + N2 + ⋅⋅⋅ + Nk = T. (1) 
 
Under a Bayesian model, OCBA approximates P{CS} us-
ing the Bonferroni inequality and offers an asymptotic so-
lution to this approximation. While the run allocation given 
by OCBA is not an optimal allocation when the simulation 
budget is finite, the numerical testing demonstrates that 
OCBA is a very efficient approach and can dramatically 
reduce simulation time. In particular, OCBA allocates 
simulation runs according to: 
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  i, j ∈ {1, 2, ..., k}, and i ≠ j ≠ b,     (2) 
 

 Nb  = ∑b 2σ      (3) 
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 Based on OCBA, we develop a new allocation scheme 
ROCBA. While OCBA is simply an asymptotic solution to 
an approximation, the solution can be calculated easily and 
is proven to be effective. On the other hand, we know there 
is a potential to further improve the performance of OCBA. 
But the original budget allocation problem (1) is extremely 
difficult to solve. It may not be worthy to insist on spend-
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ing much time on finding an optimal solution. Instead of 
trying to solve such a hard problem, we consider a quick 
alternative. 
 Our idea is to have the asymptotic solution from 
OCBA to form the basis for simulation budget allocation, 
but with some minor random perturbation. We first apply 
OCBA to find the asymptotic solution of (N1, N2, ⋅⋅⋅, Nk) 
using (2) and (3). Thus, the proportion of the budget allo-
cated to design i, αi = Ni / (N1 + N2 + ⋅⋅⋅ + Nk), can also be 
calculated. We know that αi obtained this way is not a best 
solution; but we believe it is close to the best solution. Our 
approach is to make some perturbation on the budget allo-
cation proportion αi by multiplying it by a random number, 
(1 + ri ), where ri is uniformly distributed between -δ and 
δ. Then we use the ratio of (1 + r1)*α1 : (1 + r2)*α2 : ⋅⋅⋅: (1 
+ rk)*αk to determine the budget allocation.  
 Specifically, the original ratio for budget allocation 
obtained from OCBA is α1 : α2 : ⋅⋅⋅: αk; the one for our 
new approach ROCBA is (1 + r1)*α1 : (1 + r2)*α2 : ⋅⋅⋅: (1 
+ rk)*αk. With a given computing budget, this ratio is used 
to determine the allocation of simulation runs. In this set-
ting, ri can be viewed as the random proportion with which 
we perturb αi from the value calculated using OCBA. 
 It is certain that the value of δ will have significant 
impact on the performance of the new algorithm ROCBA. 
We don’t want the perturbed allocation to be too much dif-
ferent from the allocation given by OCBA. As OCBA can 
provide a very good allocation, δ must be a very small 
positive number. In this paper, we set δ = 0.035. A good 
selection for the value of δ warrants more research. 

4 DIFFERENT ALLOCATION  
PROCEDURES 

In this section, we test our new allocation approach and 
compare it with several different allocation procedures 
through a series of numerical experiments.  Among them, 
equal allocation represents the most straightforward way of 
conducting simulation experiments. OCBA is developed 
based on a Bayesian framework and intends to optimize an 
approximation of P{CS}. Finally, Rinott is highly popular 
in simulation literature.   
 To have a better comparison, we put all tested proce-
dures in the same setting of sequential sampling. Initially, 
n0 simulation runs for each of k designs are performed to 
get some information about the performance of each design 
during the first stage. As simulation proceeds, the sample 
means and sample variances of all designs are computed 
from the data already collected up to that stage. According 
to this collected simulation output, an incremental comput-
ing budget, ∆, is allocated based on different allocation ap-
proaches at each stage. The procedure is continued until 
the total budget T is exhausted. Then the whole procedure 
is repeated for 1,000,000 times. We estimate P{CS} by 
counting the number of times we successfully find the true 
best design out of 1,000,000 independent applications of 
each selection procedure. P{CS} is then obtained by divid-
ing this number by 1,000,000, representing the correct se-
lection frequency. A million macro replications guarantee a 
standard error of the P{CS} estimate under 0.001 or 0.1%. 
The P{CS} obtained from each different procedure will 
serve as a measurement of its effectiveness. 
 In addition to different allocation approaches, we in-
clude a theoretic optimal allocation as a benchmark in our 
comparison.  We briefly summarize the compared alloca-
tion procedures as follows. 

4.1 Theoretically Optimal Allocation (TOA) 

To compute the highest achievable P{CS} under perfect 
information, we assume that the means and variances for 
all designs are known in this allocation. Thus P{CS} can 
be calculated (or estimated through Monte Carlo simula-
tion) if the value of (N1, N2, ⋅⋅⋅, Nk) is given. 

 
 P{CS} = P{ designbestX  < iX , for all i where design i  
   not the best }. 
 
Since the total computing budget, T, considered in this paper 
is not big, we can evaluate P{CS} for all possible combina-
tions of (N1, N2, ⋅⋅⋅, Nk) with a constraint that N1 + N2 + ⋅⋅⋅ + 
Nk = T.  Then the maximum P{CS} and the corresponding 
(N1, N2, ⋅⋅⋅, Nk) can be determined.  Such a maximum 
P{CS} will serve as a benchmark for comparison. 
 It is unrealistic to assume that the means and variances 
of all designs are known prior to performing simulations. 
For all other compared approaches, we do not make such 
an assumption. The sample means and sample variances of 
all designs are computed from the collected data and then 
used to determine the run allocations. 

4.2 Equal Allocation (Equal) 

This is the simplest way to conduct simulation experiments 
and has been widely applied. The simulation budget is 
equally allocated to all designs. Namely, all designs are 
equally simulated with Ni = T/k for each i.  

4.3 Proportional To Variance (PTV) 

The two-stage procedure of Rinott (1978) has been widely 
applied in the simulation literature (Law and Kelton 2000).  
See Bechhofer et al. (1995) for a systematic discussion of 
two-stage procedures. In the first stage, all designs are 
simulated for n0 samples. Based on the sample variance 
estimate ( ) obtained from the first stage, the number of  
 

2
iS
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additional simulation samples for each design in the second 
stage is determined by: 

 
 Ni = max(0, ( h2

iS 2/ d2 - n0), for i = 1, 2,…, k,   (4) 
 
where • is the integer “round-up” function, d is the indif-
ference zone, h is a constant which solves Rinott’s integral 
(h can also be found from the tables in Wilcox 1984).  The 
major drawback is that only the information on variances is 
used when determining the simulation allocation, while the 
OCBA algorithm utilizes the information on both means 
and variances. As a result, the performance of Rinott’s 
procedure is not as good as OCBA. We do, however, in-
clude it in our testing due to its popularity in the simulation 
literature. 
 To put this into the setting of our sequential sampling 
framework, we make some modifications to the standard 
two-stage Rinott procedure. The runs allocation in (4) im-
plies that Ni is proportional to the estimated sample vari-
ances.  In this procedure, the available computing budget is 
allocated in a way that  Ni is proportional to the estimated 
sample variances. 

4.4 Optimal Computing  
Budget Allocation (OCBA) 

Under a Bayesian model, OCBA approximates P{CS} us-
ing the Bonferroni inequality and offers an asymptotic so-
lution to this approximation. The asymptotic solution is 
given in (2) and (3). In this approach, simulation runs are 
allocated based on (2) and (3). 

5 NUMERICAL TESTING 

The numerical experiments include a series of generic 
tests. In all the numerical illustrations, we estimate P{CS} 
by measuring the relative frequency of the event that we 
successfully find the true best design (design 1 in this ex-
ample) out of 1,000,000 independent applications of each 
selection procedure. The P{CS} obtained from each differ-
ent procedure will serve as a measure of its effectiveness. 
We have set n0 = 10 and ∆ = 20. 

5.1 Experiment 1: Three Designs 

This is a special case where the best design has zero vari-
ance. There are three design alternatives: 

X1j ~ N(0,  02), • 
• 
• 

X2j ~ N(0.4,  1.52), and  
X3j ~ N(0.4,  32). 
Suppose that the total computing budget T = N1 + N2 + N3 
= 100. In this case, 

 
  P{CS} = Pr{ X 1(N1) < X 2(N2)  and X 1(N1) < X 3(N3) } 
  = Pr{ 0 < X 2(N2)  and  0 < X 3(N3) } 
  = Pr{ X 2(N2) > 0 } Pr{ X 3(N3) > 0 } 

  = Φ(

2

5.1
4.0

N

) Φ(

3
0.3

4.0

N

)  

 
 Since the variance of design 1 is zero, we know that in 
the theoretically optimal allocation, we should not allocate 
any runs to design 1 as it will not further reduce its estima-
tion variance. We should allocate the limited computing 
budget to Designs 2 and 3 only. Thus we can easily evalu-
ate P{CS} for all 101 combinations with the constraint N2 
+ N3 = 100. The best of these 101 different allocations is 
when N2 = 38 and N3 = 62, with P{CS} = 81.1%. 

After determining that the theoretically optimal alloca-
tion can achieve P{CS} = 81.1%, we use it as a benchmark 
to compare the performance of all other approaches. For all 
other approaches, we assume that the means and variances 
for all designs are unknown. The sample means and sample 
variances of all designs are computed from the collected 
data and then used to determine the run allocations. Table 1 
shows the test results using different allocation procedures. 

 
Table 1:  Performance Comparison of Different Simulation 
Run Allocation Procedures in Experiment 1.  

 
TOA 

 
Equal 

 
PTV 

(Rinott) 
OCBA ROCBA 

P{CS} 81.0% 74.0% 76.1% 88.6% 88.5% 
 
 From Table 1, we see that TOA performs better than 
Equal and PTV. However, it is interesting to observe that 
both OCBA and ROCBA perform better than TOA. This 
seems counter intuitive. We conduct further testing and 
discuss them in the next section. 

5.2 Experiment 2: Five Designs 

We expand the special case considered in Experiment 1 to 
include 5 design alternatives: 

X1j ~ N(0,  02), • 
• 
• 
• 
• 

X2j ~ N(1,  92), 
X3j ~ N(2,  92), 
X4j ~ N(3,  92), and  
X5j ~ N(4,  92). 
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We set the total computing budget T = N1 + N2 + N3 + N4 + 
N5 = 600. Because of zero variance for Design 1, we can 
again simplify the computation of P{CS} for TOA. 
 
   P{CS} = Pr{ X 1(N1) < X i(Ni) , for i = 2, 3, 4, and 5} 
  = Pr{ X 2(N2) > 0 } Pr{ X 3(N3) > 0 }  
   Pr{ X 4(N4) > 0 } Pr{ X 5(N5) > 0 } 
  = Φ(

2

9
1

N

) Φ(

3

9
2

N

) Φ(

4

9
3

N

) Φ(

5

9
4

N

) 

 
While the number of combinations that N2 + N3 + N4 + N5 
= 600 is large, it is still feasible to evaluate P{CS} for all 
combinations. The best allocation is when N2 = 348, N3 = 
134, N4 = 72, and N5 = 46, P{CS} = 97.2%. 

As in Experiment 1, we assume the means and vari-
ances for all designs are unknown for all other compared 
approaches. Table 2 shows the test results using different 
allocation procedures. 

 
Table 2:  Performance Comparison of Different Simulation 
Run Allocation Procedures in Experiment 2.  

 
TOA 

 
Equal  

 
PTV 

(Rinott) 
OCBA ROCBA 

P{CS} 97.2% 88.2% 91.2% 99.2% 99.3% 
 
 From Table 2, we see that TOA performs better than 
Equal and PTV. Again we observe that both OCBA and 
ROCBA outperform TOA. As in Experiment 1, the per-
formances of OCBA and ROCBA are quite close. 

5.3 Experiment 3: Five Designs  
with Non-Zero Variance 

This example is an extension of Experiment 2. The vari-
ance of Design 1 is set to be the same as that of other de-
signs, which is non-zero. Thus the 5 design alternatives 
are: 

X1j ~ N(0,  92), • 
• 
• 
• 
• 

X2j ~ N(1,  92), 
X3j ~ N(2,  92), 
X4j ~ N(3,  92), and  
X5j ~ N(4,  92). 

The total computing budget T = N1 + N2 + N3 + N4 + 
N5 is also 600. In this case, we evaluate P{CS} using 
Monte Carlo simulation for all combinations. The best al-
location is when N1 = 216, N2 = 174, N3 = 113, N4 = 59, 
and N5 = 38, P{CS} = 83.6%. Table 3 shows the test re-
sults using different allocation procedures. 
 Once again, we see that TOA performs better than 
Equal and PTV and OCBA beats TOA. In this case 
ROCBA’s performance is even better than OCBA. 

 

Table 3:  Performance Comparison of Different Simulation 
Run Allocation Procedures in Experiment 3.  

 
TOA 

 
Equal 

 
PTV 

(Rinott) 
OCBA ROCBA 

P{CS} 83.6% 78.6% 78.7% 84.8% 86.1% 

6 CONCLUDING REMARKS 

In this paper, we present a new simulation run allocation ap-
proach called ROCBA. ROCBA determines the run alloca-
tion by randomly perturbing the asymptotic solution obtained 
from OCBA. We test ROCBA and compare it with several 
different allocation procedures through a series of numerical 
experiments.  One of the compared approaches assumes that 
the means and variances for all designs are known so that the 
theoretically optimal allocation can be found.  We also com-
pare it with equal allocation and a revised Rinott procedure.  
We had some interesting observations: 

• OCBA and ROCBA perform better than Theoreti-
cally Optimal Allocation. This seems counter in-
tuitive. Note that means and variances are as-
sumed known in TOA, while it is not for 
OCBA/ROCBA. OCBA/ROCBA use only infor-
mation of sample means and sample variances. 
Our conjecture is that OCBA/ROCBA is a dy-
namic allocation scheme, whereas TOA is static 
allocation. Using information of sample means 
and sample variances can become advantageous 
in some cases, because it contains some valuable 
information about what has been sampled. Thus a 
good simulation approach can utilize this addi-
tional information to do a better simulation run al-
location, and beats the performance of the TOA. 

• P{CS} is not sensitive to the run allocations deter-
mined by OCBA. ROCBA is actually a deviation of 
OCBA by randomly perturbing its allocation. In the 
numerical testing, we found that the performances 
of OCBA and ROCBA are very close. The alloca-
tion determined by OCBA seems quite robust with 
some minor level of perturbation. 

• ROCBA may beat OCBA in some cases. It is in-
teresting to see that ROCBA performs slightly 
better than OCBA in Experiment 3. It is certain 
that the performance of ROCBA critically de-
pends on the selection of δ. More studies are 
needed to give further implications. 
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